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A detailed examination of interior routing protocols -- completely updated in a new edition

A complete revision of the best-selling first edition--widely considered a premier text on TCP/IP
routing protocols

A core textbook for CCIE preparation and a practical reference for network designers,
administrators, and engineers

Includes configuration and troubleshooting lessons that would cost thousands to learn in a
classroom and numerous real-world examples and case studies

Praised in its first edition for its approachable style and wealth of information, this new edition
provides readers a deep understanding of IP routing protocols, teaches how to implement these
protocols using Cisco routers, and brings readers up to date protocol and implementation
enhancements. Routing TCP/IP, Volume 1, Second Edition, includes protocol changes and Cisco
features that enhance routing integrity, secure routers from attacks initiated through routing protocols,
and provide greater control over the propagation of routing information for all the IP interior routing
protocols. Routing TCP/IP, Volume 1, Second Edition, provides a detailed analysis of each of the IP
interior gateway protocols (IGPs). Its structure remains the same as the best-selling first edition,
though information within each section is enhanced and modified to include the new developments in
routing protocols and Cisco implementations. What's New In This Edition? The first edition covers
routing protocols as they existed in 1998. The new book updates all covered routing protocols and
discusses new features integrated in the latest version of Cisco IOS Software. IPv6, its use with
interior routing protocols, and its interoperability and integration with IPv4 are also integrated into this
book. Approximately 200 pages of new information are added to the main text, with some old text
removed. Additional exercise and solutions are also included.
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Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions used in the
IOS Command Reference. The Command Reference describes these conventions as follows:

Boldface indicates commands and keywords that are entered literally as shown. In actual
configuration examples and output (not general command syntax), boldface indicates commands
that are manually input by the user (such as a show command).

Italics indicate arguments for which you supply actual values.

Vertical bars (|) separate alternative, mutually exclusive elements.

Square brackets [ ] indicate optional elements.

Braces { } indicate a required choice.

Braces within brackets [{ }] indicate a required choice within an optional element.



Foreword
In 1976, when I saw my first Arpanet IMP at Digital Equipment Corporation, networks as we know them
today were in their infancy. SNA, XNS, and DECnet were under early development, and packet
switching versus circuit switching was the hot topic of the day. Those of us involved in the design of
the switching and routing algorithms were dealing with routers (although we didn't call them that) that
had 64 kilobytes of memory, data link of 56 kilobits were considered blindingly fast, and networks with
256 nodes were big enough that if you were the salesman who sold those 256 computers, you would
retire fabulously wealthy.

Thirty years is a long time, and today the individual networks that make up the Internet contain
thousands or tens of thousands of nodes, while the Internet as a whole contains hundreds of millions
of computers. Most striking in the evolution over this human generation is that the foundations of the
Internet laid down in the TCP/IP protocol suite have survived mostly intact through four or more
generations of computing architectures, three complete generations of operating system technology,
and an increase of five orders of magnitude in transmission speeds.

Yet, we still treat routing in packet-switched networks as a black art. Why is that?

First, designing robust, scalable distributed algorithms is hard. Despite our best intentions to make
them simple, complexity creeps in to deal with the inevitable special cases, optimizations, peculiar
topologies, and link technologies one encounters. Because a "fork lift upgrade" of an entire network is
rarely feasible, we have multiple generations of technology present simultaneously, and we must
maintain backward-compatibility with essentially no disruption to deployed services. As policies
governing the routing of packets become more sophisticated, our ability to devise automated discovery
and configuration procedures gets overwhelmed, and we fall back on manual configuration and
performance tuning techniques. Finally, as the environment in which these networks are operated has
evolved from a cooperative one where trust was implicit to one in which the network is subject to both
inside and outside attack, designing and deploying routing systems that can be made secure has
become an urgent priority.

Routing TCP/IP  tackles this black art comprehensively. The present Volume 1 covers all the needed
fundamentals of TCP/IP networks and gives you all the tools needed to understand how routing is
accomplished within a single administrative region of the Internet. Straightforward ideas of packet-
switched routing are presented first in the chapters on addressing and static routing. The most popular
IGPsRIP, EGRP, OSPF, and ISISare covered in depth. Advanced topics in route redistribution, route
filtering, and policy routing round out Volume 1.

This second edition also adds essential material on IPv6 as well as bringing all the material up to date
with examples and configurations for the latest releases of Cisco IOS.

For anyone wanting a comprehensive understanding of how routing in TCP/IP networks really works,
from the design principles of routing algorithms, to the evolution of addressing schemes, to the practical
aspects of designing and configuring the routing of large autonomous systems, this is the book for you.

David Oran

Cisco Fellow



Introduction
Routing is an essential element of all but the smallest data communications networks. At one level,
routing and the configuration of routers are quite simple. But as networks grow in size and complexity,
routing issues can become at once both large and subtle. Perversely, perhaps, we are grateful for the
difficult problems large-scale routing can presentas network systems consultants, these problems are
our bread and butter. Without them, the phrase "You want fries with that?" could be an unfortunate part
of our daily vocabulary.

Cisco Certified Internetwork Experts are widely recognized for their ability to design, troubleshoot, and
manage large networks. This recognition comes from the fact that you cannot become a CCIE by
attending a few classes and then regurgitating some memorized facts onto a written test. A CCIE has
proven expertise in an intense, famously difficult hands-on lab exam.



Objectives

This book is the first of two volumes that focuses on TCP/IP routing issues. Early in the writing of the
first edition, Kim Lew, former Cisco Systems program manager, said, "Our objective is to make CCIEs,
not to make people who can pass the CCIE lab." We entirely agree with that statement and have used
it as a guiding principle throughout the writing of this book. Although the book includes many case
studies and exercises to help you prepare for the CCIE lab, my primary objective is to increase your
understanding of IP routingboth on a generic level and as it is implemented on Cisco routers.



Audience

The audience for this book is any network designer, administrator, or engineer who needs a full
understanding of the interior routing protocols of TCP/IP. Although the practical aspects of the book
focus on the Cisco IOS, the information is applicable to any routing platform.

The book is not only for readers who plan to become CCIEs, but for people who wish to advance their
knowledge of TCP/IP routing. These readers will fall into one of three categories:

The "beginners" who have some basic networking knowledge and wish to begin a deep study of
networking.

The intermediate-level networking professionals who have experience with routers, Cisco or
otherwise, and plan to advance that experience to the expert level.

The highly experienced networking experts. These individuals have extensive hands-on expertise
with Cisco routers and are ready to take the CCIE lab; however, they want a structured review and
series of exercises for verification and validation.

CCIE Professional Development: Routing TCP/IP, Volume I  focuses primarily on intermediate-level
networking professionals while offering to beginners a structured outline of fundamental information
and to experts the required challenges to hone their skills.



Changes from First Edition

There are several factors influencing the changes contained in this second edition. The first factor is
the CCIE itself. When I (Jeff) wrote the first edition of this book, the CCIEspecifically what is now called
the Routing and Switching specialty of the CCIEwas the only certification Cisco Systems offered. Now,
there is a series of certifications creating a path to the CCIE at the pinnacle. Moreover, the typical
networking professional is more knowledgeable than in 1997. Given this, we have eliminated the first
chapter of the original book, which covered such very basic concepts as the definition of bridges and
routers and network addresses. (When was the last time you even saw a bridge in a network?)

The second factor influencing the changes in this edition is the changes in the Cisco Systems IOS.
IGRP, which was frequently used when the first edition was written, is now a legacy protocol whose
main significance is as the ancestor of EIGRP. Therefore the IGRP chapter of the first edition has been
eliminated and IGRP is covered for historical perspective early in the EIGRP chapter. The IOS
command suite itself has expanded to accommodate new functions and options; we have made every
effort to include the commands and protocol extensions that did not exist in the late 1990s.

Lastly, a protocol that existed mostly only in proposal form in 1997IPv6is now in the early stages of
worldwide deployment. You can expect to need a detailed knowledge of this protocol and the
extensions to IP routing protocols that support it in the near future, if not already, so this second edition
delves deeply into routing IPv6.

Other changes in this edition are semantic. For example, in the first edition, I (Jeff) made a point of
differentiating between a "network" as a data link and an "internetwork" as a set of networks connected
by routers. Although that terminology is certainly accurate, it is clumsy, and "internetwork" is seldom
used these days. Instead, "network" usually refers to everything from a local link to worldwide
autonomous systems operated by the likes of Level 3, NTT, and Sprint. We have attempted to bring the
terminology in this edition up to modern, common usage.



Organization

The 14 chapters of the book are divided into three parts.

Part I, "Routing Basics," examines the basics of IPv4 and IPv6, and the basics of routing. Although
more advanced readers may wish to skip the first chapter, we recommend that they at least skim
Chapter 3, "Static Routing," and Chapter 4, "Dynamic Routing Protocols." And, of course, if you are not
yet familiar with IPv6, Chapter 2, "IPv6 Overview," is a must-read.

Part II, "Interior Routing Protocols," covers the IP Interior Gateway Protocols. Each protocol-specific
chapter begins with a discussion of the theory, mechanics, and parameters of the protocol. This
general overview is followed by case studies on configuring and troubleshooting the protocol using
Cisco Systems' IOS in various network topologies.

The Exterior Gateway Protocol, BGP, and topics such as multicast routing, Quality of Service, router
security and management, and Network Address Translation, are covered in "Routing TCP/IP, Volume
II."

Part III, "Route Control and Interoperability," examines the tools available for creating and managing
interoperability with multiple IP routing protocols, and also such tools as default routes and route
filtering. As such, the chapters of this last part provide an introduction to the tools necessary for
building the complex routing policies introduced in Volume II. These chapters, like the ones in Part II,
begin with concepts and conclude with case studies.



Book Features

Most chapters conclude with a set of review questions, configuration exercises, and troubleshooting
exercises. The review questions focus on the theoretical aspects of the chapter topic, whereas the
configuration and troubleshooting exercises address Cisco-specific aspects of the chapter topic.

Also at the end of each chapter is a table with a brief description of all important Cisco IOS commands
used in that chapter. The conventions used to present these commands are the same conventions
used in the IOS Command Reference and presented earlier in this introduction.



Part I: Routing Basics
 Chapter 1 TCP/IP Review
 Chapter 2 IPv6 Overview
 Chapter 3 Static Routing
 Chapter 4 Dynamic Routing Protocols



Chapter 1. TCP/IP Review
This chapter covers the following subjects:

TCP/IP Protocol Layers

IP Packet Header

IPv4 Addresses

Address Resolution Protocol (ARP)

Internet Control Message Protocol (ICMP)

Host-to-Host Layer

Given that the title of this book is Routing TCP/IP , it is fitting to begin with a review of TCP/IP before
getting into how to route it. Presumably, if you are preparing for a Cisco Certified Internetwork Expert
(CCIE) examination, or have just bought this book as a routing reference, you already know most or all
of the information in this chapter. But reviews never hurt and sometimes help, so here you have it.

The purpose of this chapter is to review the protocols that enable, control, or contribute to the routing
of TCP/IP, not to do an in-depth study of the TCP/IP protocol suite. Several books on the
recommended reading list at the end of the chapter cover the subject in depth. Read at least one.

Conceived in the early 1970s by Vint Cerf and Bob Kahn, TCP/IP and its layered protocol architecture
predates the ISO's Open System Interconnection (OSI) reference model. A brief review of TCP/IP's
layers will be useful in understanding how the various functions and services examined in this chapter
interrelate.



TCP/IP Protocol Layers

Figure 1-1 shows the TCP/IP protocol suite in relationship to the OSI reference model.[1] The network
interface layer, which corresponds to the OSI physical and data link layers, is not actually part of the
specification. However, it has become a de facto layer either as shown in Figure 1-1 or as separate
physical and data link layers. It is described in this section in terms of the OSI physical and data link
layers.

[1] The OSI protocol suite itself has become, with some rare exceptions, a relic of early
Internet history. Its current contribution to networking technology seems to be mainly limited
to the usefulness of its reference model in illustrating modular protocol suites to networking
studentsand, of course, the IS-IS routing protocol still widely used in large service provider
and carrier networks.

Figure 1-1. TCP/IP protocol suite.

The physical layer  contains the protocols relating to the physical medium on which TCP/IP will be
communicating. Officially, the protocols of this layer fall within four categories that together describe all
aspects of physical media:

Electrical/optical  protocols describe signal characteristics such as voltage or photonic levels, bit
timing, encoding, and signal shape.

Mechanical  protocols are specifications such as the dimensions of a connector or the metallic
makeup of a wire.

Functional  protocols describe what something does. For example, "Request to Send" is the
functional description of pin 4 of an EIA-232-D connector.

Procedural  protocols describe how something is done. For example, a binary 1 is represented on
an EIA-232-D lead as a voltage more negative than 3 volts.

The data link layer  contains the protocols that control the physical layer: how the medium is accessed
and shared, how devices on the medium are identified, and how data is framed before being
transmitted on the medium. Examples of data-link protocols are IEEE 802.3/Ethernet, Frame Relay,
ATM, and SONET.

The internet layer , corresponding to the OSI network layer, is primarily responsible for enabling the
routing of data across logical network paths by defining a packet format and an addressing format. This
layer is, of course, the one with which this book is most concerned.



The host-to-host layer , corresponding to the OSI transport layer, specifies the protocols that control the
internet layer, much as the data link layer controls the physical layer. Both the host-to-host and data link
layers can define such mechanisms as flow and error control. The difference is that while data-link
protocols control traffic on the data linkthe physical medium connecting two devicesthe transport layer
controls traffic on the logical linkthe end-to-end connection of two devices whose logical connection
traverses a series of data links.

The application layer  corresponds to the OSI session, presentation, and application layers. Although
some routing protocols such as Border Gateway Protocol (BGP) and routing Information Protocol (RIP)
reside at this layer,[2] the most common services of the application layer provide the interfaces by
which user applications access the network.

[2] BGP is an application layer protocol because it uses TCP to transport its messages, and
RIP because it uses UDP for the same purposes. Other routing protocols such as OSPF are
said to operate at the internet layer because they encapsulate their messages directly into IP
packets.

A function common to the protocol suite of Figure 1-1 and any other protocol suite is multiplexing
between layers. Many applications might use a service at the host-to-host layer, and many services at
the host-to-host layer might use the internet layer. Multiple protocol suites (IP, IPX, and AppleTalk, for
example) can share a physical link via common data-link protocols.



IP Packet Header

Figure 1-2 shows the format of the IP packet header, specified in RFC 791. Most fields in this packet have
some importance to routing.

Figure 1-2. IP packet protocol.

Version identifies the IP version to which the packet belongs. This four-bit field is set to binary 0100 to indicate
version 4 (IPv4) or binary 0110 to indicate version 6 (IPv6). This chapter is concerned primarily with IPv4,
whereas Chapter 2, "IPv6 Overview," focuses on IPv6. Table 1-1 shows all currently assigned version
numbers, along with a few of the relevant RFCs. All versions other than 4 and 6 (built on an earlier proposal
called Simple Internet Protocol, or SIP, which also carried a version number of 6) now exist only as "culture,"
and it will be left to the curious to read their cited RFCs.

Table 1-1. IP version numbers.
Number Version RFC

0 Reserved  

13 Unassigned  

4 Internet Protocol version 4 (IPv4) 791

5 ST Datagram Mode 1190

6 Simple Internet Protocol (SIP)  

6 Internet Protocol version 6 (IPv6) 1883

7 TP/IX 1475

8 P Internet Protocol (PIP) 1621

9 TCP and UDP over Bigger
Addresses (TUBA)

1347

1014 Unassigned  

15 Reserved  

Header Length  is a four-bit field that tells, as the name implies, the length of the IP header in 32-bit words.
This field is included because the Options field (described later in this section) can vary in size. The minimum
length of the IP header is 20 octets, and the options might increase this size up to a maximum of 60 octetsthe
maximum length in 32-bit words that can be described by this field.

Type of Service  (TOS) is an eight-bit field that can be used for specifying special handling of the packet. This



field actually can be broken down into two subfields: Precedence and TOS. Precedence sets a priority for the
packet, the way a package might be sent overnight, two-day delivery, or general post. TOS allows the
selection of a delivery service in terms of throughput, delay, reliability, and monetary cost. Although this field is
not commonly used (all the bits will usually be set to zero), early specifications of the Open Shortest Path First
(OSPF) protocol called for TOS routing. Also, the Precedence bits are occasionally used in quality of service
(QoS) applications. Part (a) of Figure 1-3 summarizes the eight TOS bits; for more information, see RFC 1340
and RFC 1349.

Figure 1-3. Type of Service (a) or DiffServ and ECN (b) field.

[View full size image]

In recent years, the ToS field has been redefined as a part of the Differentiated Services (DiffServ)
framework.[3] This framework creates a much more flexible handling of IP packets than was allowed by the
relatively rigid ToS definitions. With DiffServ, you can define service classes on a router and then sort packets
into these classes. The router can then queue and forward packets with different levels of priority, according to
their classification. Each queuing and forwarding treatment is called a Per-Hop Behavior  (PHB). While
DiffServ defines the framework or architecture, the mechanism itself is called Differentiated Class of Service or
simply Class of Service  (COS).

[3] K. Nichols, S. Blake, F. Baker, and D. Black, "Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers," RFC 2474, December 1998.

Part (b) of Figure 1-3 shows how the ToS field has been redefined, so that the first six bits now compose the
DiffServ Code Point  (DSCP). With these six bits you can define, either arbitrarily or according to service
classes predefined in the DiffServ architecture, up to 64 different service classes that can then be sorted into
PHBs. Note that the field in the IP header remains 8 bits; the DiffServ architecture just redefines how a router
interprets the value in that field.

Explicit Congestion Notification (ECN), in part (b) of Figure 1-3, is used by some routers to signal support for
Explicit Congestion Notification and, when it is supported, the bits can be used to signal congestion (ECN =
11).[4]

[4] K. Ramakrishnan, "The Addition of Explicit Congestion Notification (ECN) to IP," RFC 3168,
September 2001.

Total Length is a 16-bit field specifying the total length of the packet, including the header, in octets. By
subtracting the header length, a receiver might determine the size of the packet's data payload. Because the
largest decimal number that can be described with 16 bits is 65,535, the maximum possible size of an IP
packet is 65,535 octets.



Identifier  is a 16-bit field used in conjunction with the Flags and Fragment Offset  fields for fragmentation of a
packet. Packets must be fragmented into smaller packets if the original length exceeds the Maximum
Transmission Unit (MTU) of a data link through which they pass. For example, consider a 5000-byte packet
traveling through a network. It encounters a data link with a 1500 byte MTU. That is, the frame can contain a
maximum packet size of 1500 bytes. The router that places the packet onto this data link must first fragment
the packet into chunks of no more than 1500 octets each. The router then marks each fragment with the same
number in the Identifier field so that a receiving device can identify the fragments that go together.[5]

[5] A fragmented packet is not reassembled at the other end of the data link; the packet stays
fragmented until it reaches its final destination.

Flags is a three-bit field in which the first bit is unused. The second is the Don't Fragment (DF) bit. When the
DF bit is set to one, a router cannot fragment the packet. If the packet cannot be forwarded without
fragmenting, the router drops the packet and sends an error message to the source. This function enables the
testing of MTUs in a network. The DF bit can be set using the Extended Ping utility in IOS, as shown in
Example 1-1.

Example 1-1. The IOS Extended Ping utility allows the setting of the DF bit to test MTUs across a
network. In this ping Output, the largest MTU of the path to destination 172.16.113.17 is 1478 octets.

Handy#ping
Protocol [ip]:
Target IP address: 172.16.113.17
Repeat count [5]: 1
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address:
Type of service [0]:
Set DF bit in IP header? [no]: y
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]: r
Number of hops [9]:
Loose, Strict, Record, Timestamp, Verbose[RV]:
Sweep range of sizes [n]: y
Sweep min size [76]: 500
Sweep max size [18024]: 2000
Sweep interval [1]: 500
Type escape sequence to abort.
Sending 4, [500..2000]-byte ICMP Echos to 172.16.113.17, timeout is 2 seconds:
Packet has IP options:  Total option bytes= 39, padded length=40
 Record route: <*> 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0
         0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0

Reply to request 0 (16 ms) (size 500).  Received packet has options
 Total option bytes= 40, padded length=40
 Record route: 172.16.192.5 172.16.113.18 172.16.113.17 172.16.113.17
         172.16.192.6 172.16.192.5 <*> 0.0.0.0 0.0.0.0 0.0.0.0
 End of list

Reply to request 1 (24 ms) (size 1000).  Received packet has options
 Total option bytes= 40, padded length=40
 Record route: 172.16.192.5 172.16.113.18 172.16.113.17 172.16.113.17
         172.16.192.6 172.16.192.5 <*> 0.0.0.0 0.0.0.0 0.0.0.0
 End of list

Reply to request 2 (28 ms) (size 1500).  Received packet has options
 Total option bytes= 40, padded length=40
 Record route: 172.16.192.5 172.16.113.18 172.16.113.17 172.16.113.17
         172.16.192.6 172.16.192.5 <*> 0.0.0.0 0.0.0.0 0.0.0.0
 End of list



Unreachable from 172.16.192.6, maximum MTU 1478 (size 2000).
 Received packet has options
 Total option bytes= 39, padded length=40
 Record route: <*> 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0
         0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0

Success rate is 75 percent (3/4), round-trip min/avg/max = 16/22/28 ms
Handy#

The third bit is the More Fragments (MF) bit. When a router fragments a packet, it sets the MF bit to one in all
but the last fragment so that the receiver knows to keep expecting fragments until it encounters a fragment with
MF = 0.

Fragment Offset  is a 13-bit field that specifies the offset, in units of eight octets, from the beginning of the
header to the beginning of the fragment.[6] Because fragments might not always arrive in sequence, the
Fragment Offset field allows the pieces to be reassembled in the correct order.

[6] Units of eight octets are used so that a maximum-size packet of 65,535 bytes might be described
with 13 bits.

Note that if a single fragment is lost during a transmission, the entire packet must be resent and refragmented
at the same point in the network. Therefore, error-prone data links could cause a disproportionate delay. And if
a fragment is lost because of congestion, the retransmission of the entire series of fragments might increase
the congestion.

Time to Live (TTL) is an eight-bit field that will be set with a certain number when the packet is first generated.
As the packet is passed from router to router, each router will decrement this number. If the number reaches
zero, the packet will be discarded and an error message will be sent to the source. This process prevents "lost"
packets from wandering endlessly through a network.

As originally conceived, the TTL was specified in seconds; if a packet was delayed more than a second in a
router, the router would adjust the TTL accordingly. However, this approach is difficult to implement and has
never been generally supported. Modern routers simply decrement the TTL by one, no matter what the actual
delay, so the TTL is really a hop count.[7] The recommended default TTL is 64, although values such as 15
and 32 are not uncommon.

[7] As you will read in Chapter 2, the equivalent field in the IPv6 header has been renamed Hop Limit
to more accurately reflect its true usage.

Some trace utilities, such as the IOS trace command, make use of the TTL field. If the router is told to trace
the route to a host address such as 10.11.12.13, the router will send three packets with the TTL set to one; the
first router will decrement it to zero, drop the packets, and send back error messages to the source. By reading
the source address of the error messages, the first router on the path is now known. The next three packets
will be sent with a TTL of two. The first router decrements to one, the second to zero, and an error message is
received from the second router. The third set has a TTL of three, and so forth, until the destination is found.
All routers along the network path will have identified themselves. Example 1-2 shows the output from an IOS
trace.

Example 1-2. The trace utility uses the TTL field to identify routers along a route. Asterisks indicate
timed-out packets.

Elvis#traceroute www.cisco.com
Type escape sequence to abort.
Tracing the route to cio-sys.Cisco.COM (192.31.7.130)

  1 172.18.197.17 4 msec   4 msec 4 msec
  2 ltlrichard-s1-13.hwy51.com (172.18.197.1) 36 msec 44 msec  2536 msec
  3 cperkins-rtr-fr2.hwy51.com (10.168.204.3) 104 msec 64 msec *
  4 cberry.hwy51.com (10.168.193.1)  92 msec *



  5 jllewis-inner.hwy51.com (10.168.207.59) 44 msec  *  44 msec
  6 bholly-fw-outer-rt.hwy51.com (10.168.207.94) 44 msec *   48 msec
  7 sl-stk-14-S10/0:6-512k.sprintlink.net (144.228.214.107) 92 msec *
  8 sl-stk-2-F1/0/0.sprintlink.net  (144.228.40.2) 52 msec 1156 msec *
  9 sl-mae-w-H1/0-T3.sprintlink.net  (144.228.10.46) 100 msec 124 msec 2340 msec
 10 sanjose1-br1.bbnplanet.net  (198.32.136.19) 2264 msec   164 msec *
 11 paloalto-br2.bbnplanet.net  (4.0.1.10) 64 msec 60 msec    *
 12 su-pr2.bbnplanet.net  (131.119.0.218) 76 msec 76 msec    76 msec
 13 cisco.bbnplanet.net  (131.119.26.10) 2560 msec 76 msec    936 msec
 14 sty.cisco.com  (192.31.7.39)  84 msec 72 msec  *
 15 cio-sys.Cisco.COM  (192.31.7.130) 60 msec  *   64 msec
Elvis#

Protocol  is an eight-bit field that gives the "address," or protocol number, of the host-to-host or transport layer
protocol for which the information in the packet is destined. Table 1-2 shows a few of the more common of the
100 or so different protocol numbers currently assigned.

Table 1-2. A few well-known protocol numbers.
Protocol Number Host-to-Host Layer Protocol

1 Internet Control Message Protocol
(ICMP)

2 Internet Group Management
Protocol (IGMP)

4 IP in IP (encapsulation)

6 Transmission Control Protocol
(TCP)

17 User Datagram Protocol (UDP)

45 Inter-Domain Routing Protocol
(IDRP)

46 Resource Reservation Protocol
(RSVP)

47 Generic Routing Encapsulation
(GRE)

54 NBMA Next Hop Resolution
Protocol (NHRP)

88 Cisco Internet Gateway Routing
Protocol (IGRP)

89 Open Shortest Path First (OSPF)

Header Checksum  is the error detection field for the IP header. The checksum is not calculated for the
encapsulated data; UDP, TCP, and ICMP have their own checksums for doing this. The field contains a 16-bit
one's complement checksum, calculated by the originator of the packet. The receiver will again calculate a 16-
bit one's complement sum, including the original checksum. If no errors have occurred during the packet's
travels, the resulting checksum will be all ones. Remember that each router decrements the TTL; therefore, the
checksum must be recalculated at each router. RFC 1141 discusses some strategies for simplifying this
calculation.

Source and Destination Addresses are the 32-bit IP addresses of the originator of the packet and the
destination of the packet. The format of IP addresses is covered in the next section, "IPv4 Addresses."

Options is a variable-length field and, as the name says, is optional. Space is added to the packet header to
contain either source-generated information or for other routers to enter information; the options are used
primarily for testing. The most frequently used options are



Loose source routing, in which a series of IP addresses for router interfaces is listed. The packet must
pass through each of these addresses, although multiple hops might be taken between the addresses.

Strict source routing , where again a series of router addresses is listed. Unlike loose source routing, the
packet must follow the route exactly. If the next hop is not the next address on the list, an error occurs.

Record route provides room for each router to enter the address of its outgoing interface as the packet
transits so that a record is kept of all routers the packet encounters. Record route provides a function
similar to trace except that the outgoing interfaces, both on the path to the destination and on the return
path, are recorded.

Timestamp is an option similar to record route except each router also enters a timestamp: the packet not
only keeps track of where it has been but also records when it was there.

All these options might be invoked by using the Extended Ping on Cisco routers. Record route is used in
Example 1-1, loose source routing and timestamp are used in Example 1-3, and strict source routing is used in
Example 1-4.

Example 1-3. The Cisco Extended Ping can be used to set parameters in the Options field of the IP
header. In this example, loose source routing and timestamp are used.

Handy#ping
Protocol [ip]:
Target IP address: 172.16.113.9
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address:
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]: l
Source route: 172.16.113.14 172.16.113.10
Loose, Strict, Record, Timestamp, Verbose[LV]: t
Number of timestamps [ 6 ]: 2
Loose, Strict, Record, Timestamp, Verbose[LTV]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.113.9, timeout is 2 seconds:
Packet has IP options: Total option bytes= 23, padded length=24
  Loose source route: <*> 172.16.113.14 172.16.113.10
  Timestamp: Type 0. Overflows: 0 length 12, ptr 5
    >>Current pointer<<
    Time= 0
    Time= 0

Request 0 timed out
Reply to request 1 (76 ms). Received packet has options
  Total option bytes= 24, padded length=24
  Loose source route: 172.16.113.13 172.16.192.6 <*>
  Timestamp: Type 0. Overflows: 6 length 12, ptr 13
    Time= 80FF4798
    Time= 80FF4750
    >>Current pointer<<
  End of list

Request 2 timed out
Reply to request 3 (76 ms). Received packet has options
  Total option bytes= 24, padded length=24
  Loose source route: 172.16.113.13 172.16.192.6 <*>
  Timestamp: Type 0. Overflows: 6 length 12, ptr 13
  Time= 80FF4FC0



  Time= 80FF4F78
  >>Current pointer<<
End of list

Request 4 timed out
Success rate is 40 percent (2/5), round-trip min/avg/max = 76/76/76 ms
Handy#

Example 1-4. Extended Ping is used here to set strict source routing in the ping packets.

Handy#ping
Protocol [ip]:
Target IP address: 172.16.113.10
Repeat count [5]: 2
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address:
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]: s
Source route: 172.16.192.6 172.16.113.17 172.16.113.10
Loose, Strict, Record, Timestamp, Verbose[SV]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 2, 100-byte ICMP Echos to 172.16.113.10, timeout is 2 seconds:
Packet has IP options: Total option bytes= 15, padded length=16
  Strict source route: <*> 172.16.192.6 172.16.113.17 172.16.113.10

Reply to request 0 (80 ms). Received packet has options
  Total option bytes= 16, padded length=16
  Strict source route: 172.16.113.10 172.16.113.17 172.16.192.6 <*>
  End of list

Reply to request 1 (76 ms). Received packet has options
  Total option bytes= 16, padded length=16
  Strict source route: 172.16.113.10 172.16.113.17 172.16.192.6 <*>
  End of list

Success rate is 100 percent (2/2), round-trip min/avg/max = 76/78/80 ms
Handy#

Padding ensures that the header ends on a 32-bit boundary by adding zeros after the option field until a
multiple of 32 is reached.

A protocol analyzer capture of an IP header is shown in Example 1-5. Compare the information shown with
Figure 1-2.

Example 1-5. You can see the fields of an IP packet's header and the values contained in each field
in this protocol analyzer display.

Internet Protocol, Src Addr: 172.16.1.102 (172.16.1.102), Dst Addr: 224.0.0.5
(224.0.0.5)
    Version: 4
    Header length: 20 bytes
    Differentiated Services Field: 0xc0 (DSCP 0x30: Class Selector 6; ECN: 0x00)
    Total Length: 64
    Identification: 0x6e61 (28257)



    Flags: 0x00
    Fragment offset: 0
    Time to live: 1
    Protocol: OSPF IGP (0x59)
    Header checksum: 0xbcc8 (correct)
    Source: 172.16.1.102 (172.16.1.102)
    Destination: 224.0.0.5 (224.0.0.5)



IPv4 Addresses

IPv4 addresses are 32 bits long; like all network-level addresses, they have a network portion and a
host portion. The network portion uniquely identifies a physical or logical link and is common to all
devices attached to that link. The host portion uniquely identifies a particular device attached to the
link.

There are several ways to represent the 32 bits of an IP address. For instance, the 32-bit IP address

     00001010110101100101011110000011

can be represented in decimal as

     181,819,267.

The binary format is cumbersome, and a decimal format of the entire 32-bit number is time-consuming
to calculate. Figure 1-4 shows a better format.

Figure 1-4. The dotted-decimal format is a convenient way to write IPv4 addresses, but it
should not be confused with what the router (or host) sees: a 32-bit string.

The 32 bits of the address comprise four octets, each of which can be represented with a decimal
number between 0 and 255, with dots between the decimal representations. In Figure 1-4, the 32-bit
address is mapped into a dotted-decimal representation.[8]

[8] Dotted decimal is used only with IPv4 addresses. As you will read in Chapter 2, IPv6
addresses are represented entirely differently.

An important distinction to remember when working with IPv4 addresses is that dotted decimal is just an
easy way for humans to read and write IP addresses. Always remember that the router is not reading
an address in terms of four octets; rather, the router sees a 32-bit binary string. Many pitfalls can be
avoided by keeping this fact firmly in mind. If you have not worked with binary numbersparticularly
converting between binary and decimalyou might want to read the tutorial in Appendix A, "Tutorial:
Working with Binary and Hex," before continuing on with this chapter.

Probably the most distinctive characteristic of IPv4 addresses is that unlike other network-level
addresses, the network and host portions can vary in size within the 32-bit boundaries. That is, the
network portion might take up most of the 32 bits, or the host portion might, or they might divide the bits
equally. Protocols such as NetWare and AppleTalk were designed for use in relatively small networks,
and as a result their network-level addresses have fixed-length network and host portions. This
arrangement certainly makes life easier; a receiving device knows to read a certain number of bits into
the address to find the network part, and the rest is host address.

TCP/IP, however, was designed from the first to be flexible enough to be used in any network, from the
tiny to the colossal. This flexibility makes IP addresses more difficult to manage. The basics of
administering IP addresses are presented in this section, and then some more advanced techniques
are introduced in Chapter 6, "RIPv2, RIPng, and Classless Routing."



First Octet Rule

Without putting too fine a point on it, it can be said that there are three sizes of networks as measured
by the number of hosts: big, medium, and small:

Big networks, by definition, have a huge number of hosts. Relatively few big networks exist.

Small networks are just the opposite. Each one is small because it has a small number of hosts; a
huge number of small networks exist.

Medium networks are just that: a medium number of them (in relation to big and small ones) and a
medium number of hosts in each one.

This high level of addressing focus requires three typesclassesof network address for the three sizes
of networks. Addresses for big networks need to be capable of addressing many hosts, but because so
few big networks exist, only a few big-network addresses are required.

The situation is reversed for small networks. Because there are many small networks, a large number
of small-network addresses are needed. But because a small network has a small number of hosts,
each of the many network addresses only requires a few host addresses.

For medium-sized networks, a medium number of network addresses and a medium number of host
addresses will be available for each network address.

Figure 1-5 shows how the network and host portions of IPv4 addresses are divided up for these three
classes.

Figure 1-5. Class A, B, and C IPv4 address formats.

The big, medium, and small networks described thus far map to address classes as follows:

Class A IPv4 addresses are for big networks. The first octet is the network portion, and the last
three octets are the host portion. Only 256 numbers are available in the eight-bit network part, but
224 or 16,777,216 numbers are available in the host part of each of those network addresses.

Class B addresses are for medium-size networks. The first two octets are the network portion, and
the last two octets are the host portion. There are 216 or 65,536 available numbers in the network
part and an equal number in the host part.

Class C addresses are just the opposite of Class A. The first three octets are the network portion,
and the last octet is the host portion.

Because all IPv4 addresses are 32-bit binary strings, a way of distinguishing the class to which a
particular address belongs is necessary. The first octet rule, demonstrated in Table 1-3, provides the
means to make such a distinction and can be described as follows:

For Class A addresses, the first bit of the first octetthat is, the left-most bit of the entire 32-bit
stringis always set to zero. Therefore, we can find the minimum and maximum numbers in the
Class A range by setting all the remaining bits in the first octet to zero (for the minimum) and one



(for the maximum). This action results in the decimal numbers 0 and 127 with a few exceptions: 0
is reserved as part of the default address (Chapter 12, "Default Routes and On-Demand
Routing"), and 127 is reserved for internal loopback addresses.[9] That leaves 1 through 126; any
IP address whose first octet is between 1 and 126 inclusive is a Class A address.

[9] Devices use loopback addresses (typically 127.0.0.1) to send traffic to themselves.
Data might be sent to this address and returned to the transmitting process without ever
leaving the device.

Class B addresses always have their left-most bit set to one and the second bit set to zero. Again,
finding the minimum and maximum number of the first octet by setting all remaining bits to zero and
then to one, you see in Figure 1-4 that any address whose first octet is in the decimal range 128
through 191 is a Class B address.

In Class C addresses, the first two bits are set to one, and the third bit is set to zero. The result is
a first octet range of 192 through 223.[10]

[10] Notice that 223 does not exhaust all available numbers in the first octet. See
Configuration Exercise 1 at the end of this chapter.

Table 1-3. First octet rule.

Rule
Minimum and
Maximum Decimal Range

Class A: First bit is
always 0

00000000 = 0

01111111 = 127

1126[*]

Class B: First two
bits are always 10

10000000 = 128

10111111 = 191

128191

Class C: First three
bits are always 110

11000000 = 192

11011111 = 223

192223

[*] 0 and 127 are reserved

So far IPv4 addressing doesn't seem so difficult. A router or host could easily determine the network
part of an IP address by using the first octet rule. If the first bit is 0, then read the first eight bits to find
the network address. If the first two bits are 10, then read the first 16 bits; and if the first three bits are
110, then read 24 bits in to get the network address. Unfortunately, things are not that easy.

Address Masks

The address for an entire data linka non-host-specific network addressis represented by the network
portion of an IP address, with all host bits set to zero. For instance, an addressing authority[11] might
assign to an applicant an address of 172.21.0.0.[12] This address is a Class B address because 172 is
between 128 and 191, so the last two octets make up the host bits. Notice that they are all set to zero.
The first 16 bits (172.21.) are assigned, but address owners are free to do whatever they please with
the host bits.

[11] The high-level organizations responsible for managing and assigning IP addresses are
APNIC in Asia, ARIN in North America, LACNIC in Central and South America, and RIPE in
EMEA.



[12] Actually, this address would never be assigned. It is from a group of addresses reserved
for private use; most of the addresses used in this book are from this reserved pool,
described in RFC 1918. Reserved addresses are 10.0.0.010.255.255.255,
172.16.0.0172.31.255.255, and 192.168.0.0192.168.255.255.

Each device or interface will be assigned a unique, host-specific address such as 172.21.35.17. The
device, whether a host or a router, obviously needs to know its own address, but it also needs to be
able to determine the network to which it belongsin this case, 172.21.0.0.

This task is accomplished by means of an address mask. The address mask is a 32-bit string, one bit
for each bit of the IPv4 address. As a 32-bit string, the mask can be represented in dotted-decimal
format just like an IPv4 address. This representation tends to be a stumbling block for some beginners:
Although the address mask can be written in dotted decimal, it is not an address. Table 1-4 shows the
standard address masks for the three classes of IPv4 address.

Table 1-4. Address masks for Class A, B, and C IPv4
addresses.

Class Mask Dotted Decimal

A 11111111000000000000000000000000 255.0.0.0

B 11111111111111110000000000000000 255.255.0.0

C 11111111111111111111111100000000 255.255.255.0

For each bit of the IPv4 address, the device performs a Boolean (logical) AND function with the
corresponding bit of the address mask. The AND function can be stated as follows:

Compare two bits and derive a result. The result will be one, if and only if, both bits are one.
If either or both bits are zero, the result will be zero.

Figure 1-6 shows how, for a given IPv4 address, the address mask is used to determine the network
address. The mask has a one in every bit position corresponding to a network bit of the address and a
zero in every bit position corresponding to a host bit. Because 172.21.35.17 is a Class B address, the
mask must have the first two octets set to all ones and the last two octets, the host part, set to all zeros.
As Table 1-4 shows, this mask can be represented in dotted decimal as 255.255.0.0.

Figure 1-6. Each bit of this Class B address is ANDed with the corresponding bit of the
address mask to derive the network address.

A logical AND is performed on the IPv4 address and its mask for every bit position; the result is shown
in Figure 1-6. In the result, every network bit is repeated, and all the host bits become 0s. So by
assigning an address of 172.21.35.17 and a mask of 255.255.0.0 to an interface, the device will know
that the interface belongs to network 172.21.0.0. Applying the AND operator to an IPv4 address and its



address mask always reveals the network address.

An address and mask are assigned to an interface of a Cisco router (in this example, the E0 interface)
by means of the following commands:

Smokey(config)# interface ethernet 0
Smokey(config-if)# ip address 172.21.35.17 255.255.0.0

But why use address masks at all? So far, using the first octet rule seems much simpler.

Subnets and Subnet Masks

Never lose sight of why network-level addresses are necessary in the first place. For routing to be
accomplished, each and every data link (network) must have a unique address; in addition, each and
every host on that data link must have an address that both identifies it as a member of the network
and distinguishes it from any other host on that network.

As defined so far, a single Class A, B, or C address can be used only on a single data link. To build a
network, separate addresses must be used for each data link so that those networks are uniquely
identifiable. If a separate Class A, B, or C address were assigned to each data link, fewer than 17
million data links could be addressed before all IPv4 addresses were depleted. This approach is
obviously impractical,[13] as is the fact that to make full use of the host address space in the previous
example, more than 65,000 devices would have to reside on data link 172.21.0.0!

[13] Seventeen million data links might seem like a lot until you consider that even a single
moderate-size business might have dozens or hundreds of data links.

The only way to make Class A, B, or C addresses practical is by dividing each major address, such as
172.21.0.0, into subnetwork addresses. Recall two facts:

The host portion of an IPv4 address can be used as desired.

The network portion of an IPv4 address is determined by the address mask assigned to that
interface.

Figure 1-7 shows a network to which the major Class B address 172.21.0.0 has been assigned. Five
data links are interconnecting the hosts and routers, each one of which requires a network address. As
it stands, 172.21.0.0 would have to be assigned to a single data link, and then four more addresses
would have to be requested for the other four data links.

Figure 1-7. Subnet masks allow a single network address to be used on multiple data links by
"borrowing" some of the host bits for use as subnet bits.

[View full size image]



Notice what was done in Figure 1-7. The address mask is not a standard 16-bit mask for Class B
addresses; the mask has been extended another eight bits so that the first 24 bits of the IP address are
interpreted as network bits. In other words, the routers and hosts have been given a mask that causes
them to read the first eight host bits as part of the network address. The result is that the major network
address applies to the entire network, and each data link has become a subnetwork, or subnet. A
subnet is a subset of a major Class A, B, or C address space.

The IPv4 address now has three parts: the network part, the subnet part, and the host part. The
address mask is now a subnet mask, or a mask that is longer than the standard address mask. The
first two octets of the address will always be 172.21, but the third octetwhose bits are now subnet bits
instead of host bitsmight range from 0 to 255. The network in Figure 1-6 has subnets 1, 2, 3, 4, and 5
(172.21.1.0 through 172.21.5.0). Up to 256 subnets might be assigned under the single Class B
address, using the mask shown.

Two words of caution are in order. First, not all routing protocols can support subnet addresses in
which the subnet bits are all zeros or all ones. The reason is that these protocols, called classful
protocols, cannot differentiate between an all-zero subnet and the major network number. For instance,
subnet 0 in Figure 1-7 would be 172.21.0.0; the major IP address is also 172.21.0.0. The two cannot be
distinguished without further information.

Likewise, classful routing protocols cannot differentiate a broadcast on the all-ones subnet from an all-
subnets broadcast address.[14] For example, the all-ones subnet in Figure 1-7 would be 172.21.255.0.
For that subnet, the all-hosts broadcast address would be 172.21.255.255, but that is also the
broadcast for all hosts on all subnets of major network 172.21.0.0. Again, the two addresses cannot be
distinguished without further information. RIP version 1 and IGRP are both classful routing protocols;
Chapter 7, "Enhanced Interior Gateway Routing Protocol (EIGRP)," introduces classless routing
protocols, which can indeed use the all-zeros and all-ones subnets.

[14] The all-hosts IP broadcast address is all ones: 255.255.255.255. An all-hosts broadcast
for a particular subnet would set all host bits to one; for instance, an all-hosts broadcast for
subnet 172.21.1.0 would be 172.21.1.255. Finally, a broadcast for all hosts on all subnets
sets the subnet bits and the host bits to all ones: 172.21.255.255.

The second caution has to do with the verbal description of subnets and their masks. Subnetting the
third octet of a Class B address, as is done is Figure 1-7, is very common; also common is hearing
people describe such a subnet design as "using a Class C mask with a Class B address," or
"subnetting a Class B address into a Class C." Both descriptions are wrong! Such descriptions



frequently lead to misunderstandings about the subnet design or to a poor understanding of subnetting
itself. The proper way to describe the subnetting scheme of Figure 1-6 is either as "a Class B address
with 8 bits of subnetting," or as "a Class B address with a 24-bit mask."

The subnet mask might be represented in any of the following three formats:

Dotted decimal: 255.255.255.0

Bitcount: 172.21.0.0/24

Hexadecimal: 0xFFFFFF00

Dotted decimal is commonly used in software that has been around for a while, although the bitcount
format is becoming increasingly preferred. Compared to dotted decimal, the bitcount format is easier to
write. (The address is followed by a forward slash and the number of bits that are masked for the
network part.) In addition, the bitcount format is more descriptive of what the mask is really doing and
therefore avoids the type of semantic misunderstandings described in the previous paragraph. Some
UNIX systems use the hexadecimal format.

Although the address mask must be specified to Cisco routers in dotted decimal, using the command
shown previously, the mask might be displayed by various show commands in any of the three formats
by using the command ip netmask-format [decimal| hexadecimal| bit-count] in line configuration
mode. For example, to configure a router to display its masks in bitcount format, use

Gladys(config)# line vty 0 4
Gladys(config-line)# ip netmask-format bit-count

Designing Subnets

As established in the previous section, subnet bits cannot be all zeros or all ones in classful
environments. Likewise, an IPv4 host address cannot have all its host bits set to zerothis setting is
reserved for the address that routers use to represent the network or subnet itself. And the host bits
cannot be set to all ones, as this setting is the broadcast address. These restrictions apply to the host
bits with no exceptions and are starting points for designing subnets. Beyond these starting points,
network designers need to choose the most appropriate subnetting scheme in terms of matching the
address space to the particulars of a network.

When designing subnets and their masks, the number of available subnets under a major network
address and the number of available hosts on each subnet are both calculated with the same formula:
2n 2, where n is the number of bits in the subnet or host space and 2 is subtracted to account for the
unavailable all-zeros and all-ones addresses. For example, given a Class A address of 10.0.0.0, a
subnet mask of 10.0.0.0/16 (255.255.0.0) means that the 8-bit subnet space will yield 28 2 = 254
available subnets and 216 2 = 65,534 host addresses available on each of those subnets. On the other
hand, a mask of 10.0.0.0/24 (255.255.255.0) means that a 16-bit subnet space is yielding 65,534
subnets and an 8-bit host space is yielding 254 host addresses for each subnet.

The following steps are used to subnet an IPv4 address:

Step 1. Determine how many subnets are required and how many hosts per subnet are required.

Step 2. Use the 2n 2 formula to determine the number of subnet bits and the number of host bits that
will satisfy the requirements established in Step 1. If multiple subnet masks can satisfy the
requirements, choose the one that will best scale to future needs. For example, if the network
is most likely to grow by adding subnets, choose more subnet bits; if the network is most
likely to grow by adding hosts to existing subnets, choose more host bits. Avoid choosing a
scheme in which either all subnets or all host addresses within the subnets will be used up



immediately, leaving no room for future growth.

Step 3. Working in binary, determine all available bit combinations in the subnet space; in each
instance, set all the host bits to zero. Convert the resulting subnet addresses to dotted
decimal. These are the subnet addresses.

Step 4. For each subnet address, again working in binary, write all possible bit combinations for the
host space without changing the subnet bits. Convert the results to dotted decimal; these are
the host addresses available for each subnet.

The importance of doing the last two steps in binary cannot be overemphasized. The single greatest
source of mistakes when working with subnets is trying to work with them in dotted decimal without
understanding what is happening at the binary level . Again, dotted decimal is for convenience in
reading and writing IPv4 addresses. Routers and hosts see the addresses as 32-bit binary strings; to
successfully work with these addresses, they must be seen the way the routers and hosts see them.

The previous paragraph might seem a bit overzealous in light of the examples given so far; the patterns
of subnet and host addresses have been quite apparent without having to see the addresses and
masks in binary. The next section uses the four design steps to derive a subnet design in which the
dotted-decimal representations are not so obvious.

Breaking the Octet Boundary

In the examples given so far, the subnet spaces have fallen on octet boundaries. This arrangement is
not always the most practical or efficient choice. What if, for instance, you need to subnet a Class B
address across 500 data links, each with a maximum of 100 hosts? This requirement is easily met, but
only by using nine bits in the subnet field: 29 2 = 510 available subnets, leaving seven bits for the host
field, and 27 2 = 126 available hosts per subnet. No other bit combination will satisfy this requirement.

Notice, also, that there is no way to subnet a class C address on an octet boundarydoing so would use
up all of the last byte, leaving no room for host bits. The subnet bits and host bits must share the last
octet, as the following example shows.

Figure 1-8 shows the network of Figure 1-7 but with a Class C address of 192.168.100.0 assigned.

Figure 1-8. The network from Figure 1-7 but with a Class C prefix assigned. Subnetting an
entire octet will not work here; there would be no space left for host bits.

[View full size image]



There are five data links; therefore, the address must be subnetted to provide for at least five subnet
addresses. The illustration also indicates the number of hosts (including router interfaces) that need to
be addressed on each subnet. The maximum host address requirement is 25 for the two Ethernets.
Therefore, the full subnetting requirements are at least five subnets and at least 25 host addresses per
subnet.

Applying the 2n 2 formula, three subnet bits and five host bits will satisfy the requirements: 23 2 = 6 and
25 2 = 30. A Class C mask with three bits of subnetting is represented as 255.255.255.224 in dotted
decimal.

Figure 1-9 shows the derivation of the subnet bits. The subnet mask derived in Step 2 is written in
binary, and the IP address is written below it. Vertical lines are drawn as markers for the subnet space,
and within this space all possible bit combinations are written by counting up from zero in binary.

Figure 1-9. The subnet bits are derived by marking the masked subnet bit space and then
writing all possible bit combinations in the space by counting up from zero in binary.

In Figure 1-10, the unchanged network bits are filled in to the left of the subnet space and the host bits,
which are all zeros in the subnet addresses, are filled in to the right of the subnet space. The results
are converted to dotted decimal, and these are the six subnet addresses (remembering that the first
and last addresses, which have 000 and 111 in the subnet space, cannot be used).

Figure 1-10. The subnet addresses are derived by filling in the network address to the left of
the subnet space, setting all host bits to zero to the right of the subnet space, and converting

the results to dotted decimal.



The last step is to calculate the host addresses available to each subnet. This step is done by
choosing a subnet and, keeping the network and subnet bits unchanged, writing all bit combinations in
the host space by counting up from zero in binary. Figure 1-11 shows this step for subnet
192.168.100.32.

Figure 1-11. The host addresses for a subnet are derived by writing all possible bit
combinations in the host space. These are the host bits for subnet 192.168.100.32.

Notice the patterns in the results: The first address, in which the host bits are all zero, is the subnet
address. The last address, in which the host bits are all one, is the broadcast address for subnet
192.168.100.32. The host addresses count up from the subnet address to the broadcast address, and
if the sequence were to continue, the next address would be the second subnet, 192.168.100.64.

The importance of understanding subnetting at the binary level should now be clear. Presented with an
address such as 192.168.100.160, you cannot be sure whether it is a host address, a subnet address,
or a broadcast address. Even when the subnet mask is known, things are not always readily apparent.

Readers are encouraged to calculate all host addresses for all the remaining subnets in the example



and to observe the patterns that result in the addresses. Understanding these patterns will help in
situations such as the one presented in the next section.

Troubleshooting a Subnet Mask

The necessity frequently arises to "dissect" a given host address and mask, usually to identify the
subnet to which it belongs. For instance, if an address is to be configured on an interface, a good
practice is to first verify that the address is valid for the subnet to which the subnet is connected.

Use the following steps to reverse-engineer an IP address:

Step 1. Write the given subnet mask in binary.

Step 2. Write the IPv4 host address in binary.

Step 3. Knowing the class of the host address, the subnet bits of the mask should be apparent.
Using the mask bits as a guide, draw a line between the last network bit and the first subnet
bit of the address. Draw another line between the last subnet bit and the first host bit.

Step 4. Write the network and subnet bits of the address, setting all host bits to zero. The result is
the address of the subnet to which the host address belongs.

Step 5. Again write the network and subnet bits of the address, this time setting all host bits to one.
The result is the broadcast address of the subnet.

Step 6. Knowing that the subnet address is the first address in the sequence and that the broadcast
address is the last address in the sequence, you also know that all addresses between these
two are valid host addresses.

Figure 1-12 shows these steps applied to 172.30.0.141/25.

Figure 1-12. Given an IPv4 address and a subnet mask, follow these steps to find the subnet,
the broadcast, and the host addresses.

The address is a Class B, so it is known that the first 16 bits are the network bits; therefore, the last
nine bits of the 25-bit mask mark the subnet space. The subnet address is found to be 172.30.0.128,
and the broadcast address is 172.30.0.255. Knowing that the valid host addresses for the subnet are
bounded by these two addresses, it is determined that the host addresses for subnet 172.30.0.128 are
172.30.0.129 through 172.30.0.254.

Several things about this example tend to bother folks who are new to subnetting. Some are bothered



by the third octet of the address, which is all zeros. Some are bothered by the single subnet bit in the
last octet. Some think that the broadcast address looks suspiciously invalid. All of these uneasy
feelings arise from reading the addresses in dotted decimal. When the addresses and the mask are
seen in binary, these suspicions are assuaged and everything is seen to be legitimate; the mask sets a
nine-bit subnet spaceall of the third octet, and the first bit of the fourth octet. The moral of the story is
that if everything is known to be correct in binary, don't worry if the dotted-decimal representation looks
funny.



Address Resolution Protocol (ARP)

Routers pass packets across a logical path, composed of multiple data links, by reading and acting on
the network addresses in the packets. The packets are passed across the individual data links by
encapsulating the packets in frames, which use data-link identifiers (MAC addresses, for example) to
get the frame from source to destination on the link. One of the major topics of this book concerns the
mechanisms by which routers discover and share information about network addresses so that routing
might take place. Similarly, devices on a data link need a way to discover their neighbors' data-link
identifiers so that frames might be transmitted to the correct destination.

Several mechanisms can provide this information;[15] IPv4 uses the Address Resolution Protocol
(ARP), described in RFC 826. Figure 1-13 shows how ARP works. A device needing to discover the
data-link identifier of another device will create an ARP Request packet. This request will contain the
IPv4 address of the device in question (the target) and the source IPv4 address and data-link identifier
(MAC address) of the device making the request (the sender). The ARP Request packet is then
encapsulated in a frame with the sender's MAC address as the source and a broadcast address for the
destination (see Example 1-6).[16]

[15] NetWare, for example, makes the MAC address of the device the host portion of the
network-level addressa very sensible thing to do.

[16] Like an IP broadcast, the MAC broadcast is an address of all ones: ffff.ffff.ffff.

Figure 1-13. ARP is used to map a device's data-link identifier to its IP address.

[View full size image]

Example 1-6. An analyzer capture of the ARP Request depicted in Figure 1-13, with its
encapsulating frame.

Ethernet II, Src: 00:30:65:2c:09:a6, Dst: ff:ff:ff:ff:ff:ff
    Destination: ff:ff:ff:ff:ff:ff (Broadcast)
    Source: 00:30:65:2c:09:a6 (AppleCom_2c:09:a6)
    Type: ARP (0x0806)
Address Resolution Protocol (request)
    Hardware type: Ethernet (0x0001)
    Protocol type: IP (0x0800)
    Hardware size: 6
    Protocol size: 4
    Opcode: request (0x0001)
    Sender MAC address: 00:30:65:2c:09:a6 (AppleCom_2c:09:a6)



    Sender IP address: 172.16.1.21 (172.16.1.21)
    Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00)
    Target IP address: 172.16.1.33 (172.16.1.33)

The broadcast address means that all devices on the data link will receive the frame and examine the
encapsulated packet. All devices except the target will recognize that the packet is not for them and will
drop the packet. The target will send an ARP Reply to the source address, supplying its MAC address
(see Example 1-7).

Example 1-7. An analyzer capture of the ARP Reply depicted in Figure 1-13.

Ethernet II, Src: 00:10:5a:e5:0e:e3, Dst: 00:30:65:2c:09:a6
    Destination: 00:30:65:2c:09:a6 (AppleCom_2c:09:a6)
    Source: 00:10:5a:e5:0e:e3 (3com_e5:0e:e3)
    Type: ARP (0x0806)
    Trailer: 15151515151515151515151515151515...
Address Resolution Protocol (reply)
    Hardware type: Ethernet (0x0001)
    Protocol type: IP (0x0800)
    Hardware size: 6
    Protocol size: 4
    Opcode: reply (0x0002)
    Sender MAC address: 00:10:5a:e5:0e:e3 (3com_e5:0e:e3)
    Sender IP address: 172.16.1.33 (172.16.1.33)
    Target MAC address: 00:30:65:2c:09:a6 (AppleCom_2c:09:a6)
    Target IP address: 172.16.1.21 (172.16.1.21)

Cisco routers will display ARP activity when the debug function debug arp is invoked, as shown in
Example 1-8.

Example 1-8. Router Aretha (172.21.5.1) responds to an ARP request from host 172.19.35.2.

Aretha#debug arp
IP ARP: rcvd req src 172.19.35.2 0002.6779.0f4c, dst 172.21.5.1 Ethernet0
IP ARP: sent rep src 172.21.5.1 0000.0c0a.2aa9,
                 dst 172.19.35.2 0002.6779.0f4c Ethernet0
Aretha#

Figure 1-14 shows the ARP packet format. As the fields are described, compare them with the ARP
packets in Example 1-6 and Example 1-7.

Figure 1-14. ARP packet format.



Hardware Type specifies the type of hardware, as specified by the IETF.[17] Table 1-5 shows some
examples of some of the more common type numbers.

[17] All numbers in use in various fields throughout the TCP/IP protocol suite were originally
listed in: J. Postel and J. Reynolds, "Assigned Numbers," RFC 1700, October 1994. This
large document (230 pages) is a valuable reference, but is now a bit outdated. A current list
of assigned numbers can be found at www.iana.org.

Table 1-5. Common hardware type codes.
Number Hardware Type
1 Ethernet
3 X.25
4 Proteon ProNET Token Ring
6 IEEE 802 Networks
7 ARCnet
11 Apple LocalTalk
14 SMDS
15 Frame Relay
16 ATM
17 HDLC
18 Fibre Channel
19 ATM
20 Serial Link

Protocol Type specifies the type of network-level protocol the sender is mapping to the data link
identifier; IPv4 is 0x0800.

Hardware Address Length specifies the length, in octets, of the data link identifiers. MAC addresses
would be 6.

Protocol Address Length specifies the length, in octets, of the network-level address. IPv4 would be 4.



Operation specifies whether the packet is an ARP Request (1) or an ARP Reply (2). Other values might
also be found here, indicating other uses for the ARP packet. Examples are Reverse ARP Request (3),
Reverse ARP Reply (4), Inverse ARP Request (8), and Inverse ARP Reply (9).

The final 20 octets are the fields for the sender's and target's data-link identifiers and IPv4 addresses.

In the top screen in Example 1-9, the IOS command show arp is used to examine the ARP table in a
Cisco router.

Example 1-9. The ARP table for three devices connected to the same network: a Cisco router,
a Microsoft Windows host, and a Linux host.

Martha#show arp
Protocol  Address         Age (min)     Hardware Addr  Type  Interface
Internet  10.158.43.34           2     0002.6779.0f4c  ARPA  Ethernet0
Internet  10.158.43.1            -     0000.0c0a.2aa9  ARPA  Ethernet0
Internet  10.158.43.25          18     00a0.24a8.a1a5  ARPA  Ethernet0
Internet  10.158.43.100          6     0000.0c0a.2c51  ARPA  Ethernet0
Martha#
________________________________________________________________________
C:\WINDOWS>arp -a
Interface: 148.158.43.25
  Internet Address      Physical Address     Type
  10.158.43.1           00-00-0c-0a-2a-a9    dynamic
  10.158.43.34          00-02-67-79-0f-4c    dynamic
  10.158.43.100         00-00-0c-0a-2c-51    dynamic
_________________________________________________________________________
Linux:~# arp -a
Address                HW type          HW address           Flags   Mask
10.158.43.1            10Mbps Ethernet  00:00:0C:0A:2A:A9    C       *
10.158.43.100          10Mbps Ethernet  00:00:0C:0A:2C:51    C       *
10.158.43.25           10Mbps Ethernet  00:A0:24:A8:A1:A5    C       *
Linux:~#

Notice the Age column. As this column would indicate, ARP information is removed from the table after a
certain time to prevent the table from becoming congested with old information. Cisco routers hold ARP
entries for four hours (14,400 seconds); this default can be changed. The following example changes
the ARP timeout to 30 minutes (1800 seconds):

Martha(config)# interface ethernet 0
Martha(config-if)# arp timeout 1800

The middle screen of Example 1-9 shows the ARP table of a Microsoft Windows PC, and the bottom
shows the ARP table from a Linux machine. Although the format is different from the IOS display, the
essential information is the same in all three tables.

ARP entries might also be permanently placed in the table. To statically map 172.21.5.131 to hardware
address 0000.00a4.b74c, with a SNAP (Subnetwork Access Protocol) encapsulation type, use the
following:

Martha(config)# arp 172.21.5.131 0000.00a4.b74c snap

The command clear arp-cache forces a deletion of all dynamic entries from the ARP table. It also



clears the fast-switching cache and the IP route cache.

Several variations of ARP exist; at least one, proxy ARP, is important to routing.

Proxy ARP

Sometimes called promiscuous ARP and described in RFCs 925 and 1027, proxy ARP is a method by
which routers might make themselves available to hosts. For example, a host 192.168.12.5/24 needs to
send a packet to 192.168.20.101/24, but it is not configured with default gateway information and
therefore does not know how to reach a router. It might issue an ARP Request for 192.168.20.101; the
local router, receiving the request and knowing how to reach network 192.168.20.0, will issue an ARP
Reply with its own data link identifier in the hardware address field. In effect, the router has tricked the
local host into thinking that the router's interface is the interface of 192.168.20.101. All packets destined
for that address are then sent to the router.

Figure 1-15 shows another use for proxy ARP. Of particular interest here are the address masks. The
router is configured with a 28-bit mask (four bits of subnetting for the Class C address), but the hosts
are all configured with 24-bit, default Class C mask. As a result, the hosts will not be aware that
subnets exist. Host 192.168.20.66, wanting to send a packet to 192.168.20.25, will issue an ARP
Request. The router, recognizing that the target address is on another subnet, will respond with its own
hardware address. Proxy ARP makes the subnetted network topology transparent to the hosts.

Figure 1-15. Proxy ARP enables the use of transparent subnets.

The ARP cache in Example 1-10 gives a hint that proxy ARP is in use. Notice that multiple IPv4
addresses are mapped to a single MAC identifier; the addresses are for hosts, but the hardware MAC
identifier belongs to the router interface.

Example 1-10. This ARP table from host 192.168.20.66 in Figure 1-15 shows multiple IPv4
addresses mapped to one MAC identifier, indicating that proxy ARP is in use.

C:\WINDOWS>arp -a
Interface: 192.168.20.66
  Internet Address      Physical Address     Type
  192.168.20.17         00-00-0c-0a-2a-a9    dynamic
  192.168.20.20         00-00-0c-0a-2a-a9    dynamic
  192.168.20.25         00-00-0c-0a-2a-a9    dynamic



  192.168.20.65         00-00-0c-0a-2c-51    dynamic
  192.168.20.70         00-02-67-79-0f-4c    dynamic

Proxy ARP is enabled by default in IOS and might be disabled on a per interface basis with the
command no ip proxy-arp.

Gratuitous ARP

A host might occasionally issue an ARP Request with its own IPv4 address as the target address.
These ARP Requests, known as gratuitous ARPs, have several uses:

A gratuitous ARP might be used for duplicate address checks. A device that issues an ARP
Request with its own IPv4 address as the target and receives an ARP Reply from another device
will know that the address is a duplicate.

A gratuitous ARP might be used to advertise a new data-link identifier. This use takes advantage
of the fact that when a device receives an ARP Request for an IPv4 address that is already in its
ARP cache, the cache will be updated with the sender's new hardware address.

A router running Hot Standby Router Protocol (HSRP) that has just taken over as the active router
from another router on a subnet issues a gratuitous ARP to update the ARP caches of the subnet's
hosts.

Many IP implementations do not use gratuitous ARP, but you should be aware of its existence. It is
disabled by default in IOS but can be enabled with the command ip gratuitous-arps.

Reverse ARP

Instead of mapping a hardware address to a known IPv4 address, Reverse ARP (RARP) maps an IPv4
address to a known hardware address. Some devices, such as diskless workstations, might not know
their IPv4 address at startup. RARP might be programmed into firmware on these devices, allowing
them to issue an ARP Request that has their burned-in hardware address. The reply from a RARP
server will supply the appropriate IPv4 address.

RARP has been largely supplanted by Dynamic Host Configuration Protocol (DHCP), an extension of
the Bootstrap Protocol (BootP), both of which can provide more information than the IPv4 address, and
which, unlike RARP, can be routed off the local data link.



Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol, or ICMP, described in RFC 792, specifies a variety of messages
whose common purpose is to manage the network. ICMP messages might be classified as either error
messages or queries and responses. Figure 1-16 shows the general ICMP packet format. The packets are
identified by type; many of the packet types have more specific types, and these are identified by the code
field. Table 1-6 lists the various ICMP packet types and their codes, as described in RFC 1700.

Figure 1-16. The ICMP packet header includes a type field, a code field that further identifies
some types, and a checksum. The rest of the fields depend on the type and code.

Table 1-6. ICMP packet types and code fields.
Type Code Name
0 0 ECHO REPLY
3  DESTINATION UNREACHABLE

0 Network Unreachable
1 Host Unreachable
2 Protocol Unreachable
3 Port Unreachable
4 Fragmentation Needed and Don't

Fragment Flag Set
5 Source Route Failed
6 Destination Network Unknown
7 Destination Host Unknown
8 Source Host Isolated
9 Destination Network Administratively

Prohibited
10 Destination Host Administratively

Prohibited
11 Destination Network Unreachable for Type

of Service
12 Destination Host Unreachable for Type of

Service
4 0 SOURCE QUENCH (deprecated)
5  REDIRECT

0 Redirect Datagram for the Network (or
Subnet)



1 Redirect Datagram for the Host
2 Redirect Datagram for the Network and

Type of Service
3 Redirect Datagram for the Host and Type

of Service
6 0 ALTERNATE HOST ADDRESS
8 0 ECHO
9 0 ROUTER ADVERTISEMENT
10 0 ROUTER SELECTION
11  TIME EXCEEDED

0 Time to Live Exceeded in Transit
1 Fragment Reassembly Time Exceeded

12  PARAMETER PROBLEM
0 Pointer Indicates the Error
1 Missing a Required Option
2 Bad Length

13 0 TIMESTAMP
14 0 TIMESTAMP REPLY
15 0 INFORMATION REQUEST (Obsolete)
16 0 INFORMATION REPLY (Obsolete)
17 0 ADDRESS MASK REQUEST (Near-

obsolete)
18 0 ADDRESS MASK REPLY (Near-obsolete)
30 - TRACEROUTE

Example 1-11 and Example 1-12 show analyzer captures of two of the most well-known ICMP
messagesEcho Request and Echo Reply, which are used by the ping function.

Example 1-11. ICMP Echo message, shown with its IPv4 header.

Internet Protocol, Src Addr: 172.16.1.21 (172.16.1.21),
    Dst Addr: 198.133.219.25 (198.133.219.25)
    Version: 4
    Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
    Total Length: 84
    Identification: 0xabc3 (43971)
    Flags: 0x00
    Fragment offset: 0
    Time to live: 64
    Protocol: ICMP (0x01)
    Header checksum: 0x8021 (correct)
    Source: 172.16.1.21 (172.16.1.21)
    Destination: 198.133.219.25 (198.133.219.25)
Internet Control Message Protocol
    Type: 8 (Echo (ping) request)
    Code: 0
    Checksum: 0xa297 (correct)
    Identifier: 0x0a40



    Sequence number: 0x0000
    Data (56 bytes)

0000  40 fd ab c2 00 0e 73 57 08 09 0a 0b 0c 0d 0e 0f   @.....sW........
0010  10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f   ................
0020  20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f    !"#$%&'()*+,-./
0030  30 31 32 33 34 35 36 37                           01234567

Example 1-12. ICMP Echo Reply.

Internet Protocol, Src Addr: 198.133.219.25 (198.133.219.25),
    Dst Addr: 172.16.1.21 (172.16.1.21)
    Version: 4
    Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
    Total Length: 84
    Identification: 0xabc3 (43971)
    Flags: 0x00
    Fragment offset: 0
    Time to live: 242
    Protocol: ICMP (0x01)
    Header checksum: 0xce20 (correct)
    Source: 198.133.219.25 (198.133.219.25)
    Destination: 172.16.1.21 (172.16.1.21)
Internet Control Message Protocol
    Type: 0 (Echo (ping) reply)
    Code: 0
    Checksum: 0xaa97 (correct)
    Identifier: 0x0a40
    Sequence number: 0x0000
    Data (56 bytes)

0000  40 fd ab c2 00 0e 73 57 08 09 0a 0b 0c 0d 0e 0f  @.....sW........
0010  10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f  ................
0020  20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f   !"#$%&'()*+,-./
0030  30 31 32 33 34 35 36 37                          01234567

Although most ICMP types have some bearing on routing functionality, three types are of particular
importance:

Router Advertisement  and Router Selection , types 9 and 10, respectively, are used by the ICMP
Router Discovery Protocol (IRDP), a protocol used by some operating systems (such as most
versions of Microsoft Windows) to discover local routers.

Redirect, ICMP type 5, is used by routers to notify hosts of another router on the data link that should
be used for a particular destination. Suppose two routers, Router A and Router B, are connected to
the same Ethernet. Host X, also on the Ethernet, is configured to use Router A as its default gateway;
the host sends a packet to Router A, and A sees that the destination address of the packet is
reachable via Router B (that is, Router A must forward the packet out the same interface on which it
was received). Router A forwards the packet to B but also sends an ICMP redirect to host X informing
it that in the future, to reach that particular destination, X should forward the packet to Router B.
Example 1-13 shows a router sending a redirect.

Example 1-13. Using the debugging function debug ip icmp, this router can be seen sending a
redirect to host 10.158.43.25, informing it that the correct router for reaching destination
10.158.40.1 is reachable via gateway (gw) 10.158.43.10.



Pip#debug ip icmp
ICMP packet debugging is on
ICMP: redirect sent to 10.158.43.25 for dest 10.158.40.1, use gw 10.158.43.10
0
Pip#

An occasionally used trick to avoid redirects on data links with multiple attached gateways is to set each
host's default gateway as its own IPv4 address. The hosts will then ARP for any address, and if the
address is not on the data link, the correct router should respond via proxy ARP. The benefits of using this
tactic merely to avoid redirects are debatable; redirects are decreased or eliminated, but at the expense of
increased ARP traffic.

Redirects are enabled by default in IOS and might be disabled on a per interface basis with the command
no ip redirects.



Host-to-Host Layer

The host-to-host layer of the TCP/IP protocol is aptly named. Whereas the internet layer is responsible
for the logical paths between networks, the host-to-host layer is responsible for the full logical path
between two hosts on disparate networks.[18] From another viewpoint, the host-to-host layer is an
interface to the lower layers of the protocol suite, freeing applications from any concern about how their
data is actually being delivered.

[18] Similarly, it can be said that the equivalent functions of the OSI session layer, residing
above the transport layer, provide a logical, end-to-end path between two applications across
a network.

An analogy to this service is a corporate mailroom. A package might be given to the mailroom with
requirements stated for its delivery (general delivery, overnight). The person making the delivery
request does not need to know, and is probably not interested in, the actual mechanics of delivering the
package. The mailroom people will arrange for the proper service (postal, FedEx, cross-town bicycle
courier) to fulfill the delivery requirements.

The two primary services offered by the host-to-host layer are TCP and UDP.

TCP

The Transmission Control Protocol, or TCP, described in RFC 793, provides applications with a
reliable, connection-oriented service. In other words, TCP provides the appearance of a point-to-point
connection.

Point-to-point connections have two characteristics:

They have only one path to the destination. A packet entering one end of the connection cannot
become lost, because the only place to go is the other end.

Packets arrive in the same order in which they are sent.

TCP provides the appearance of a point-to-point connection, although in reality there is no such
connection. The internet layer TCP uses a connectionless, best-effort packet delivery service. The
analogy of this is the Postal Service. If a stack of letters is given to the mail carrier for delivery, there is
no guarantee that the letters will arrive stacked in the same order, that they will all arrive on the same
day, or indeed that they will arrive at all. The Postal Service merely commits to making its best effort to
deliver the letters.

Likewise, the internet layer does not guarantee that all packets will take the same route, and therefore
there is no guarantee that they will arrive in the same sequence and time intervals as they were sent, or
that they will arrive at all.

On the other hand, a telephone call is connection-oriented service. Data must arrive sequentially and
reliably, or it is useless. Like a telephone call, TCP must first establish a connection, then transfer data,
and then perform a disconnect when the data transfer is complete.

TCP uses three fundamental mechanisms to accomplish a connection-oriented service on top of a
connectionless service:

Packets are labeled with sequence numbers so that the receiving TCP service can put out-of-
sequence packets into the correct sequence before delivering them to the destination application.

TCP uses a system of acknowledgments, checksums, and timers to provide reliability. A receiver
might notify a sender when it recognizes that a packet in a sequence has failed to arrive or has



errors, or a sender might assume that a packet has not arrived if the receiver does not send an
acknowledgment within a certain amount of time after transmission. In both cases, the sender will
resend the packet in question.

TCP uses a mechanism called windowing to regulate the flow of packets; windowing decreases
the chances of packets being dropped because of full buffers in the receiver.

TCP attaches a header to the application layer data; the header contains fields for the sequence
numbers and other information necessary for these mechanisms, and fields for addresses called port
numbers, which identify the source and destination applications of the data. The application data with
its attached TCP header is then encapsulated within an IP packet for delivery. Figure 1-17 shows the
fields of the TCP header, and Example 1-14 shows an analyzer capture of a TCP header.

Figure 1-17. TCP header format.

Example 1-14. Analyzer display of a TCP header.

Ethernet II, Src: 00:0c:41:3c:2b:18, Dst: 00:30:65:2c:09:a6
Internet Protocol, Src Addr: 66.218.71.112 (66.218.71.112),
    Dst Addr: 172.16.1.21 (172.16.1.21)
    Version: 4
    Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
    Total Length: 52
    Identification: 0xc0b7 (49335)
    Flags: 0x04
    Fragment offset: 0
    Time to live: 50
    Protocol: TCP (0x06)
    Header checksum: 0x509d (correct)
    Source: 66.218.71.112 (66.218.71.112)
    Destination: 172.16.1.21 (172.16.1.21)
Transmission Control Protocol, Src Port: http (80),
    Dst Port: 60190 (60190), Seq: 288, Ack: 811, Len: 0
    Source port: http (80)
    Destination port: 60190 (60190)
    Sequence number: 288
    Acknowledgement number: 811
    Header length: 32 bytes
    Flags: 0x0010 (ACK)
    Window size: 66608
    Checksum: 0xb32a (correct)
    Options: (12 bytes)



        NOP
        NOP
        Time stamp: tsval 587733966, tsecr 1425164062
    SEQ/ACK analysis
        This is an ACK to the segment in frame: 17
        The RTT to ACK the segment was: 0.047504000 seconds

Source and Destination Port are 16-bit fields that specify the source and destination applications for
the encapsulated data. Like other numbers used by TCP/IP, RFC 1700 describes all port numbers in
common and not-so-common use. A port number for an application, when coupled with the IP address
of the host the application resides on, is called a socket. A socket uniquely identifies every application
in a network.

Sequence Number  is a 32-bit number that identifies where the encapsulated data fits within a data
stream from the sender. For example, if the sequence number of a segment is 1343 and the segment
contains 512 octets of data, the next segment should have a sequence number of 1343 + 512 + 1 =
1856.

Acknowledgment Number  is a 32-bit field that identifies the sequence number the source next expects
to receive from the destination. If a host receives an acknowledgment number that does not match the
next sequence number it intends to send (or has sent), it knows that packets have been lost.

Header Length , sometimes called Data Offset, is a four-bit field indicating the length of the header in
32-bit words. This field is necessary to identify the beginning of the data because the length of the
Options field is variable.

The Reserved field is four bits, which are always set to zero.

Flags are eight 1-bit flags that are used for data flow and connection control. The flags, from left to
right, are Congestion Window Reduced (CWR), ECN-Echo (ECE), Urgent (URG), Acknowledgment
(ACK), Push (PSH), Reset (RST), Synchronize (SYN), and Final (FIN).

Window Size is a 16-bit field used for flow control. It specifies the number of octets, starting with the
octet indicated by the Acknowledgment Number, that the sender of the segment will accept from its
peer at the other end of the connection before the peer must stop transmitting and wait for an
acknowledgment.

Checksum is 16 bits, covering both the header and the encapsulated data, allowing error detection.

Urgent Pointer  is used only when the URG flag is set. The 16-bit number is added to the Sequence
Number to indicate the end of the urgent data.

Options, as the name implies, specifies options required by the sender's TCP process. The most
commonly used option is Maximum Segment Size, which informs the receiver of the largest segment
the sender is willing to accept. The remainder of the field is padded with zeros to ensure that the
header length is a multiple of 32 octets.

UDP

User Datagram Protocol, or UDP, described in RFC 768, provides a connectionless, best-effort packet
delivery service. At first take, it might seem questionable that any application would prefer an unreliable
delivery over the connection-oriented TCP. The advantage of UDP, however, is that no time is spent
setting up a connectionthe data is just sent. Applications that send short bursts of data will realize a
performance advantage by using UDP instead of TCP.

Figure 1-18 shows another advantage of UDP: a much smaller header than TCP. The Source and
Destination Port fields are the same as they are in the TCP header; the UDP length indicates the



length of the entire segment in octets. The checksum covers the entire segment, but unlike TCP, the
checksum here is optional; when no checksum is used, the field is set to all zeros. Example 1-15 shows
an analyzer capture of a UDP header.

Figure 1-18. UDP header format.

Example 1-15. Analyzer display of a UDP header.

Ethernet II, Src: 00:30:65:2c:09:a6, Dst: 00:0c:41:3c:2b:18
Internet Protocol, Src Addr: 172.16.1.21 (172.16.1.21),
    Dst Addr: 198.133.219.25 (198.133.219.25)
    Version: 4
    Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
    Total Length: 40
    Identification: 0x8a4d (35405)
    Flags: 0x00
    Fragment offset: 0
    Time to live: 1
    Protocol: UDP (0x11)
    Header checksum: 0xe0b3 (correct)
    Source: 172.16.1.21 (172.16.1.21)
    Destination: 198.133.219.25 (198.133.219.25)
User Datagram Protocol, Src Port: 35404 (35404), Dst Port: 33435 (33435)
    Source port: 35404 (35404)
    Destination port: 33435 (33435)
    Length: 20
    Checksum: 0x0000 (none)
Data (12 bytes)

0000 01 01 00 00 40 fd ac 74 00 00 d2 45                ....@..t...E



Looking Ahead

The focus of this chapter has largely been on the mechanisms by which a device's internet layer (or
OSI network layer) identifies itself and how it maps to the network interface (or OSI data link) layer.
Internet layer protocols such as ARP and ICMP, that are important to routing, were also examined. The
following chapter examines a newer version of IP, IP version 6, how it differs from IPv4, and why a new
version of IP is needed.



Summary Table: Chapter 1 Command Review

Command Description
arp ip-address hardware-
address type [alias]

Statically maps an IP address to a
hardware address

arp timeout seconds Sets the amount of time a Cisco router
holds ARP entries

clear arp-cache Forces the deletion of all dynamic entries
from the ARP table

debug ip icmp Displays ICMP events as they occur on
the router

ip address ip-address mask
[secondary]

Assigns an IP address and mask to an
interface

ip gratuitous-arp Enables gratuitous ARP
ip netmask-format {bit-
count|decimal|hexadecimal}

Configures a router to display IP (address,
mask) pairs in bitcount, dotted-decimal, or
hexadecimal format

ip proxy-arp Enables proxy ARP
ip redirects Enables ICMP redirects
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Review Questions

1 What are the five layers of the TCP/IP protocol suite? What is the purpose of each layer?

2 What is the most common IP version presently in use?

3 What is fragmentation? What fields of the IP header are used for fragmentation?

4 What is the purpose of the TTL field in the IP header? How does the TTL process work?

5 What is the first octet rule?

6 How are Class A, B, and C IP addresses recognized in dotted decimal? How are they
recognized in binary?

7 What is an address mask, and how does it work?

8 What is a subnet? Why are subnets used in IP environments?

9 Why can't a subnet of all zeros or all ones be used in a classful routing environment?

10 What is ARP?

11 What is proxy ARP?

12 What is a redirect?

13 What is the essential difference between TCP and UDP?

14 What mechanisms does TCP use to provide connection-oriented service?

15 Instead of ARP, Novell NetWare uses a network address that includes a device's MAC
address as the host portion. Why can't IP do this?

16 What purpose does UDP serve by providing a connectionless service on top of what is
already a connectionless service?



Configuration Exercises

1 The first octet rule says that the highest Class C address is 223, but it is known that for
eight bits the highest decimal number is 255. There are two more classes: Class D
addresses are for multicast, and Class E addresses are for experimental usage. Class D
addresses have, as their first four bits, 1110. What is the decimal range of the first octet of
Class D addresses?

2 Select a subnet mask for 10.0.0.0 so that there will be at least 16,000 subnets with at least
700 host addresses available on each subnet. Select a subnet mask for 172.27.0.0 so that
there are at least 500 subnets with at least 100 host addresses available on each subnet.

3 How many subnets are available if a Class C address has six bits of subnetting? How
many host addresses are available per subnet? Is there a practical use for such a
subnetting scheme?

4 Use a 28-bit mask to derive the available subnets of 192.168.147.0. Derive the available
host addresses of each subnet.

5 Use a 29-bit mask to derive the available subnets of 192.168.147.0. Derive the available
host addresses of each subnet.

6 Use a 20-bit mask to derive the available subnets of 172.16.0.0. Write the range (that is,
the numerically lowest to the numerically highest address) of available host addresses for
each subnet.



Troubleshooting Exercises

1 For the following host addresses and subnet masks, find what subnet each address
belongs to, the broadcast address of that subnet, and the range of host addresses for that
subnet:

10.14.87.60/19

172.25.0.235/27

172.25.16.37/25

2 You have been told to configure 192.168.13.175 on an interface with a mask of
255.255.255.240. Is there a problem? If so, what is it?



Chapter 2. IPv6 Overview
This chapter covers the following subjects:

IPv6 Addresses

IPv6 Packet Header Format

Extension Headers

ICMPv6

Neighbor Discovery Protocol

When the networks that eventually evolved into what we now call the Internet were first launched, they
were the exclusive realm of academics and researchers. And when Vint Cerf and Bob Kahn invented
TCP/IP for these networks, no one envisioned the Internet as it now is. At the time a 32-bit address
space, yielding almost 4.3 billion addresses, seemed inexhaustible.

But as the kids who worked with these networks in college went out into the "real world," they took with
them an appreciation of the possibilities for what could be done with a peer-to-peer network built on
open standards. Increasingly useful network applications began cropping up, and recognition of the
value of corporate connections to a public network began the push for a commercial Internet. At the
same time that all this was happening, desktop computers were becoming common not only in the
office but, most significantly, in the home. Yet modems were not a common accessory on those early
home computers because few home users saw the value of being connected to a public network.

That changed with the advent of the World Wide Web. Suddenly, easy acquisition and sharing of
information exponentially increased the value of desktop computers as a tool for nontechnical users. As
a result, in less than 20 years the Internet has changed the way we communicate, do business, and
learn. It has made the world a much smaller place, and has had profound impact on world economics
and politics.

But this explosion in the size and diversity of the "Internet population" has introduced, along with daily
nuisances such as spam and viruses, a serious technical concern: The once inexhaustible supply of
IPv4 addresses has become distinctly finite.

The problem of IPv4 address exhaustion was recognized in the early 1990s, when various experts
made projections showing that if the increasing rate of the allotment of IPv4 addresses continued, the
entire address space could be depleted in just a few short years. A new version of IPknown in the
development stage as IP Next Generation or IPng, and which is now IPv6was the proposed solution.
But it was recognized that developing the new standards would take time, and that a short-term
solution to IPv4 address depletion also was needed.

That short-term solution was Network Address Translation (NAT), which allows multiple hosts to share
one or a few public IP addresses. Behind the NAT device, private IP addresses as specified in RFC
1918, and which you see in most examples in this book, are used. NAT has been so successful in
slowing IPv4 address depletion, and has become such a standard part of most networks, that to this
day many still question the need for a new version of IP. But the widespread use of NAT has changed
the open, transparent, peer-to-peer Internet into something much more like a huge collection of client-
server networks. Users are seen as being connected around the "edge" of the Internet, and services
flow out to them. Seldom do users contribute to the overall wealth of the Internet. Seen from a more
economic perspective, Internet users have become consumers only, not producers.

Although most of the IPv6 standards were completed years ago, it is only recently that serious interest
in migrating from IPv4 to IPv6 has been shown. There are two fundamental drivers behind the growing
recognition of the need for IPv6. The first is widespread vision of new applications using core concepts



such as mobile IP, service quality guarantees, end-to-end security, grid computing, and peer-to-peer
networking. NAT stifles innovation in these areas, and the only way to get NAT out of the way is to
make public IP addresses abundant and readily available.

The second fundamental driver for IPv6 is the rapid modernization of heavily populated countries such
as India and China. A compelling statistic is that the number of remaining unallocated IPv4 addresses is
almost the same as the population of China: about 1.3 billion. With its aggressive expansion of its
Internet infrastructure, China alone in the near future will represent an unsupportable pressure on an
already strained IPv4 address pool. In India, with a population size close to China's, 4- and 5-layer NAT
hierarchies exist just to support the present demands for IP addresses.

IPv6 replaces the 32-bit IPv4 address with a 128-bit address, making 340 trillion trillion trillion IP
addresses available. That number will meet the demands for public IP addresses, and answer the
needs of the two fundamental drivers discussed here, well into the foreseeable future.[1]

[1] Given what was unforeseen when IPv4's 4.3 billion addresses were thought to be limitless
for all practical purposes, the almost inconceivably vast IPv6 address space will never be
considered inexhaustible.



IPv6 Addresses

IPv6 addresses are different from IPv4 addresses in far more ways than just their length. The
"shorthand" for writing them is different, they have significantly different formats, and their functional
organization is different. This section introduces you to those differences.

Address Representation

You certainly already know that 32-bit IPv4 addresses are represented by breaking them into four 8-bit
segments and writing each of those segments in decimal between 0 and 255, separating them with
periods; hence the term dotted decimal.

128-bit IPv6 addresses are represented by breaking them up into eight 16-bit segments. Each segment
is written in hexadecimal between 0x0000 and 0xFFFF, separated by colons. An example of a written
IPv6 address is

    3ffe:1944:0100:000a:0000:00bc:2500:0d0b

Remembering more than a few such addresses is practically impossible, and writing them is not much
fun either. Fortunately, there are two rules for reducing the size of written IPv6 addresses. The first rule
is

The leading zeroes in any 16-bit segment do not have to be written; if any 16-bit segment has fewer
than four hexadecimal digits, it is assumed that the missing digits are leading zeroes.

In the example address, the third, fourth, fifth, sixth, and eighth segments have leading zeroes. Using
the first address compression rule, the address can be written as

    3ffe:1944:100:a:0:bc:2500:d0b

Notice that only leading zeroes can be omitted; trailing zeroes cannot, because doing so would make
the segment ambiguous. You would not be able to tell whether the missing zeroes belonged before or
after the written digits.

Notice also that the fifth segment in the example address is all zeroes, and is written with a single zero.
Many IPv6 addresses have long strings of zeroes in them. Take, for example, the following address:

    ff02:0000:0000:0000:0000:0000:0000:0005

This address can be reduced as follows:

    ff02:0:0:0:0:0:0:5

However, using the second rule can reduce this address even further:

Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be
represented with a double colon.

Using this rule, the example address can be represented as the following:

    ff02::5



The increased convenience in writing such an address is obvious. But notice that the rule says only a
single contiguous string of all-zero segments can be represented with a double colon. Using the double
colon more than once in an IPv6 address can create ambiguity. Take, for example, the following
address:

    2001:0d02:0000:0000:0014:0000:0000:0095

Either of the following reductions of the address is correct because they use a double colon only once:

    2001:d02::14:0:0:95
    2001:d02:0:0:14::95

But the following reduction is illegal because it uses the double colon twice:

    2001:d02::14::95

It is illegal because the length of the two all-zero strings is ambiguous; it could represent any of the
following IPv6 addresses:

    2001:0d02:0000:0000:0014:0000:0000:0095
    2001:0d02:0000:0000:0000:0014:0000:0095
    2001:0d02:0000:0014:0000:0000:0000:0095

Unlike IPv4, in which the prefixthe network portion of the addresscan be identified by a dotted decimal
or hexadecimal address mask or a bitcount, IPv6 prefixes are always identified by bitcount. That is, the
address is followed by a forward slash and a decimal number indicating how many of the first bits of
the address are the prefix bits. For example, the prefix of the following address is the first 64 bits:

    3ffe:1944:100:a::bc:2500:d0b/64

When you are writing just an IPv6 prefix, you set all the host bits to 0 the same way you do with IPv4
addresses. For example

    3ffe:1944:100:a::/64

An IPv6 address consisting of all zeroes can be written simply with a double colon. There are two
cases where an all-zeroes address is used. The first is a default address, discussed in Chapter 12,
"Default Routes and On-Demand Routing," in which the address is all zeroes and the prefix length is
zero:

    ::/0

The second all-zeroes IPv6 address is an unspecified address, which is used in some Neighbor
Discovery Protocol procedures described later in this chapter. An unspecified address is a filler,
indicating the absence of a real IPv6 address. When writing an unspecified address, it is differentiated
from a default address by its prefix length:

    ::/128

IPv6 Address Types

The three types of IPv6 address follow:



Unicast

Anycast

Multicast

Unlike IPv4, there is no IPv6 broadcast address. There is, however, an "all nodes" multicast address,
which serves essentially the same purpose as a broadcast address.

Global Unicast Addresses

A unicast address is an address that identifies a single device. A global unicast address is a unicast
address that is globally unique. The general format of the IPv6 unicast address is shown in Figure 2-1.
This format, specified in RFC 3587, obsoletes and simplifies an earlier format that divided the IPv6
unicast address into Top Level Aggregator (TLA), Next-Level Aggregator (NLA), and other fields.
However, you should be aware that this obsolescence is relatively recent and you are likely to
encounter some books and documents that show the old IPv6 address format.

Figure 2-1. The IPv6 general unicast address format.

The host portion of the address is called the Interface ID. The reason for this name is that a host can
have more than one IPv6 interface, and so the address more correctly identifies an interface on a host
than a host itself. But that subtlety only goes so far: A single interface can have multiple IPv6
addresses, and can have an IPv4 address in addition, in which case the Interface ID is only one of that
interface's several identifiers.

Perhaps the most striking difference between IPv4 addresses and IPv6 addresses, aside from their
lengths, is the location of the Subnet Identifier as a part of the network portion of the address rather
than the host portion. A legacy of the IPv4 address class architecture is that the subnet portion of an
IPv4 address is taken from the host portion of the address. As a result, the host portion of the IPv4
address varies not only with its class, but also with the number of bits you use for subnet identification.

The immediate benefit of making the IPv6 Subnet ID field a part of the network portion of the address is
that the Interface ID can be a consistent size for all IPv6 addresses, simplifying the parsing of the
address. And making the Subnet ID a part of the network portion creates a clear separation of
functions: The network portion provides the location of a device down to the specific data link and the
host portion provides the identity of the device on the data link.

The Interface ID of the global IPv6 address is, with very few exceptions, 64 bits long. Also with very few
exceptions, the Subnet ID field is 16 bits (Figure 2-2). A 16-bit Subnet ID field provides for 65,536
separate subnets; it seems that using a fixed Subnet ID size such as this, when in most cases the
capacity will not be nearly fully used, is wasteful. But given the overall size of the IPv6 address space,
and given the benefits of easy address assignment, design, management, and parsing that comes from
using a fixed size, the waste is justified.

Figure 2-2. The standard field sizes of the global unicast IPv6 address.



The IANA and the Regional Internet Registries (RIRs)[2] assign IPv6 prefixesnormally /32 or /35 in
lengthto the Local Internet Registries (LIRs). The LIRs, which are usually large Internet Service
Providers, then allocate longer prefixes to their customers. In the majority of cases, the prefixes
assigned by the LIRs are /48. There are, however, as mentioned in the previous paragraph, a few
exceptions in which the LIR might assign a prefix of a different length:

[2] As of this writing there are five RIRs: Réseaux IP Européens (RIPE) serves Europe, the
Middle East, and Central Asia; Latin American and Caribbean Internet Address Registry
(LACNIC) serves Central and South America and the Caribbean; American Registry for
Internet Numbers (ARIN) serves North America and parts of the Caribbean; AfriNIC serves
Africa; and Asia Pacific Network Information Centre serves Asia and the Pacific Ocean
nations.

If the customer is very large, a prefix shorter than /48 might be assigned.

If one and only one subnet is to be addressed, a /64 might be assigned.

If one and only one device is to be addressed, a /128 might be assigned.

Identifying IPv6 Address Types

The first few bits of the address specify the address type. For example, the first three bits of all global
unicast addresses currently are 001. As a result, recognizing the hexadecimal representations of global
unicast addresses is fairly easy: They all start with either 2 or 3, depending on the value of the fourth
bit in the global routing prefix. So, for instance, currently allocated prefixes used by the 6Bone (the
public IPv6 research network) begin with 3ffe, and IPv6 addresses currently allocated by the RIRs
begin with 2001.

Binary 001 is expected to suffice for global unicast addresses for some time to come; a few other bit
combinations are assigned to other defined address types, and the majority of leading bit combinations
are reserved. Table 2-1 lists the currently allocated leading bit combinations, and the following
subsections describe the other major IPv6 address types.

Table 2-1. High-order bits of IPv6 address types.

Address Type
High-Order Bits
(binary)

High-Order Bits
(Hex)

Unspecified 00...0 ::/128
Loopback 00...1 ::1/128
Multicast 11111111 FF00::/8
Link-Local Unicast 1111111010 FF80::/10
Site-Local Unicast
(Deprecated)

1111111011 FFC0::/10

Global Unicast
(Currently
allocated)

001 2xxx::/4 or
3xxx::/4

Reserved (Future
global unicast

Everything else  



allocations)

Local Unicast Addresses

When we talk of global unicast addresses, we mean an address with global scope. That is, an address
that is globally unique and can therefore be routed globally with no modification.

IPv6 also has a link-local  unicast address, which is an address whose scope is confined to a single
link. Its uniqueness is assured only on one link, and an identical address might exist on another link, so
the address is not routable off its link. As you can see in Table 2-1, the first 10 bits of the link-local
unicast address are always 1111111010 (FF80::/10).

As subsequent sections in this chapter demonstrate, link-local addresses have great utility for functions
such as the Neighbor Discovery Protocol that communicates only on a single link. It also allows devices
that are on links that do not have assigned global prefixes, or devices that do not yet know the global
prefix assigned to the link, to create IPv6 addresses that allow them to communicate with other devices
on the link. The section "Address Autoconfiguration" shows how link-local prefixes are used in this
situation.

IPv6 originally defined a site-local unicast address in addition to the link-local address. A site-local
address is unique only within a given site; devices in other sites can use the same address. Therefore
a site-local address is routable only within the site to which it is assigned. Site-local IPv6 addresses
are, then, functionally similar to private IPv4 addresses as defined in RFC 1918.

Advocates of site-local addresses cite several applications. One prominent application is for network
operators that wish to use NAT, even with IPv6 addresses, to maintain independence of their address
architecture from that of their service providers. Site-local addresses are also key to several proposed
IPv6 multihoming mechanisms.

However, the IETF IPv6 Working Group determined that site-local unicast addresses introduced a
number of difficulties. Not the least of the difficulties is the fact that the definition of a "site" is vague
and can mean different things to different network administrators. Another problem is concern over, like
RFC 1918 IPv4 addresses, the administrative difficulties introduced when such addresses are
mistakenly "leaked" outside of their intended site boundaries. Other potential problems cited include
increased complexity for applications and routers that must recognize and cope with site-local
addresses. As a result of these concerns, and after some heated debate, the IPv6 Working Group
deprecated site-local addresses in RFC 3879. An assurance has been given to those who see
advantages in site-local addresses to introduce another scheme with similar "bigger scope than link but
smaller scope than global" benefits, but as of this writing such a replacement scheme has yet to be
seen.

The first 10 bits of site-local unicast addresses, as shown in Table 2-1, is 1111111011 (FFC0::/10).

Anycast Addresses

An anycast address represents a service rather than a device, and the same address can reside on
one or more devices providing the same service. In Figure 2-3, some service is offered by three
servers, all advertising the service at the IPv6 address 3ffe:205:1100::15. The router, receiving
advertisements for the address, does not know that it is being advertised by three different devices;
instead, the router assumes that it has three routes to the same destination and chooses the lowest-
cost route. In Figure 2-3 this is the route to server C with a cost of 20.

Figure 2-3. An anycast address represents a service that might appear on multiple devices.



The advantage of anycast addresses is that a router always routes to the "closest" or "lowest-cost"
server.[3] So servers providing some commonly used service can be spread across a large network
and traffic can be localized or scoped to the nearest server, making traffic patterns in the network more
efficient. And if one server becomes unavailable, the router routes to the next nearest server. In Figure
2-3, for example, if server C becomes unavailable due to a network or server failure, the router chooses
the path to server A as the next-lowest-cost route. From the router's viewpoint, it is just choosing the
next-best route to the same destination.

[3] The methods by which a router chooses among multiple routes to the same destination is
covered in Chapter 4, "Dynamic Routing Protocols.

Anycast addresses are defined by their service function only, not by format, and theoretically might be
any IPv6 unicast address of any scope. However, there is a format for reserved anycast addresses,
defined in RFC 2526. Anycast addresses have been used for some time in IPv4 networks, but are
formalized in their definition in IPv6.

Multicast Addresses

A multicast address identifies not one device but a set of devicesa multicast group. A packet being sent
to a multicast group is originated by a single device; therefore a multicast packet normally has a unicast
address as its source address and a multicast address as its destination address. A multicast address
never appears in a packet as a source address.

The members of a multicast group might include only a single device, or even all devices in a network.
In fact, IPv6 does not have a reserved broadcast address like IPv4, but it does have a reserved all-
nodes multicast group, which is essentially the same thing: a multicast group to which all receiving
devices belong.

Multicasting is essential to the basic operation of IPv6, particularly some of its plug-and-play features
such as router discovery and address autoconfiguration. These functions are a part of the Neighbor
Discovery Protocol, discussed later in this chapter.

The format of the IPv6 multicast address is shown in Figure 2-4. The first eight bits of the address are
always all ones, and the next four bits are designated as flags. Currently the first three of these bits are
unused and always set to 0. The fourth bit indicates whether the address is a permanent, well-known
address (0) or an administratively assigned transient address (1). The next four bits indicate the scope
of the address as shown in Table 2-2. Table 2-3 shows several reserved, well-known IPv6 multicast
addresses, all of which are link-local scope. Because a multicast group is always a set of individual
nodes, there is no needor sensefor having a subnet field in the multicast address. So the last 112 bits



are used as the Group-ID, identifying individual multicast groups. Current usage sets the first 80 bits to
0 and just uses the last 32 bits.

Figure 2-4. The IPv6 multicast address format.

Table 2-2. Multicast address scopes.
Scope Field Value Scope
0x0 Reserved
0x1 Node-Local
0x2 Link-Local
0x5 Site-Local
0x8 Organization Local
0xE Global
0xF Reserved

Table 2-3. Examples of well-known IPv6
multicast addresses.

Address Multicast Group
FF02::1 All Nodes
FF02::2 All Routers
FF02::5 OSPFv3 Routers
FF02::6 OSPFv3 Designated

Routers
FF02::9 RIPng Routers
FF02::A EIGRP Routers
FF02::B Mobile Agents
FF02::C DHCP Servers/Relay

Agents
FF02::D All PIM Routers

Embedded IPv4 Addresses

There are several transition technologiesmeans of helping to transition a network from IPv4 to IPv6 or
otherwise help IPv4 and IPv6 to coexistthat require an IPv4 address to be communicated within an IPv6
address. The individual technology specifies how the IPv4 address is to be embedded in the IPv6
address, and the implementation of the technology knows where among the 128 bits of the IPv6
address to find the 32 bits of the IPv4 address. But you will also find that many of these technologies
have unique formats for their address representations that allow you to identify the embedded IPv4
address. Examples of IPv6 addresses with an embedded IPv4 address of 10.23.1.5 are



    FE80::5EfE:10.23.1.5 (An ISATAP address)
    ::FFFF:10.23.1.5 and ::FFFF:0:10.23.1.5 (SIIT addresses)
    FEC0:0:0:1::10.23.1.5 (TRT address)

In each of these examples, the IPv4 address is the last 32 bits of the IPv6 address and is represented
in dotted decimal.

Other transition technologies using embedded IPv4 addresses do not use dotted decimal but encode
the IPv4 address into hexadecimal. 6to4, for example, does this. 10.23.1.5 in hexadecimal is
0A17:0105. A 6to4 prefix with 10.23.1.5 embedded is then

    2002:0A17:0105::/48

Transition technologies are not covered in this volume, and so you are not likely to see one of these
address representations again in this book. They are shown here only because you are likely to
encounter addresses like these if you work with IPv6.



IPv6 Packet Header Format

The format of the IPv6 packet header is shown in Figure 2-5. There are some distinct similarities and
some differencessome distinct, some subtlewith the IPv4 packet header shown in Figure 1.2 of the
previous chapter.

Figure 2-5. The IPv6 packet header.

Version is, as with the IPv4 header, a four-bit field indicating the IP version. Here, of course, it is set to
binary 0110 to indicate version 6.

Traffic Class is an eight-bit field that corresponds to the eight-bit IPv4 ToS field. But given the evolution
of the ToS field over the years, both are now used for Differentiated Class of Service (DiffServ). So
even though there is a correspondence of this field with the old ToS field, its name more accurately
reflects the current usage of the values carried here.

Flow Label  is a field unique to IPv6. The intention of this 20-bit field is to allow labeling of particular
flows of traffic; that is, packets that are not just originated by the same source and going to the same
destination, but that belong to the same applications at the source and destination. There are several
advantages to differentiating flows, from providing a finer-grained differentiated class-of-service
treatment to ensuring, when balancing traffic loads across multiple paths, that packets belonging to the
same flow are always forwarded over the same path to prevent possible reordering of packets. Flows
(or more accurately, microflows) typically are identified by a combination of source and destination
address plus source and destination port.

But to identify the source and destination port, a router must look beyond the IP header and into the
TCP or UDP (or other transport-layer protocol) header, adding to the complexity of the forwarding
process and possibly affecting router performance. Finding the transport layer header in an IPv6 packet
can be especially problematic because of extension headers, described in the next section. An IPv6
router must step through possibly many extension headers to find the transport-layer header.

By marking the Flow Label field appropriately when the packet is originated, routers can identify a flow
by looking no further than the packet header. As of this writing, however, the complete specification of
how to use the flow label field is still being debated, and routers currently ignore the field. It
nevertheless holds promise of allowing IPv6 to provide better Quality of Service (QoS) features than
IPv4 for applications such as Voice over IP (VoIP).

Payload Length specifies the length of the payload, in bytes, that the packet is encapsulating. Recall
from Chapter 1, "TCP/IP Review," that IPv4 headers, because of the Options and Padding fields, can
vary in length. Therefore, to find the payload length in an IPv4 packet, the value of the Header Length



field must be subtracted from the Total Length field. The IPv6 packet header, on the other hand, is
always a fixed length of 40 bytes, and so the single Payload Length field is enough to find the
beginning and end of the payload.

Notice also that whereas the IPv4 Total Length field is 16 bits, the IPv6 Payload Length field is 20 bits.
The implication here is that because a much longer payload (1,048,575 bytes, versus 65,535 in IPv4)
can be specified in this field, the IPv6 packet itself is theoretically capable of carrying a far larger
payload.

Next Header  specifies which header follows the IPv6 packet header. In this, it is very similar to the
Protocol field in the IPv4 header and, in fact, is used for the same purpose when the next header is an
upper-layer protocol header. Like that IPv4 field, this field is also eight bits. But in IPv6, the header
following the packet header might not be an upper-layer protocol header, but an extension header
(again, described in the next section). So the Next Header field is named to reflect this wider range of
responsibility.

Hop Limit corresponds exactly, both in length (eight bits) and function, to the IPv4 Time to Live (TTL)
field. As you read in Chapter 1, the original intention of the TTL field was that it would be decremented
by the number of seconds a packet is queued in a router during forwarding, but that this function was
never implemented. Instead, routers decrement the TTL by one no matter how long the packet is
queued (and in modern networks it is highly unusual for a packet to be queued anywhere near as long
as one second). Therefore, the TTL has always been a measure of the maximum router hops a packet
can take on its way to a destination. If the TTL decrements to 0, the packet is discarded. Hop Limit is
used for exactly the same, but is named more appropriately for this function.

Source and Destination Address correspond to the IPv4 Source and Destination fields, except of
course these fields are 128 bits each to accommodate IPv6 addresses.

Noticeably missing from the IPv6 header is a Checksum field like that of the IPv4 header. Given the
overall increase in reliability of modern transport mediawireless perhaps being a notable
exceptionalong with the fact that upper-layer protocols usually carry their own error-checking and
recovery mechanisms, checksumming of the IPv6 header itself adds little value, and is therefore
eliminated.



Extension Headers

Comparing the IPv6 header in Figure 2-5 with the IPv4 header in Figure 1.2, you can see that although
the Source and Destination Address fields are each four times as long in the IPv6 header, the IPv6
header itself is not that much larger than an IPv4 header: 40 bytes for IPv6 versus a minimum of 20
bytes for IPv4. If extensive use is made of the IPv4 Options field, although unusual, the IPv4 header
can actually be larger than the IPv6 header.

Also notice that in addition to the Options field, other fields that are not always used, such as those
associated with fragmentation, are eliminated from the IPv6 header. So given its fixed length and
exclusion of all fields that do not carry information necessary for the forwarding of every packet, the
IPv6 header is both compact and efficient.

But what if you do want to use one of those optional IP features, such as fragmentation or source
routing or authentication? When an optional function is used in IPv6, an extension header  appropriate
for the function is added after the packet header. If, for example, source routing, fragmentation, and
authentication options are to be used, three extension headers formatted to carry the information
needed for each of those functions are added as shown in Figure 2-6. Because of these headers,
efficiency is added to IPv6 packets in two ways:

The packet carries only the information required by that individual packet. No unused fields are
carried.

New optional functions can be added to the IPv6 packet by defining new extension headers.

Figure 2-6. Extension headers allow IPv6 packets to carry all the information required for that
packet, but only the information required for that packet.

[View full size image]

Each extension header, like the IPv6 header, has a Next Header field. So each header tells which
header follows it. Table 2-4 shows the currently defined extension headers and their next header
values. So, for example, in Figure 2-7, the Next Header value in the IPv6 header indicates that the next
header is a Routing extension header (43), that header's Next Header field indicates that the next
header is a Fragmentation extension header (44), and so on. The last extension header, AH, indicates
that the next header is a TCP header (Protocol Number 6).

Table 2-4. Next Header values.
Header Next Header Value
Hop-By-Hop Options 0
Routing 43
Fragment 44
Encapsulating Security
Payload (ESP)

50

Authentication Header (AH) 51
Destination Options 60
TCP/IP Protocols Protocol number value

defined for that protocol (such



as TCP = 6, UDP = 17, OSPF
= 89, and so on)

No Next Header 59

Figure 2-7. The Next Header field in the IPv6 header and each extension header specifies
which header follows it.

[View full size image]

The format of each of the extension headers is described in RFC 1883. But briefly, the function of each
extension header is as follows:

Hop-By-Hop Optionscarries information that must be examined by every node along the
forwarding path, such as Router Alert and Jumbo Payload options.

Routingprovides source routing functionality by listing nodes that the packet must pass through
on the way to its destination.

Fragmentis used when a packet is fragmented, to provide the information necessary for the
receiving node to reassemble the packet. A significant difference between IPv4 and IPv6 is that
only originating nodes can fragment packets; IPv6 routers do not fragment the packets. So
originating nodes must either use Path MTU Discovery (PMD) to find the lowest MTU along a path
to the destination, or never produce packets larger than 1280 bytes. PMD is described in the next
section. IPv6 specifies that all links on which it runs must be able to support packet sizes of at
least 1280 bytes so that originators can use the minimum-size option rather than PMD if they so
choose.

Encapsulating Security Payload (ESP) is used when the payload is encrypted.

Authentication Header (AH) is used when the packet must be authenticated between the source
and destination.

Destination Options carries information to be examined only by the destination node or possibly
by nodes listed in the Routing header.

RFC 1883 also specifies the order in which extension headers, if they are used, should appear. The
only hard-and-fast rule here is that if the Hop-By-Hop Options header is used, it must directly follow the
IPv6 header so that it can be easily found by the transit nodes that must examine it. The recommended
extension header order is as follows:

1. IPv6 Header

2. Hop-By-Hop Options

3. Destination Options (only if intermediate routers specified in the Routing header must examine this
header)

4. Routing

5. Fragment



6. Authentication

7. Encapsulating Security Payload

8. Destination Options (if only the final destination must examine this header)

9. Upper-Layer Header



ICMPv6

IPv6 requires a control protocol for exchanging and processing error and informational messages, just
as IPv4 does. And like IPv4, it uses ICMP to do this. But the ICMP used by IPv6 is not the same ICMP
as used by IPv4. Although ICMP for IPv4 has a Protocol Number of 1, ICMPv6 for IPv6 has a Next
Header value of 58.

ICMPv6 is specified in RFC 2463. Many of the functions defined in this RFC are the same ones defined
for ICMP for IPv4; but there are many ICMP messages, such as Source Quench and Timestamp, that
have no equivalent in ICMPv6.

Comparing the ICMPv6 header shown in Figure 2-8 to the ICMP header shown in Figure 1.28, you can
see that they are identical. And like ICMP, ICMPv6 uses a combination of type and code values to
identify general types and then subtypes under them. The values defined in RFC 1885 are listed in
Table 2-5.

Figure 2-8. The ICMPv6 header format.

Table 2-5. ICMPv6 Message Type and Code fields.
Type Code Message
1  DESTINATION UNREACHABLE

0 No route to destination
1 Communication with destination

administratively prohibited
2 Not a neighbor
3 Address unreachable
4 Port unreachable

2 0 PACKET TOO BIG
3  TIME EXCEEDED

0 Hop limit exceeded in transit
1 Fragment reassembly time

exceeded
4  PARAMETER PROBLEM

0 Erroneous header field encountered
1 Unrecognized Next Header type

encountered
2 Unrecognized IPv6 option

encountered
128 0 ECHO REQUEST



129 0 ECHO REPLY
130 0 GROUP MEMBERSHIP QUERY
131 0 GROUP MEMBERSHIP REPORT
132 0 GROUP MEMBERSHIP

REDUCTION

In addition to the basic error and informational functions of ICMPv6, there are mechanisms that use the
ICMPv6 messages. For example, the Path MTU Discovery mechanism mentioned in the previous
section sends packets of increasing size to a destination. When the smallest MTU of the links on the
path to the destination is exceeded by a given packet size, the packet is dropped and a Packet Too Big
message is sent to the source address; the source then knows the smallest MTU on the path. And, as
with IPv4, Echo and Echo Reply messages are used by the Ping function.

But in addition to basic error and information messages, there is a separate set of ICMPv6 messages
defined that are used by an essential IPv6 protocol: the Neighbor Discovery Protocol, described in the
next section.



Neighbor Discovery Protocol

The most distinct characteristics of IPv6 after its increased address space are its plug-and-play features.
Neighbor Discovery Protocol  (NDP) is the enabler of these plug-and-play features, using the following
functions:

Router Discovery A node can discover, when it is connected to an IPv6 link, the local routers without
the aid of Dynamic Host Configuration Protocol (DHCP).

Prefix Discovery A node can discover, when it is connected to an IPv6 link, the prefix or prefixes
assigned to that link.

Parameter Discovery A node can discover parameters such as the link MTU and hop limits for its
connected link.

Address Autoconfiguration A node can determine its full address, again without the aid of DHCP.

Address Resolution A node can discover the link-layer addresses of other nodes on the link without
the use of Address Resolution Protocol (ARP).

Next-Hop Determination A node on a link can determine the link-layer next hop for a destination,
either as a local destination or a router to the destination.

Neighbor Unreachability Detection A node can determine when a neighbor on a link, either another
host or a router, is no longer reachable.

Duplicate Address Detection A node can determine if an address it wants to use is already being
used by another node on the link.

Redirect A router can notify a host of a better next-hop than itself to an off-link destination. The
redirect function is a part of basic ICMP functionality in IPv4, but is redefined as part of NDP in IPv6.

NDP messages should always be link-local in scope, and therefore the packets encapsulating them always
use either link-local IPv6 addresses or multicast addresses with a link-local scope. To add a further layer of
security, the Hop Limit of the IPv6 packet carrying all NDP messages is 255. If one of these packets is
received with a Hop Limit less than that value, it means the packet has passed through at least one router,
and the packet is dropped. This prevents NDP from being attacked or spoofed from a source not attached
to the local link.

NDP Messages

NDP is defined in RFC 2461. It uses ICMPv6 to exchange the messages necessary for its functions;
specifically, five new ICMPv6 messages are specified in RFC 2461:

Router Advertisement (RA) messages are originated by routers to advertise their presence and link-
specific parameters such as link prefixes, link MTU, and hop limits. These messages are sent
periodically, and also in response to Router Solicitation messages.

Router Solicitation (RS) messages are originated by hosts to request that a router send an RA.

Neighbor Solicitation (NS) messages are originated by nodes to request another node's link layer
address and also for functions such as duplicate address detection and neighbor unreachability
detection.

Neighbor Advertisement (NA) messages are sent in response to NS messages. If a node changes
its link-layer address, it can send an unsolicited NA to advertise the new address.

Redirect messages are used the same way that redirects are used in ICMP for IPv4; they have merely
been moved from being a part of the base ICMPv6 protocol to being a part of NDP.



Figure 2-9 shows the format of the Router Advertisement message. Its ICMPv6 type is 134 and the code is
0. The source address of the IPv6 packet encapsulating the RA is always the IPv6 link-local address of the
interface from which the packet originates. The destination address is either the all-nodes multicast address
(FF02::1) if the RA is a periodic transmit, or the link-local address of the soliciting node if the RA is sent in
response to a Router Solicitation.

Figure 2-9. The Router Advertisement message format.

Hop Limit indicates the value of the Hop Limit field that nodes attached to the link should give to any
packets they originate on the link. If no Hop Limit is specified by this router, the field is set to all zeroes.

M is the Managed Address Configuration flag. If this bit is set, the originating router is telling hosts on the
link to use stateful address autoconfiguration via DHCPv6. If the flag is cleared, hosts on the link should use
stateless address autoconfiguration. Address autoconfiguration is described later in this chapter.

O is the Other Stateful Configuration flag. When set, the originating router is telling hosts on the link to use
DHCPv6 for the acquisition of other link information. The M and O flags can be used together. For example,
by clearing the M flag but setting the O flag, the router is telling hosts to use stateless address
autoconfiguration but then consult a DHCPv6 server for other configuration parameters.

Router Lifetime is set to a value other than 0 only if the originating router is a default router. In that case,
this field specifies the lifetime of the default router in seconds, up to a maximum value of 18.2 hours.

Reachable Time is used by the Neighbor Unreachability Detection function of NDP. It specifies the time, in
milliseconds, that a node should assume a neighbor is reachable after the node has confirmed reachability
of the neighbor.

Retransmit Timer is used by the Address Resolution and Neighbor Unreachability Detection functions of
NDP. It specifies the minimum time, in milliseconds, between retransmitted Neighbor Solicitation messages.

Possible options that can be carried in the Options field of the RA include the following:

The link-layer address of the interface from which the RA is originated.

An MTU specification for the link.

One or more prefixes assigned to the link. This information is essential to stateless address
autoconfiguration, telling hosts on the link what the link prefixes are.

Figure 2-10 shows the format of the Router Solicitation message. Its ICMPv6 type is 133 and the code is 0.
The source address of the IPv6 packet encapsulating the RS is either the IPv6 address assigned to the
originating interface or, if no address has been assigned (as would be the case if the originating host is
beginning address autoconfiguration), an unspecified address of :: (all zeroes). The destination address is
the all-routers multicast address (FF02::2).



Figure 2-10. The Router Solicitation message format.

The Options field can contain the link-layer address of the originating interface, if it is known. However, the
source link-layer address must not be included if the source address of the encapsulation packet is
unspecified, such as when the originator is soliciting a router during address autoconfiguration.

Figure 2-11 shows the format of the Neighbor Solicitation message. Its ICMPv6 type is 135 and the code is
0. The source address of the IPv6 packet encapsulating the NS is either the IPv6 address assigned to the
originating interface or, if the NS is sent for Duplicate Address Detection, the unspecified address of :: (all
zeroes). The destination address is either a solicited-node multicast address corresponding to the target
address, or the target address.

Figure 2-11. The Neighbor Solicitation message format.

Target Address is the IPv6 address of the target of the solicitation. The target address is never a multicast
address.

The Options field of the NS can contain the link-layer address of the originating interface.

Figure 2-12 shows the format of the Neighbor Advertisement message. Its ICMPv6 type is 136 and the code
is 0. The source address of the IPv6 packet encapsulating the NS is always the IPv6 address assigned (or
autoconfigured) to the originating interface. The destination address is either the source address of the
packet containing the NS to which the NA is sent in response, or the all-nodes multicast address (FF02::1).

Figure 2-12. The Neighbor Advertisement message format.



R is the Router  flag. When set, it indicates that the originator is a router. This bit is used during Neighbor
Reachability Detection to detect a router that has changed to a host.

S is the Solicited flag. This bit is set when the NA is sent in response to an NS.

O is the Override flag. When set, it indicates that the information in the NA should override any existing
neighbor cache entry and update the cached link-layer address. When the O bit is cleared the NA will not
override an existing neighbor cache entry.

Target Address is, when the NA is sent in response to a NS, the address in the Target Address field of the
NS. If the NA is unsolicited (that is, sent to advertise a change of the originator's link-layer address), the
Target Address is the originator's address.

The Options field of the NA can contain the target link-layer addressthat is, the link-layer address of the
NA's originator.

Figure 2-13 shows the format of the Redirect message. Its ICMPv6 type is 137 and the code is 0. The
source address of the IPv6 packet encapsulating the Redirect is always the link-local IPv6 address of the
interface from which the message is originated. The destination address is always the source address of
the packet that triggered the redirect.

Figure 2-13. The Redirect message format.

Target Address is the address of the better first-hopusually the link-local address of another router on the
link.



Destination Address is the IPv6 address of the destination that is redirected to the target address.

The Options field of the Redirect message can contain the link-layer address of the target, and as much of
the header of the packet that triggered the redirect, without making the redirect packet exceed 1280 bytes.

The Options field of all of these five messages, when it contains any information, consists of one or more
Type/Length/Value (TLV) triplets. Each TLV consists, as shown in Figure 2-14, of an 8-bit Type field
specifying the type of information carried in the value field, an 8-bit Length field specifying the length in units
of 8 octets of the value field, and the variable length Value field.

Figure 2-14. The format of the TLVs used in the Options fields of the NDP messages.

Table 2-6 shows the possible values and their associated type numbers. The format of the individual value
fields is not provided in this chapter; consult RFC 2461 for the details on the value fields.

Table 2-6. Value fields and their types.
Type Value
1 Source Link-Layer

Address
2 Target Link-Layer

Address
3 Prefix Information
4 Redirected Header
5 MTU

Router Discovery

A router makes its presence known, along with any parameters it has been configured to advertise, by
periodically sending RAs on its attached links. Presumably the links on which the RA do the most good are
broadcast links such as Ethernet, where hosts can receive the RAs and thus learn necessary information
about the link.

RFC 2461 specifies that the period between transmissions of RAs should be between 4 and 1800 seconds,
with a default of 600 seconds. It also specifies a minimum period between advertisements of RAs with a
default of 200 seconds. The advertisements are jittered between the maximum and minimum values to
prevent synchronization on a link.

These unsolicited RAs are sent with their source address set to the link-local IPv6 address of the router's
interface. The destination address is the all-nodes multicast address (FF02::1).

Cisco routers automatically send RAs on Ethernet and FDDI interfaces whenever IPv6 is enabled on the
router with the command ipv6 unicast-routing. The default interval is 200 seconds, and can be changed
with the command ipv6 nd ra-interval. The Router Lifetime of the transmitted RAs is 1800 seconds by



default, and can be changed with the command ipv6 nd ra-lifetime. If you do not want a router to be a
default router on a link, you can use this command to set the Router Lifetime value to 0. The default
Reachable Time of the RAs is 0 (which means unspecified), and can be changed with the command ipv6
nd reachable-time. The Retransmit Timer field is set to a default of 0 ms (unspecified) and can be
changed with the command ipv6 nd ns-interval. The M and O flags can be set with the commands ipv6
nd managed-config-flag and ipv6 nd other-config-flag, respectively. If you do not want an interface to
transmit RAs at all, you can disable them with the command ipv6 nd suppress-ra.

By default, Cisco routers include in the RAs all IPv6 prefixes configured on the originating interface. You can
control the prefixes advertised, and parameters associated with those prefixes, with the command ipv6 nd
prefix.

Of course, 200 seconds is a long time for a host that has just attached to an interface to wait for an RA so
that it can find the routers and learn the link parameters. So when a host first becomes active on a link, it
can send an RS to solicit the immediate transmission of an RA. The source of the RS can either be the
unspecified address (::) or the host's link-local IPv6 address. The destination is always the all-routers
multicast (FF02::2).

When a router receives an RS, it sends (after a delay of .5 seconds) an RA in response. If the source
address of the RS that triggered the RA is a host's link-local address, the RA is unicast to the host using its
link-local address. If the source address of the RS was unspecified, the solicited RA is multicast to the all-
nodes address.

When a host receives an RA, it adds the router to its default router list (unless the RA indicates by a Router
Lifetime value of 0 that it cannot be used as a default). If there is more than one router on the default router
list, how the host selects a default router is implementation-specific. It could either rotate through the list, or
select and keep a single router as default. In either instance, the Redirect function is essential for updating
the host when a different default than the one it selected should be used.

Address Autoconfiguration

When an IPv6 host first becomes active on a link, it can self-configure its own interface address. The first
step in this process is the determination of the 64-bit Interface ID portion of the address. On broadcast
interfaces (where hosts are most likely to appear), a mechanism called MAC-to-EUI64 conversion is used.
Quite simply, this mechanism takes the 48-bit Media Access Control (MAC) address of the interfacewhich
can normally be assumed to be globally uniqueand converts it into a 64-bit Interface ID by inserting a
reserved 16-bit value of 0xFFFE into the middle of the MAC address and "flipping" the Universal/Local (U/L)
bit of the MAC address to 1 (Universal).

Figure 2-15 illustrates this process. A MAC address, 0000:0B0A:2D51, is to be converted. The first step,
shown in binary for easier understanding of what is happening, is to "split" the MAC address in the middle
and insert 0xFFFE between the two 24-bit halves. The address is now 64 bits long. Next, the U/L bit of the
original MAC addresswhich is always the 7th bitis flipped from 0 to 1. The resulting address,
0200:0BFF:FE0A:2D51, is now a valid 64-bit Interface ID.

Figure 2-15. MAC-to-EUI64 conversion is used to create a 64-bit Interface ID from an interface's 48-
bit MAC address.



Of course, the Interface ID is only half of the IPv6 address; a 64-bit prefix is also required. Recall from Table
2-1 that the link-local prefix is a reserved, well-known value of 0xFF80::/10. Using this as a full 64-bit prefix
(0xFF80::/64), it can be added onto the derived Interface ID, and the host now has a complete IPv6 address
that can be used for communication with other devices on the same link. For example, combining the link-
local prefix with the Interface ID derived in Figure 2-15 gives a link-local address of
FF80::0200:0BFF:FE0A:2D51. 2-The following shows an example of a link-local address, in this case from
an Ethernet interface "en1" on a Macintosh OS X host. Using the link-local prefix FF80::/10 and a MAC-to-
EUI64 conversion, an IPv6 interface derives its link-local address with no help from any other device:

  [Jeff-Doyles-Computer:~] jdoyle% ifconfig en1
  en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1300
          inet6 fe80::211:24ff:fe23:334e prefixlen 64 scopeid 0x5
          inet 10.10.24.13 netmask 0xffffff00 broadcast 10.10.24.255
          ether 00:11:24:23:33:4e
          media: autoselect status: active
          supported media: autoselect
  [Jeff-Doyles-Computer:~] jdoyle%

If the host only needs to communicate with devices on the link, autoconfiguring its link-local address is
sufficient. But if it needs to communicate with devices off-link, it needs an address with a wider
scopenormally a global IPv6 address. There are two ways it can acquire this address: stateful  or stateless
address autoconfiguration.

If a host uses stateful address autoconfiguration, it consults a DHCPv6 server for the necessary address
information. It might either be preconfigured to find a DHCPv6 server, or a received RA might have its M flag
set telling it to use DHCPv6. DHCPv6, described in RFC 3315, is not much different in its end results than
DHCP for IPv4.

Much more interesting is stateless autoconfiguration. With this very simple process, the host acquires one
or more link prefixes from the RAs it receives. It then adds the prefix to its previously determined Interface
ID, and it now has a globally unique IPv6 address. For example, if the host from Figure 2-15 received an RA
advertising a prefix of 3FFE: 1104:404:1::/64, it would add that prefix to its Interface ID for a global address
of 3FFE:1104: 404:1:0200:0BFF:FE0A:2D51.

Duplicate Address Detection

Although the use of MAC addresses to derive an Interface ID almost always guarantees a unique address of
any scope, it is wise to ensure that the address is unique. So whenever a device acquires a unicast
address, it must perform Duplicate Address Detection before using the address. It does not matter whether
the address was acquired via stateful or stateless configuration, or if the address was statically configured.
The only exception to the rule is an anycast address, because anycast addresses by definition can appear



on more than one device. There is also an assumption that if a Duplicate Address Detection has been
performed on a link-local address that has an Interface ID that was derived from MAC-to-EUI64 conversion,
and if the address passes, other addresses using the same Interface ID will also be unique, and so the
Duplicate Address Detection does not need to be repeated.

A node that has acquired a new address classifies the address as tentative. The address cannot be used
until the Duplicate Address Detection operation has been completed with verification that no other node on
the link uses that address. The node sends an NS with the Target Address field set to the address to be
verified. The source address of the NS is the unspecified address, and the destination of the NS is a
solicited-node multicast address.

A solicited-node multicast address is formed by prepending the prefix FF02:0:0:0:0:1: FF00::/104 to the last
24 bits of the target address. For example, given the Interface ID derived in Figure 2-15, the solicited-node
multicast address is FF02::1:FF0A:2D51. The reason for this is that if a node has autoconfigured more than
one interface address, the last 24 bits of all of its addresses should be the same. So the one NS with a
solicited-node multicast address should match all of its interface addresses. More important, using a
solicited-node multicast address ensures that if two nodes attempt to do a Duplicate Address Detection on
the same address simultaneously, they will detect each other.

If a node receives an NS and the target address matches one of its assigned addresses, it sends an NA
with the Target Address and the destination address set to the tentative address. The node that had
originated the NS, on receipt of the NA, knows that the tentative address is duplicate and cannot be used.

Neighbor Address Resolution

You know from Chapter 1 that when an IPv4 node wants to communicate with another IPv4 node on a local
link, it must first discover the destination's link-layer (or data link) address. This address is then used as the
destination address in the frame that encapsulates the IP packets to that node. For example, a node might
want to send a packet to examplehost.com. A DNS query returns the address
3FFE:521:2400:15:211:24FF:FE23:334E. The sending node must now discover the link-layer address to
use as a destination address of the frame for the local link. As the previous chapter discussed, IPv4 uses
ARP for this discovery. IPv6, however, uses NDP.

When the node examines the prefix of the IPv6 address returned by DNS, it either concludes that the
destination is a neighbor on the local link or that it is off-link and therefore reachable through the default
router. If the latter is the case, the node should already know the link-layer address of the default router
from the RAs. But if the destination is on the local link, the node first looks in its neighbor cache  to see if the
address is known. The neighbor cache in IPv6 is very similar to the ARP cache in IPv4; it records known
network-layer addresses and the link-layer addresses associated with them. The following shows a
neighbor cache from a Microsoft Windows XP host. The neighbor cache stores known IPv6 addresses and
their associated link-layer addresses:

  C:\Documents and Settings\Jeff Doyle>ipv6 nc
  5: fe80::202:2dff:fe25:5e4c 00-02-2d-25-5e-4c permanent
  4: fe80::260:83ff:fe7b:2df3 00-60-83-7b-2d-f3 stale (router)
  4: fe80::210:a4ff:fea0:bc97 00-10-a4-a0-bc-97 permanent
  4: 3ffe:3700:1100:1:210:a4ff:fea0:bc97 00-10-a4-a0-bc-97 permanent
  4: 3ffe:3700:1100:1:d9e6:b9d:14c6:45ee 00-10-a4-a0-bc-97 permanent
  4: 2001:468:1100:1:210:a4ff:fea0:bc97 00-10-a4-a0-bc-97 permanent
  4: 2001:468:1100:1:d9e6:b9d:14c6:45ee 00-10-a4-a0-bc-97 permanent
  3: 2002:c058:6301::c058:6301 192.88.99.1       permanent
  3: 2002:836b:213c::836b:213c 131.107.33.60     permanent
  3: 2002:4172:a85b::4172:a85b 127.0.0.1         permanent
  3: 2002:836b:213c:1:e0:8f08:f020:6 131.107.33.60     permanent
  3:  2001:708:0:1::624                   incomplete
  2:    ::65.114.168.91 127.0.0.1         permanent
  2: fe80::5efe:65.114.168.91 127.0.0.1         permanent
  2: fe80::5efe:169.254.113.126 127.0.0.1         permanent
  1:            fe80::1                   permanent
  1:                ::1                   permanent



If the address is not in the neighbor cache, it is entered but tagged Incomplete, indicating that address
resolution is in progress. The node then sends an NS to the solicited-node multicast address associated
with the target node. The NS should include the Source Link-Layer option (type 1), so that the solicited
node would have the link-layer address of the soliciting node, and therefore would know where to send the
responding NA. If a value other than 0 is included in the RAs, multiple NSs can be sent at that specified
interval. If the Retransmit Timer value in the RAs is unspecified (0), the NS is retransmitted every 1000 ms
until an NA is received. If no NA is received from the solicited node after three NS transmissions, the
neighbor address resolution has failed and an ICMP message of type 1/code 3 (Destination
Unreachable/Address Unreachable) is returned for each packet queued for transmission to the now
unknown destination.

If the solicited node exists and the NS is valid, it responds with an NA. The Target Address field of the NA is
set to the value of the Target Address field of the NS that triggered it. The soliciting node, upon receipt of
the NA, can add the target node's link-layer address to the neighbor cache entry and change the entry from
Incomplete to Reachable.

The neighbor cache of a Cisco router can be observed with the command show ipv6 neighbors, as shown
in Example 2-1.

Example 2-1. The neighbor cache of a Cisco router can be displayed with the command show ipv6
neighbors.

Confucius# show ipv6 neighbors
IPv6 Address                            Age  Link-layer Addr  State  Interface
2001:201:1502:1:210:a4ff:fea0:bc97        0  0010.a4a0.bc97   REACH  Ethernet0
fe80::210:a4ff:fea0:bc97                  0  0010.a4a0.bc97   REACH  Ethernet0
fe80::260:83ff:fe4c:5df2                  0  0060.834c.5df2   REACH  Ethernet0
3ffe:1300:a47:20:d9e6:b9d:14c6:45ee       0  0002.2d25.5e4c   REACH  Ethernet1

Privacy Addresses

The stateless address autoconfiguration has raised a security concern for some: Even if a device moves
from subnet to subnet or even major network to major network, its Interface ID always remains the same;
and if the Interface ID remains the same, it can be tracked. At the least, this becomes a privacy issue. For
example, suppose you are using IPv6 to connect to your company network. Recording and analyzing
packets coming into some part of the network can identify you by your unchanging Interface ID. And by
further analyzing the different prefixes prepended to that Interface ID, your employer can infer where you are
at all times: at work, at home, traveling, or whatever. More insidious uses can also be made of such
tracking, keeping record of your location and activities for everything from marketing to criminal exploitation.

RFC 3041 addresses this security concern by defining IPv6 privacy addresses. A privacy address is one in
which the Interface ID is generated by an algorithm using a pseudo-random number. What is significant
about it, and makes it reasonably private, is that the Interface ID changes approximately once a day (or on
some configurable period) and also whenever the node acquires a new IPv6 prefix.

Of course, a constantly changing address is not practical for reachability. Nodes that want to communicate
with you, and hence DNS servers, must know you by only one or a few static addresses. So the standard
statelessly configured IPv6 address remains your public address. Anyone wanting to send packets to you
uses this address as the destination. But when you send packets back, you use the private address. This is
a bit like having Caller ID in your home but blocking your number from appearing on anyone else's Caller ID.
You can see who is calling you, but others cannot see your number when you call them.

The following shows the addresses assigned to a Microsoft Windows XP machine. There are two public
IPv6 addresses assigned to the interface, and you can see that although the prefixes are different, the MAC-
to-EUI64generated Interface IDs are the same. You can easily identify the public Interface IDs by the
0xFFFE inserted in the middle. But for both of these public addresses there is also a private address (which



Windows labels as "anonymous"). These private addresses are created by prepending the RA-discovered
IPv6 prefix onto the randomly generated Interface ID. Public and private (called "anonymous" here) are used
together to create anonymity for the host but at the same time maintain reachability:

  C:\Documents and Settings\Jeff Doyle>ipv6 if 4
  Interface 4: Ethernet: Local Area Connection 2
    uses Neighbor Discovery
    uses Router Discovery
    link-layer address: 00-10-a4-a0-bc-97
      preferred global 2001:484:1200:1:d9e6:b9d:14c6:45ee,
       life 6d21h14m26s/21h12m4s (anonymous)
      preferred global 2001:468:1200:1:210:a4ff:fea0:bc97,
       life 29d23h59m25s/6d23h59m25s (public)
      preferred global 3ffe:3705:1200:1:d9e6:b9d:14c6:45ee,
       life 6d21h14m26s/21h12m4s (anonymous)
      preferred global 3ffe:3705:1200:1:210:a4ff:fea0:bc97,
       life 29d23h59m25s/6d23h59m25s (public)
      preferred link-local fe80::210:a4ff:fea0:bc97, life infinite
      multicast interface-local ff01::1, 1 refs, not reportable
      multicast link-local ff02::1, 1 refs, not reportable
      multicast link-local ff02::1:ffa0:bc97, 3 refs, last reporter
      multicast link-local ff02::1:ffc6:45ee, 2 refs, last reporter
    link MTU 1500 (true link MTU 1500)
    current hop limit 64
    reachable time 22000ms (base 30000ms)
    retransmission interval 1000ms
    DAD transmits 1

Neighbor Unreachability Detection

The discussion of neighbor address resolution in a previous section made mention of neighbor cache
entries being labeled as Incomplete or Reachable. In fact, a neighbor cache entry can be in one of five
states:

Incomplete Neighbor address resolution is in progress. An NS has been sent to the solicited-node
multicast address for the entry, but no NA has yet been received.

Reachable The address has been recently confirmed as reachable. "Recently confirmed" means that
some indication of its reachability has been received within the time specified in the Reachable Time
field of the RAs. If no Reachable Time has been specified in RAs, a default Reachable Time of 30
seconds is used.

Stale The Reachable Time has elapsed since the last positive confirmation of reachability with the
destination has been received.

Probe A confirmation of reachability is being sought by sending NS to the destination every Retransmit
Time or (if no Retransmit Time has been specified) every 1000 ms.

Delay An address is put into this state when a packet is sent to a destination that was in the Stale
state. It stays in the Delay state for 5 seconds, and if no confirmation of reachability is received within
that time, the state is changed to Probe. This state is an optimization to give upper-layer protocols a
chance to confirm reachability before a probe NS is sent.

Reachability of a neighbor is confirmed in one of two ways:

"Hints" from an upper-layer protocol, such as an ACK of a TCP message.

A response to a probe of the destination address by soliciting an RA or NA. This is necessary because
some upper-layer protocols, such as UDP, do not actively acknowledge the receipt of transmitted
messages.



Neighbor Unreachability Detection confirms not just reachability from the neighbor's perspective, but
confirms two-way reachability from the local node's perspective. For this reason, an unsolicited NA or RA
cannot change the state of a neighbor cache entry to Reachable; the received message only indicates one-
way reachability from the originating node to the local node. Two-way reachability is confirmed only by
either a remote response to a transmitted message (such as an ACK of a TCP packet) or an RA or NA sent
in response to a solicitation.



Looking Ahead

The purpose of this and the previous chapter was to examine the basics of IP in both of its versions.
Understanding the basics of IP addressing and the fundamental processes of IP provides the
foundation for understanding IP routing. The next chapter delves into the information a router needs to
successfully and accurately forward a packet toward its destination.



Review Questions

1 What is the length of an IPv6 address?

2 How are IPv6 addresses represented?

3 What are the two rules for compacting IPv6 addresses?

4 Why is it illegal to use more than one double colon in an IPv6 address?

5 What is the difference between the IPv6 addresses ::/0 and ::/128?

6 What is the part of the unicast IPv6 address that specifies the host, and what is its length?

7 What is the length of the Subnet ID portion of the unicast IPv6 address?

8 If the first 10 bits of an IPv6 address are FF80::/10, what type of address is it?

9 What type of address is 3FFE:204:100:90::1?

10 What is an anycast address?

11 What is a multicast address?

12 What is the length of the IPv6 header?

13 What is the purpose of the Flow Label field in the IPv6 header?

14 To what field in the IPv4 header does the IPv6 Next Header field correspond?

15 To what field in the IPv4 header does the IPv6 Hop Limit field correspond?

16 In what way is the IPv6 Next Header field like the IPv4 Protocol Number field, and in what
way is it different?

17 How do extension headers make IPv6 packets more efficient?

18 What is the Next Header value of ICMPv6?

19 What is the significant difference between IPv4 fragmentation and IPv6 fragmentation?

20 What are the five ICMPv6 messages used by the Neighbor Discovery Protocol?

21 What is the purpose of the M and O flags in the RA?

22 What is the purpose of the Reachable Time field of the RA?

23 What is the purpose of the Retransmit Timer field in the RA?

24 What is indicated if the Router Lifetime field in the RA is set to 0?

25 What is the purpose and effect of the S flag in the NA?

26 What is the difference between stateful and stateless address autoconfiguration?

27 What two steps does MAC-to-EUI64 conversion use to derive an Interface ID?

28 When a device acquires a unicast IPv6 address it must perform Duplicate Address
Detection, with one exception. What is that exception?

29 What does the prefix FF02:0:0:0:0:1:FF00::/104 signify?



30 What does IPv6 use in place of ARP and an ARP cache?

31 What is a privacy address?

32 What does an Incomplete state of an entry in the neighbor cache signify?

33 What does a Probe state of an entry in the neighbor cache signify?

34 What two ways does Neighbor Unreachability Detection use to verify two-way reachability
of a neighbor?



Chapter 3. Static Routing
This chapter covers the following subjects:

Route Table

Configuring Static Routes

Troubleshooting Static Routes

An important observation from Chapter 1, "TCP/IP Review," is that the data link/physical layers and the
transport/network layers, as defined by the OSI model, perform very similar duties: They provide the
means for conveying data from a source to a destination across some path. The difference is that the
data link/physical layers provide communications across a physical path, whereas the
transport/network layers provide communications across a logical or virtual path made up of a series of
data links.

Further, Chapter 1 showed that for communications to take place across a physical path, certain
information about data-link identifiers and encapsulations must be acquired and stored in a database
such as the ARP cache. Similarly, information that the transport/network layers require to do their job
must also be acquired and stored. This information is stored in the route table, also known as the
routing information database (RIB).

This chapter examines what sort of information is required to route a packet, how that information is
stored in the route table, how to enter the information into the database, and some techniques for
building a routed network by entering the proper information into the proper routers' route tables.



Route Table

To understand the kind of information that exists in the route table, it is useful to begin with an examination of
what happens when a framed packet arrives at one of a router's interfaces. The data-link identifier in the
frame's destination address field is examined. If it contains either the identifier of the router's interface or a
broadcast identifier, the router strips off the frame and passes the enclosed packet to the network layer. At the
network layer, the destination address of the packet is examined. If the destination address is either the IP
address of the router's interface or an all-hosts broadcast address, the protocol field of the packet is examined
and the enclosed data is sent to the appropriate internal process.[1]

[1] There is also the special case of a multicast address, which is destined for a group of devices,
but not for all devices. An example of a multicast address is the class D address 224.0.0.5, reserved
for all OSPF-speaking routers.

Any other destination address calls for routing. The address might be for a host on another network to which
the router is attached (including the router interface attached to that network) or for a host on a network not
directly connected to the router. The address might also be a directed broadcast, in which there is a distinct
network or subnet address, and the remaining host bits are all ones. These addresses are also routable.

If the packet is to be routed, the router will do a route table lookup to acquire the correct route. At a minimum,
each route entry in the database must contain two items:

Destination address This is the address of the network the router can reach. As this chapter explains,
the router might have more than one route to the same address, or a group of subnets of the same or of
varying lengths, grouped under the same major IP network address.

Pointer to the destination This pointer either will indicate that the destination network is directly
connected to the router or it will indicate the address of another router on a directly connected link or the
local interface to that link. That router, which will be one router hop closer to the destination, is a next-hop
router.

The router will match the most specific address it can.[2] In descending order of specificity, the address may be
one of the following:

[2] There are two basic procedures for finding the best match, depending upon whether the router is
behaving classfully or classlessly. Classful table lookups are explained in more detail in Chapter 5,
"Routing Information Protocol (RIP)," and classless table lookups are explained in Chapter 6, "RIPv2,
RIPng, and Classless Routing."

Host address (a host route)

Subnet

Group of subnets (a summary route)

Major network number

Group of major network numbers (a supernet)

Default address

This chapter provides examples of the first four types. Supernets are covered in Chapter 6, "RIPv2, RIPng, and
Classless Routing." A default address is considered a least-specific address and is matched only if no other
match can be found. Default addressing is the topic of Chapter 12, "Default Routes and On-Demand Routing."

If the destination address of the packet cannot be matched to any route table entry, the packet is dropped and
a Destination Unreachable ICMP message is sent to the source address.

Figure 3-1 shows a simple network and the route table entries required by each router. Of primary importance
here is the "big picture," seeing how the route tables work as a whole to transport packets correctly and



efficiently. The destination addresses that the router can reach are listed in the Network column of the route
tables. The pointers to the destinations are in the Next Hop column.

Figure 3-1. The minimum information needed for each route table entry consists of the destination
networks and the pointers to those networks.

[View full size image]

If router Carroll in Figure 3-1 receives a packet with a source address of 10.1.1.97 and a destination address
of 10.1.7.35, a route table lookup determines that the best match for the destination address is subnet
10.1.7.0, reachable via next-hop address 10.1.2.2, on interface S0. The packet is sent to that next router
(Dahl), which does a lookup in its own table and sees that network 10.1.7.0 is reachable via next-hop address
10.1.4.2, out interface S1. The process continues until the packet reaches router Baum. That router, receiving
the packet on its interface S0, does a lookup, and sees that the destination is on one of its directly connected
subnets, out E0. Routing is completed, and the packet is delivered to host 10.1.7.35 on the Ethernet link.

The routing process, as explained, assumes that the router can match its listed next-hop addresses to its
interfaces. For example, router Dahl must know that Lewis's address 10.1.4.2 is reachable via interface S1.
Dahl will know from the IP address and subnet mask assigned to S1 that S1 is directly connected to subnet
10.1.4.0. It then knows that 10.1.4.2, a member of the same subnet, must be connected to the same data link.

Notice that every router must have consistent and accurate information for correct packet switching to occur.
For example, in Figure 3-1, an entry for network 10.1.1.0 is missing from Dahl's route table. A packet from
10.1.1.97 to 10.1.7.35 will be delivered, but when a reply is sent from 10.1.7.35 to 10.1.1.97, the packet is
passed from Baum to Lewis to Dahl. Then, Dahl does a lookup and finds that it has no entry for subnet
10.1.1.0, so the packet is dropped, and an ICMP Destination Unreachable message is sent to host 10.1.7.35.

Example 3-1 shows the route table from router Lewis of Figure 3-1. The IOS command for examining the IP
route table of a Cisco router is show ip route.

Example 3-1. The route table for router Lewis of Figure 3-1.

Lewis#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP,
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area,
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2,
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP,
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route, o - ODR
Gateway of last resort is not set
     10.0.0.0/24 is subnetted, 7 subnets
S      10.1.3.0 [1/0] via 10.1.4.1
S      10.1.2.0 [1/0] via 10.1.4.1
S      10.1.1.0 [1/0] via 10.1.4.1
S      10.1.7.0 [1/0] via 10.1.6.2
C      10.1.6.0 is directly connected, Serial1
C      10.1.5.0 is directly connected, Ethernet0
C      10.1.4.0 is directly connected, Serial0



Lewis#

Examine the contents of this database and compare it with the generic table shown for Lewis in Figure 3-1. A
key at the top of the table explains the letters down the left side of the table. These letters indicate how each
route entry was learned; in Example 3-1, all routes are tagged with either a C for "directly connected," or an S
for "static entry." The statement "gateway of last resort is not set" refers to a default route.

At the top of the table is a statement indicating that the route table knows of seven subnets of the major
network address 10.0.0.0, subnetted with a 24-bit mask. For each of the seven route entries, the destination
subnet is shown; for the entries that are not directly connectedroutes for which the packet must be forwarded
to a next-hop routera bracketed tuple indicates [administrative distance/metric] for that route. Administrative
distances are introduced later in this chapter and are covered in detail in Chapter 11, "Route Redistribution."

Metrics, discussed in greater detail in Chapter 4, "Dynamic Routing Protocols," are a way for multiple routes to
the same destination to be rated by preferencethe lower the metric, the "shorter" the path and so the more
desirable the route. Notice that the static routes shown in Example 3-1 have a metric of 0. Finally, either the
address of the directly connected interface of the next-hop router or the interface to which the destination is
connected is shown.



Configuring Static Routes

The route table acquires information in one of three ways:

The information can be entered based on what the router knows about its directly connected subnets.

The information can be entered manually, by means of a static route entry.

The information can be entered automatically by one of several systems of automatic information
discovery and sharing known as dynamic routing protocols.

The bulk of this book concerns dynamic IP routing protocols, but this discussion of static route configuration
will prepare you for understanding the subsequent chapters.

More to the point, static routing is preferred over dynamic routing in certain circumstances. As with any
process, the more automatic it is, the less control you have over it. Although dynamic (automatic) routing
requires much less human intervention, static routing allows very precise control over the routing behavior of a
network. The price to be paid for this precision is the necessity of manual reconfiguration any time the topology
of the network changes.

Case Study: Simple IPv4 Static Routes

Figure 3-2 shows a network with four routers and six data links. Notice that the subnets of network 10.0.0.0
are discontiguousthere is a different major network subnet (192.168.1.192, in the Tigger-to-Piglet link)
separating 10.1.0.0 from the other 10.0.0.0 subnets. The subnets of 10.0.0.0 are also variably subnettedthe
subnet masks are not consistent throughout the network: Subnet 10.1.0.0 has a 16-bit mask, while 10.4.0.0
has a 24-bit mask. Finally, the subnet address of Pooh's Ethernet link is an all-zero subnet. Later chapters
demonstrate that an addressing scheme with these characteristics causes problems for simpler, classful
routing protocols such as RIP and IGRP; but static routes work fine here.

Figure 3-2. Routing protocols such as RIP and IGRP cannot easily route this discontiguous, variably
subnetted network, but static routing will work.

[View full size image]

The procedure for statically routing a network has three steps:

1. For each data link within the network, identify all subnet or network addresses.

2. For each router, identify all data links not directly connected to that router.

3. For each router, write a route statement for each address not directly connected to it.

Writing route statements for a router's directly connected data links is unnecessary, because the addresses
and masks configured on the router's interfaces cause those networks to be recorded in its route table.



For example, the network in Figure 3-2 has six subnets:

10.1.0.0/16

10.4.6.0/24

10.4.7.0/24

192.168.1.192/27

192.168.1.64/27

192.168.1.0/27

To configure static routes for Piglet, the subnets that are not directly connected are identified as follows:

10.4.6.0/24

10.4.7.0/24

192.168.1.64/27

192.168.1.0/27

These are the subnets for which static routes must be written. Example 3-2 shows the commands for entering
Piglet's static routes.[3]

[3] For the static routes in this example and the subsequent examples in this chapter to work
properly, two global commands must be added to the routers: ip classless and ip subnet-zero. In
IOS 11.3 and later, ip classless is enabled by default. These commands are introduced in Chapter 6
and are mentioned here for readers who wish to try the configuration examples in a lab.

Example 3-2. Configuring Piglet's static routes.

Piglet(config)# ip route 192.168.1.0 255.255.255.224 192.168.1.193
Piglet(config)# ip route 192.168.1.64 255.255.255.224 192.168.1.193
Piglet(config)# ip route 10.4.6.0 255.255.255.0 192.168.1.193
Piglet(config)# ip route 10.4.7.0 255.255.255.0 192.168.1.193

Following the same steps, Example 3-3 shows the route entries for the other three routers.

Example 3-3. Route entries for Routers Pooh, Tigger, and Eeyore.

Pooh(config)# ip route 192.168.1.192 255.255.255.224 192.168.1.66
Pooh(config)# ip route 10.1.0.0 255.255.0.0 192.168.1.66
Pooh(config)# ip route 10.4.6.0 255.255.255.0 192.168.1.66
Pooh(config)# ip route 10.4.7.0 255.255.255.0 192.168.1.66
_________________________________________________________________
Tigger(config)# ip route 192.168.1.0 255.255.255.224 192.168.1.65
Tigger(config)# ip route 10.1.0.0 255.255.0.0 192.168.1.194
Tigger(config)# ip route 10.4.7.0 255.255.255.0 10.4.6.2
_________________________________________________________________
Eeyore(config)# ip route 192.168.1.0 255.255.255.224 10.4.6.1
Eeyore(config)# ip route 192.168.1.64 255.255.255.224 10.4.6.1
Eeyore(config)# ip route 192.168.1.192 255.255.255.224 10.4.6.1
Eeyore(config)# ip route 10.1.0.0 255.255.0.0 10.4.6.1

The routing commands themselves are easily read if the reader remembers that each command describes a
route table entry. The command for IPv4 is ip route, followed by the address to be entered into the table, a



mask for determining the network portion of the address, and the address of the directly connected interface of
the next-hop router.

An alternative configuration command for IPv4 static routes specifies the interface out of which an address is
reached instead of the interface address of the next-hop router. For example, Example 3-4 shows the possible
route entries for Tigger.

Example 3-4. Alternative route entries for Tigger.

ip route 192.168.1.0 255.255.255.224 S0
ip route 10.1.0.0 255.255.0.0 E0
ip route 10.4.7.0 255.255.255.0 S1

Certain conditions must be met before a static route is written into the route table. IP routing must be enabled,
the next-hop address, if used, must be reachable, the exit interface must have an IP address configured on it,
and the exit interface must be up.

Example 3-5 compares the route table resulting from this configuration with the route table resulting from
entries pointing to a next-hop router. Notice that a certain inaccuracy is introduced: All addresses specified with
a static route referring to an exit interface are entered into the table as if they are directly connected to that
interface. The implications for route redistribution are discussed in Chapter 11.

A point of interest in Example 3-5 is that the header for the 10.0.0.0 subnets indicates the variable subnet
masks used in the network. Variable-length subnet masking (VLSM) can be a useful tool and is discussed at
length in Chapter 6.

Example 3-5. The top route table is the result of static route entries pointing to the next-hop router.
The bottom route table is the result of static routes that point to the interface a packet must exit to
reach the destination network.[4]

Tigger#show ip route
Gateway of last resort is not set
     10.0.0.0 is variably subnetted, 3 subnets, 2 masks
C      10.4.6.0 255.255.255.0 is directly connected, Serial1
S      10.4.7.0 255.255.255.0 [1/0] via 10.4.6.2
S      10.1.0.0 255.255.0.0 [1/0] via 192.168.1.194
     192.168.1.0 255.255.255.224 is subnetted, 3 subnets
C      192.168.1.64 is directly connected, Serial0
S      192.168.1.0 [1/0] via 192.168.1.65
C      192.168.1.192 is directly connected, Ethernet0
Tigger#

Tigger#show ip route
Gateway of last resort is not set
     10.0.0.0 is variably subnetted, 3 subnets, 2 masks
C      10.4.6.0 255.255.255.0 is directly connected, Serial1
S      10.4.7.0 255.255.255.0 is directly connected, Serial1
S      10.1.0.0 255.255.0.0 is directly connected, Ethernet0
     192.168.1.0 255.255.255.224 is subnetted, 3 subnets
C      192.168.1.64 is directly connected, Serial0
S      192.168.1.0 is directly connected, Serial0
C      192.168.1.192 is directly connected, Ethernet0
Tigger#

[4] The key normally seen at the top of the route table (as in Figure 3-2) has been removed for
clarity.

A third option for static routes is to use a combination of the outgoing interface and the next-hop address. The



next-hop address is coupled with the specified exit interface. If the exit interface goes down, the route is
removed from the route table, even if the next-hop address is recursively reachable via an alternate route. This
minimizes table lookups associated with finding the outgoing interface associated with a next-hop address and
the entry in the table appears as a route with a distance of 1, not a directly connected network.

Directing a static route to an exit broadcast interface without specifying the next-hop address can cause an
excessive amount of traffic on the broadcast network, and also might eat up the router's memory. For example,
look at Tigger's ip route 10.1.0.0 255.255.0.0 E0 command. The router assumes 10.1.0.0 is directly
connected, as we have seen from the route table. Therefore, when attempting to route to any address on the
10.1.0.0/16 subnet, the router sends an ARP request to find the MAC address to which to forward the packet.
Each attempt to reach an address on the 10.1.0.0 network, whether the destination is valid or not, will result in
an ARP request, an ARP response if a router on the broadcast network is responding on behalf of the 10.1.0.0
network (proxy ARP), and a potentially large ARP cache on the router. By appending the next-hop address to
the static route entry, ip route 10.1.0.0 255.255.0.0 E0 192.168.1.194, the router no longer assumes that the
destination is directly connected. The only ARP traffic is for the next-hop address, which only occurs for the
first packet destined to a host on network 10.1.0.0, rather than for every packet destined to a new host on
network 10.1.0.0.

Specify the exit interface and the next-hop address to minimize table lookups associated with finding the exit
interface for a specified next-hop address, and to minimize traffic on the broadcast network.

Example 3-6 shows the difference in the static route entries in the route tables when the next-hop address is
used with the exit interface.

Example 3-6. Specifying an exit interface rather than the next-hop router address with static routing
could generate excessive traffic on a broadcast network.

Tigger#show ip route static
     10.0.0.0/16 is subnetted, 1 subnets
S       10.1.0.0 is directly connected, Ethernet0

Tigger#show arp
Protocol   Address         Age (min)  Hardware Addr  Type   Interface
Internet   192.168.1.193          -   0004.c150.f1c0 ARPA   Ethernet0
Internet   10.1.8.1               0   0010.7b38.37d5 ARPA   Ethernet0
Internet   192.168.1.194         24   0010.7b38.37d5 ARPA   Ethernet0
Internet   10.1.5.5               0   0010.7b38.37d5 ARPA   Ethernet0
Internet   10.1.1.1               0   0010.7b38.37d5 ARPA   Ethernet0
Tigger#

Tigger#show ip route static
     10.0.0.0/16 is subnetted, 1 subnets
S       10.1.0.0 [1/0] via 192.168.1.194, Ethernet0

Tigger#show arp
Protocol  Address                Age (min)  Hardware Addr  Type  Interface
Internet  192.168.1.193                 -   0004.c150.f1c0 ARPA  Ethernet0
Internet  192.168.1.194                22   0010.7b38.37d5 ARPA  Ethernet0

The first route table and ARP cache show that the static route entry was created with an exit interface and no
next-hop address. The route is directly connected and there are multiple ARP cache entries for destinations on
the 10.1.0.0 network. The MAC address for each entry is the same. It is the hardware address of the router
with IP address 192.168.1.194. The router is sending ARP replies for all hosts on the 10.1.0.0 network. As
discussed in Chapter 1, this proxy ARP is enabled by default in IOS.

The second set of tables shows the route table and ARP cache when the next-hop address is specified in
addition to the exit interface. Notice the route is no longer directly connected. It is known via 192.168.1.194
and the exit interface is Ethernet 0. The ARP cache has no entries for the 10.1.0.0 network, only for the
addresses that actually exist on the directly connected network, including 192.168.1.194.



Case Study: Simple IPv6 Static Routes

IPv6 static routes are configured the same way as IPv4 static routes. The only difference is that the IPv6 prefix
length of the destination network is entered rather than the dotted decimal form of the IPv4 network mask.
Unlike IPv4, however, IPv6 routing is not enabled by default. Before entering a static route, IPv6 must be
enabled using the ipv6 unicast-routing command. As with IPv4, an IPv6 address must be configured on the
exit interface and the interface must be up before the static entry will be added to the route table. The
command used to create a static route is ipv6 route followed by the network to be entered into the route table,
the length, in bits of the prefix, and the address of the next-hop router, or the exit interface to be used to reach
this destination.

To specify the next-hop address in the static route entry, you need to know what that address is. A detailed
network drawing will help, but it may be out of date because of the dynamic nature of the Interface ID portion
of the addresses. When addressing the IPv6 network, if you specify interface IDs manually rather than using
the automatically constructed EUI-64 format addresses, the next-hop address will be predictable. However, if
the interfaces on the data link are configured to use EUI-64 interface IDs, you only specify the first 64 bits of
the address. The router determines the final 64 bits based on a MAC address. If a router is replaced, the new
router will have different IPv6 addresses. (The first 64 bits will remain the same, but the final 64 bits will be
different.) One way to identify the full 128-bit IPv6 address of a neighbor router is to use the Cisco Discovery
Protocol (CDP) statistics. CDP displays information about neighboring routers, such as the router's hostname,
router type, IOS, and the IP addresses configured on the remote end of the link. Example 3-7 displays one
form of the show cdp command.

Example 3-7. Cisco Discovery Protocol can tell you a lot of information about a device's neighbors.

Honeybee#show cdp neighbor detail
-------------------------
Device ID: Honeytree
Entry address(es):
  IP address: 10.4.6.2
  IPv6 address: FE80::2B0:64FF:FE30:1DE0 (link-local)
  IPv6 address: FEC0::1:2B0:64FF:FE30:1DE0 (site-local)
Platform: cisco 2610, Capabilities: Router
Interface: Serial0/0.2, Port ID (outgoing port): Serial0/0.2
Holdtime : 146 sec

Version :
Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-J1S3-M), Version 12.3(6), RELEASE SOFTWARE (fc3)
Copyright (c) 1986-2004 by cisco Systems, Inc.
Compiled Wed 11-Feb-04 19:24 by kellythw

advertisement version: 2

Example 3-7 displays a lot of information about the neighbor router, including the router type, IOS, host name
and IP addresses. The detail keyword is required to obtain all the information that is displayed.

Another way to determine the IPv6 address of a link is to issue the show ipv6 interface command. This
command displays the IPv6 information relevant to an interface. Example 3-8 shows the output from the
command issued on Honeybee.

Example 3-8. show ipv6 interface  displays IPv6 information relevant to an interface, including the
IPv6 EUI-64 formatted addresses.

Honeybee#show ipv6 interface serial0/0.1
Serial0/0.1 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::204:C1FF:FE50:F1C0
  Description: Link to Piglet
  Global unicast address(es):
    FEC0::3:204:C1FF:FE50:F1C0, subnet is FEC0:0:0:3::/64



  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF30:1DE0

Figure 3-3 shows a simple network with IPv6 addresses.[5]

[5] The interface addresses are configured with EUI-64 addresses. The addresses, therefore, are
unique to each router based on MAC address. To reproduce the configuration, you'd have to
determine your router's interface addresses to use as the next hop.

Figure 3-3. Static routing also works with IPv6.

[View full size image]

Example 3-9 shows the commands for entering Honeypot's IPv6 static routes.

Example 3-9. Configuring Honeypot's IPv6 static routes.

ipv6 unicast-routing
interface serial 0/0.2 point-to-point
 ipv6 address fec0:0:0:3::/64 eui-64
ipv6 route fec0::1:0:0:0:0/64 fec0::3:204:c1ff:fe50:f1c0
ipv6 route fec0::a:0:0:0:0/64 fec0::3:204:c1ff:fe50:f1c0
ipv6 route fec0::8:0:0:0:0/64 fec0::3:204:c1ff:fe50:f1c0

Example 3-10 and Example 3-11 show the route entries for the other two routers, Honeytree and Honeybee,
respectively.

Example 3-10. Configuring IPv6 static routes for Honeytree.

ipv6 route fec0::8:0:0:0:0/64 fec0::1:204:c1ff:fe50:f1c0
ipv6 route fec0::3:0:0:0:0/64 fec0::1:204:c1ff:fe50:f1c0
ipv6 route fec0::5:0:0:0:0/64 fec0::1:204:c1ff:fe50:f1c0

Example 3-11. Configuring IPv6 static routes for Honeybee.

ipv6 route fec0::a:0:0:0:0/64 fec0::1:2b0:64ff:fe30:1de0
ipv6 route fec0::5:0:0:0:0/64 fec0::3:230:94ff:fe24:b780



Look at the next-hop address used for Honeypot's routes, and the next-hop address used for Honeytree's
routes. Honeypot's next-hop address for each route is fec0::3:204:c1ff:fe50:f1c0. The next-hop address used
for Honeytree's routes is fec0::1:204:c1ff:fe50:f1c0. These addresses are those of Honeybee's interfaces to
Honeypot and Honeytree, respectively. Notice that the last 64 bits of each of Honeybee's interface addresses
are the same. The router uses its first encountered MAC address to form the last 64 bits of the EUI-64
formatted IPv6 addresses on each of its serial interfaces.

As with IPv4, IPv6 static routes can use the outbound interface rather than next-hop address. There is an
option to enter an address after the interface as there is with IPv4. You can put either the link-local address
here or a configured address. This next-hop address should be used when the exit interface is a broadcast
interface, such as Ethernet.

Example 3-12 displays Honeypot's IPv6 route table with only the next-hop address specified in the ipv6 route
statement. The command show ipv6 route displays the IPv6 route table. Prefixes, prefix lengths, and the
next-hop address or outgoing interface are displayed, as are the administrative distance and route metric.

Example 3-12. As with IPv4, the IPv6 static route table displays the destination network and the next-
hop address used to reach the destination.

Honeypot#show ipv6 route
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2

L   FE80::/10 [0/0]
     via ::, Null0
C   FEC0:0:0:3::/64 [0/0]
     via ::, Serial0/0.2
L   FEC0::3:230:94FF:FE24:B780/128 [0/0]
     via ::, Serial0/0.2
S   FEC0:0:0:A::/64 [1/0]
     via FEC0::3:204:C1FF:FE50:F1C0
S   FEC0:0:0:8::/64 [1/0]
     via FEC0::3:204:C1FF:FE50:F1C0
S   FEC0:0:0:1::/64 [1/0]
     via FEC0::3:204:C1FF:FE50:F1C0
C   FEC0:0:0:5::/64 [0/0]
     via ::, Ethernet0/0
L   FEC0::5:230:94FF:FE24:B780/128 [0/0]
     via ::, Ethernet0/0
L   FF00::/8 [0/0]
     via ::, Null0

The static routes displayed in Example 3-12 were entered using an IPv6 next-hop address. The router must
determine the exit interface associated with this IPv6 address recursively, as it does with IPv4. The entry for
FEC0:0:0:A::/64 has a next-hop address of FEC0::3:204:C1FF:FE50:F1C0. Looking further into the route
table, FEC0:0:0:3::/64 is connected on Serial0/0.2. Notice that the administrative distance of the static routes
entered with the next-hop IPv6 address is 1 and the route metric is 0, the same as IPv4 static route entered in
this way.

Routes can also be entered with the outgoing interface toward the destination network. The outgoing interface
and the next-hop address can be entered together, too. Example 3-13 shows what Honeypot's static route
configuration could be changed to.

Example 3-13. Alternative static route configuration for Honeypot.

ipv6 route fec0::a:0:0:0:0/64 serial 0/0.2
ipv6 route fec0::8:0:0:0:0/64 serial 0/0.2



ipv6 route fec0::1:0:0:0:0/64 serial 0/0.2
ipv6 route fec0::20:0:0:0:0/62 Ethernet0/0 FE80::2B0:64FF:FE30:1DE0

The last entry, using the exit interface and the next-hop address will help to illustrate the difference in the route
table between the two forms of the command. Example 3-14 displays Honeypot's new route table.

Example 3-14. Honeypot route table after changing the next hop to the exit interface.

Honeypot#show ipv6 route static
S   FEC0:0:0:A::/64 [1/0]
     via ::, Serial0/0.2
S   FEC0:0:0:8::/64 [1/0]
     via ::, Serial0/0.2
S   FEC0:0:0:1::/64 [1/0]
     via ::, Serial0/0.2
S   FEC0:0:0:20::/62 [1/0]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet0/0

One thing to notice in the route table is the administrative distance of the static route configured with an exit
interface. The distance is 1, unlike IPv4 static routes configured the same way. The route does not appear to
be directly connected as it does with IPv4.

The next-hop address is undetermined when you enter the outbound interface unless you specify the exit
interface and the next-hop address. You can see this in the route table shown in Example 3-14. The first
statement, for instance, says that FEC0:0:0:A::/64 is known via ::, Serial 0/0.2. The "::" means that the next hop
is unspecified, but the outgoing interface is Serial 0/0.2. On a point-to-point serial interface, an unspecified
next-hop address is not a problem. There is only one other device on that point-to-point network, and all
packets are forwarded out the interface and reach the other device.

On a broadcast interface, the router must find a neighbor to which to send the packet. The router multicasts a
neighbor solicitation message on the Ethernet and waits for a neighbor advertisement from the next-hop
device. There is no defined proxy address resolution mechanism with IPv6, other than for mobile IPv6 nodes. A
router on the Ethernet that has a route to the destination will not respond to a neighbor solicitation on behalf of
another device.

For this reason, when using an exit interface to configure a static route on a broadcast network, a next-hop
address must also be specified. The recommended address to use as the next-hop address is the link-local
address of the next-hop router. One reason to use the link-local address is that it is not likely to change. A link-
local address will only change if the interface card, or the entire router, is replaced. Even if the site is
renumbered with a different IPv6 global prefix, the link-local address on the interface does not change. Another
reason to use the link-local address as the next hop is to remain consistent with the addresses routers
advertise in the router advertisement messages and so that processes using those addresses, such as
ICMPv6 Redirect, will operate as expected.

Routers advertise their presence, along with their link-local addresses, to all IPv6 devices on broadcast
networks. Hosts use the router list created from the router advertisement to determine how to forward packets
off the network. If a host forwards a packet to a router, and that router knows that a second router on the
network is a better choice for the host to use, the first router will send a redirect to the host. The redirect
includes the link-local IPv6 address of the better choice router. When the host processes the redirect, if the
better router is in its router list, the host will begin to forward packets to the better router. If the better router is
not in the list (or it is listed by a different IPv6 address), the host will discard the redirect.

Case Study: Summary Routes

A summary route is an address that encompasses several more specific addresses in a route table. It is the
address mask used with a route entry that makes static routes as flexible as they are; by using an appropriate
address mask, it is sometimes possible to create a single summary route for several destination addresses.



For example, the preceding two case studies use a separate entry for each data link. The mask of each entry
corresponds to the address mask used on the device interfaces connected to that data link. Looking again at
Figure 3-2, you can see that subnets 10.4.6.0/24 and 10.4.7.0/24 could be specified to Piglet with a single
entry of 10.4.0.0/16, reachable via Tigger. Likewise, subnets 192.168.1.0/27 and 192.168.1.64/27 could be
accounted for in its route table with a single entry pointing to 192.168.1.0/24, also reachable via Tigger. These
two route entries, 10.4.0.0/16 and 192.16.1.0/24, are summary routes.

Using summary routes, Piglet's static route entries are displayed in Example 3-15.

Example 3-15. Piglet's static route entries are summarized into only two entries.

ip route 192.168.1.0 255.255.255.0 192.168.1.193
ip route 10.4.0.0 255.255.0.0 192.168.1.193

All subnets of network 10.0.0.0 are reachable from Pooh via Tigger, so a single entry to that major network
address and a corresponding mask are all that is needed (see Example 3-16).

Example 3-16. Pooh's static route entries for all of network 10.0.0.0 subnets are summarized into a
single entry.

ip route 192.168.1.192 255.255.255.224 192.168.1.66
ip route 10.0.0.0 255.0.0.0 192.168.1.66

From Eeyore, all destination addresses beginning with 192 are reachable via Tigger. The single route entry
does not even have to specify all of the Class C address bits[6], as displayed in Example 3-17.

[6] This method of summarizing a group of major network addresses with a mask shorter than the
default address mask for that class is known as supernetting. This is introduced in Chapter 6.

Example 3-17. Eeyore summarizes all routes beginning with 192 into a single entry.

ip route 192.0.0.0 255.0.0.0 10.4.6.1
ip route 10.1.0.0 255.255.0.0 10.4.6.1

Summary routes can also be applied to the IPv6 destination addresses in Figure 3-3.

Honeypot's two static routes can be summarized into a group consisting of fec0:0:0:8:: through fec0:0:0:b:: by
changing the prefix length from 64 to 62, as in Example 3-18.

Example 3-18. Honeypot summarizes IPv6 static routes.

ipv6 route fec0::8:0:0:0:0/62 fec0::3:204:c1ff:fe50:f1c0

By summarizing a group of subnets or even major networks, the number of static route entries may be reduced
drasticallyin this example, by more than one-third. However, caution must be used when summarizing
addresses; when done incorrectly, unexpected routing behavior may occur (see "Case Study: Tracing a Failed
Route," later in this chapter). Summarization and the problems that can develop from incorrect summarization
are examined in more depth in Chapters 7, "Enhanced Interior Gateway Routing Protocol (EIGRP)," and 8,
"OSPFv2."

Case Study: Alternative Routes



In Figure 3-4, a new link has been added between Pooh and Eeyore. All packets from Pooh to the 10.0.0.0
networks will take this new path with the exception of packets destined for the host 10.4.7.25; a policy is in
place stating that traffic to this host must go through Tigger. The static route commands at Pooh will be as
displayed in Example 3-19.

Figure 3-4. A more direct path from Pooh to the 10.4.0.0 subnets is added to the network.

[View full size image]

Example 3-19. Pooh's static route commands help implement a policy directing traffic through
specific routers.

ip route 192.168.1.192 255.255.255.224 192.168.1.66
ip route 10.0.0.0 255.0.0.0 192.168.1.34
ip route 10.4.7.25 255.255.255.255 192.168.1.66

The first two route entries are the same as before except that the second path now points to the new interface
192.168.1.34 at Eeyore. The third entry is a host route, pointing to the single host 10.4.7.25 and made
possible by setting the address mask to all ones. Notice that unlike the entry for the other 10.0.0.0 subnets,
this host route points to Tigger's interface 192.168.1.66.

The debugging function debug ip packet is turned on in Pooh (see Example 3-20) to observe the paths
packets take from the router as a result of the new route entries. A packet is sent from a host 192.168.1.15 to
host 10.4.7.25. The first two debug trap messages show that the packet is routed from interface E0 to the next-
hop router 192.168.1.66 (Tigger) out interface S0, as required, and that the reply packet was received on S0
and routed to the host 192.168.1.15 out E0.

Example 3-20. Debugging verifies that the new route entries at Pooh are working correctly.

Pooh#debug ip packet
IP packet debugging is on
Pooh#
IP: s=192.168.1.15 (Ethernet0), d=10.4.7.25 (Serial0), g=192.168.1.66, forward
IP: s=10.4.7.25 (Serial0), d=192.168.1.15 (Ethernet0), g=192.168.1.15, forward
Pooh#
IP: s=192.168.1.15 (Ethernet0), d=10.4.7.100 (Serial1), g=192.168.1.34, forward
IP: s=10.4.7.100 (Serial0), d=192.168.1.15 (Ethernet0), g=192.168.1.15, forward
Pooh#

Next, a packet is sent from host 192.168.1.15 to host 10.4.7.100. Packets destined for any host on 10.0.0.0
subnets, other than host 10.4.7.25, should be routed across the new link to Eeyore's interface 192.186.1.34.
The third debug message verifies that this is indeed happening. However, the fourth message shows
something that at first might be surprising. The response from 10.4.7.100 to 192.168.1.15 arrived on Pooh's
interface S0 from Tigger.



Remember that the route entries in the other routers have not changed from the original example. This result
might or might not be desired, but it does illustrate two characteristics of static routes:

First, if the network topology changes, the routers that are required to know about those changes must be
reconfigured.

Second, static routes can be used to create very specific routing behavior. In this example, perhaps it is
desirable to have traffic taking one path in one direction and another path in the opposite direction.

A final observation about this example is that packets routed from Pooh to subnet 10.1.5.0 take a less-than-
optimal route, from Pooh to Eeyore to Tigger instead of directly from Pooh to Tigger. Example 3-21 shows a
more efficient configuration for Router Pooh.

Example 3-21. Configuring a more efficient static route on Router Pooh.

ip route 192.168.1.192 255.255.255.224 192.168.1.66
ip route 10.0.0.0 255.0.0.0 192.168.1.34
ip route 10.1.0.0 255.255.0.0 192.168.1.66
ip route 10.4.7.25 255.255.255.255 192.168.1.66

The third entry will now send all packets for subnet 10.1.5.0 directly to Tigger.

Case Study: Floating Static Routes

Unlike other static routes, a floating static route is less preferred than other routes in the route table. It appears
in the table only under the special circumstance of the failure of a more-preferred route.

In Figure 3-5, a new router (Rabbit) is connected to Piglet with two parallel links. One link connects their
respective Serial 0 interfaces, and the second connection has been added between the two Serial 1 interfaces.
This second link has been added for redundancy: If the primary link 10.1.10.0 fails, floating static routes will
direct traffic across the backup link 10.1.20.0.

Figure 3-5. A new router has been connected to Piglet. Two serial links are used: one for the primary
link and one for the backup link.
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Additionally, the mask on Piglet's Ethernet interface has changed from 10.1.5.1/16 to 10.1.5.1/24. This change
allows the single route entry at Tigger

ip route 10.1.0.0 255.255.0.0 192.168.1.194

to point not only to 10.1.5.0 but also to all of the new subnets used in association with the new router.

To create the floating static route, Example 3-22 and Example 3-23 show the route entries for both Piglet and
Rabbit, respectively.



Example 3-22. Route entries for Piglet to create a floating static route.

ip route 192.168.1.0 255.255.255.0 192.168.1.193
ip route 10.4.0.0 255.255.0.0 192.168.1.193
ip route 10.1.30.0 255.255.255.0 10.1.10.2
ip route 10.1.30.0 255.255.255.0 10.1.20.2 50

Example 3-23. Route entries for Rabbit to create a floating static route.

ip route 10.4.0.0 255.255.0.0 10.1.10.1
ip route 10.4.0.0 255.255.0.0 10.1.20.1 50
ip route 10.1.5.0 255.255.255.0 10.1.10.1
ip route 10.1.5.0 255.255.255.0 10.1.20.1 50
ip route 192.168.0.0 255.255.0.0 10.1.10.1
ip route 192.168.0.0 255.255.0.0 10.1.20.1 50

Two entries at Piglet point to Rabbit's network 10.1.30.0; one specifies a next-hop address of Rabbit's S0
interface, and the other specifies a next-hop address of Rabbit's S1 interface. Rabbit has similar double entries
for every route.

Notice that all static routes using subnet 10.1.20.0 are followed by a 50. This number specifies an
administrative distance, which is a measure of preferability; when duplicate paths to the same network are
known, the router will prefer the path with the lower administrative distance. At first this idea sounds like a
metric; however, a metric specifies the preferability of a route, whereas an administrative distance specifies the
preferability of the means by which the route was discovered.

For example, IPv4 static routes pointing to a next-hop address have an administrative distance of 1, and static
routes referencing an exit interface have an administrative distance of 0. If two static routes point to the same
destination, but one references a next-hop address and one references an exit interface, the latterwith the
lower administrative distancewill be preferred.

By increasing the administrative distances of the static routes traversing subnet 10.1.20.0 to 50, they become
less preferred than the routes traversing subnet 10.1.10.0. Example 3-24 shows three iterations of Rabbit's
route table. In the first table, all routes to nonconnected networks use a next-hop address of 10.1.10.1. The
bracketed numbers associated with each route indicate an administrative distance of 1 and a metric of 0
(because no metrics are associated with static routes).

Example 3-24. When the primary link 10.1.10.0 fails, the backup link 10.1.20.0 is used. When the
primary link is restored, it is again the preferred path.

Rabbit#show ip route
10.0.0.0 is variably subnetted, 5 subnets, 2 masks
C 10.1.10.0 255.255.255.0 is directly connected, Serial0
S 10.4.0.0 255.255.0.0 [1/0] via 10.1.10.1
S 10.1.5.0 255.255.255.0 [1/0] via 10.1.10.1
C 10.1.30.0 255.255.255.0 is directly connected, Ethernet0
C 10.1.20.0 255.255.255.0 is directly connected, Serial1
S 192.168.0.0 255.255.0.0 [1/0] via 10.1.10.1
Rabbit#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0, changed state to down
%LINK-3-UPDOWN: Interface Serial0, changed state to down
Rabbit#show ip route
10.0.0.0 is variably subnetted, 4 subnets, 2 masks
S 10.4.0.0 255.255.0.0 [50/0] via 10.1.20.0
S 10.1.5.0 255.255.255.0 [50/0] via 10.1.20.1
C 10.1.30.0 255.255.255.0 is directly connected, Ethernet0
C 10.1.20.0 255.255.255.0 is directly connected, Serial1



S 192.168.0.0 255.255.0.0 [50/0] via 10.1.20.1
Rabbit#
%LINK-3-UPDOWN: Interface Serial0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0, changed state to up
Rabbit#show ip route
10.0.0.0 is variably subnetted, 5 subnets, 2 masks
C 10.1.10.0 255.255.255.0 is directly connected, Serial0
S 10.4.0.0 255.255.0.0 [1/0] via 10.1.10.1
S 10.1.5.0 255.255.255.0 [1/0] via 10.1.10.1
C 10.1.30.0 255.255.255.0 is directly connected, Ethernet0
C 10.1.20.0 255.255.255.0 is directly connected, Serial1
S 192.168.0.0 255.255.0.0 [1/0] via 10.1.10.1
Rabbit#

Next, trap messages announce that the state of the primary link connected to Serial 0 has changed to "down,"
indicating a failure. A look at the second iteration of the route table shows that all nonconnected routes now
point to a next-hop address of 10.1.20.1. Because the more-preferred entry is no longer available, the router
has switched to the less-preferred backup link, with the administrative distance of 50 indicated in the brackets.
And because subnet 10.1.10.0 has failed, it no longer shows up in the route table as a directly connected
network.

Before the third iteration of the route table, trap messages indicate that the state of the primary link has
changed to "up." The route table then shows that subnet 10.1.10.0 is again in the table, and the router is again
using the next-hop address of 10.1.10.1.

Chapter 11 discusses the administrative distances associated with the various dynamic routing protocols, but it
can be said here that the administrative distances of all dynamic routing protocols are substantially higher than
1. Therefore, by default, a static route to a network will always be preferred over a dynamically discovered
route to the same network.

Case Study: IPv6 Floating Static Routes

IPv6 floating static route statements work the same way as IPv4. A second link has been added to the IPv6
network of Figure 3-3 between Honeypot and Honeybee, to route IPv6 traffic if the primary link fails (see
Figure 3-6).

Figure 3-6. Backup link added between two IPv6 routers can be used to recover from a primary link
failure with floating static routes.
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Example 3-25 shows Honeypot's configuration with new static route entries, which have an administrative
distance greater than 1. Similar static routes are entered on Honeybee, as shown in Example 3-26.

Example 3-25. Honeypot is configured with floating static routes to be used over the new redundant
parallel link to Honeybee.



ipv6 route FEC0::/62 FEC0::3:204:C1FF:FE50:F1C0
ipv6 route FEC0::/62 FEC0::2:204:C1FF:FE50:F1C0 50
ipv6 route FEC0:0:0:8::/62 FEC0::3:204:C1FF:FE50:F1C0
ipv6 route FEC0:0:0:8::/62 FEC0::2:204:C1FF:FE50:F1C0 50

Example 3-26. Honeybee is configured with floating static routes to be used over the new redundant
parallel link to Honeypot.

ipv6 route FEC0:0:0:5::/64 FEC0::3:230:94FF:FE24:B780
ipv6 route FEC0:0:0:5::/64 FEC0::2:230:94FF:FE24:B780 50
ipv6 route FEC0:0:0:A::/64 FEC0::1:2B0:64FF:FE30:1DE0

IPv6 traffic from Honeypot will continue to be forwarded out Serial0/0.2, unless this link goes down.

Example 3-27 shows Honeypot's route table with the routes known via the fec0::3:0:0:0:0/64 subnet installed.
Both routes have an administrative distance of 1. Then, interface S0/0.2 goes down. The backup routes, with
administrative distance of 50, get installed in the route table. After the interface S0/0.2 comes back up, the
routing process learns of better routes to the destinations and installs the routes with an administrative
distance of 1 back into the table.

Example 3-27. Static routes with high administrative distances are installed in the IPv6 route table
only when the lower administrative distance routes are deleted.

Honeypot#show ipv6 route static
S   FEC0::/62 [1/0]
     via FEC0::3:204:C1FF:FE50:F1C0
S   FEC0:0:0:8::/62 [1/0]
     via FEC0::3:204:C1FF:FE50:F1C0
Honeypot#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/2, changed state to down
%LINK-3-UPDOWN: Interface Serial0/2, changed state to down

Honeypot#show ipv6 route static
S   FEC0::/62 [50/0]
     via FEC0::2:204:C1FF:FE50:F1C0
S   FEC0:0:0:8::/62 [50/0]
     via FEC0::2:204:C1FF:FE50:F1C0
Honeypot#
%LINK-3-UPDOWN: Interface Serial0/2, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/2, changed state to up

The default administrative distance of IPv6 static routes, whether specified with an exit interface or a next-hop
address, is 1. When static routes to a destination are specified both ways, the routes are considered equal,
and load sharing (described in the next case study) occurs.

Case Study: Load Sharing

The problem with the configuration used in the previous section is that under normal circumstances the second
link is never utilized. The bandwidth available on the link is wasted. Load sharing  allows routers to take
advantage of multiple paths to the same destination by sending packets over all the available routes.

Load sharing can be equal cost or unequal cost, where cost is a generic term referring to whatever metric (if
any) is associated with the route:

Equal-cost load sharing distributes traffic equally among multiple paths with equal metrics. In this case,
load sharing can also be called load balancing.



Unequal-cost load sharing distributes packets among multiple paths with different metrics. The traffic is
distributed in inverse proportion to the cost of the routes. That is, paths with lower costs are assigned
more traffic, and paths with higher costs are assigned less traffic.

Some routing protocols support both equal-cost and unequal-cost load sharing, whereas others support only
equal cost. Static routes, which have no metric, support only equal-cost load sharing.

To configure the parallel links in Figure 3-5 for load sharing using static routes, Example 3-28 shows the route
entries for Piglet and Example 3-29 shows the route entries for Rabbit.

Example 3-28. Configuring parallel links for load sharing using static routes: route entries for Piglet.

ip route 192.168.1.0 255.255.255.0 192.168.1.193
ip route 10.4.0.0 255.255.0.0 192.168.1.193
ip route 10.1.30.0 255.255.255.0 10.1.10.2
ip route 10.1.30.0 255.255.255.0 10.1.20.2

Example 3-29. Configuring parallel links for load sharing using static routes: route entries for Rabbit.

ip route 10.4.0.0 255.255.0.0 10.1.10.1
ip route 10.4.0.0 255.255.0.0 10.1.20.1
ip route 10.1.5.0 255.255.255.0 10.1.10.1
ip route 10.1.5.0 255.255.255.0 10.1.20.1
ip route 192.168.0.0 255.255.0.0 10.1.10.1
ip route 192.168.0.0 255.255.0.0 10.1.20.1

These entries were also used in the previous section for floating static routes, except both links now use the
default administrative distance of 1. Rabbit's route table, shown in Example 3-30, now has two routes to each
destination.

Example 3-30. This route table indicates that there are two paths to the same destination networks.
The router will balance the load across these multiple paths.

Rabbit#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C      10.1.10.0/24 is directly connected, Serial0
S      10.1.5.0/24 [1/0] via 10.1.10.1
                   [1/0] via 10.1.20.1
S      10.4.0.0/16 [1/0] via 10.1.10.1
                   [1/0] via 10.1.20.1
C      10.1.20.0/24 is directly connected, Serial1
S      192.168.0.0/16 [1/0] via 10.1.10.1
                      [1/0] via 10.1.20.1
Rabbit#

IPv6 works the same way as IPv4. The static routes in Honeypot's route table, shown in Example 3-31, will
yield the route table shown in Example 3-32.

Example 3-31. Honeypot's IPv6 static routes are configured for load-balancing, with each destination



prefix using two different next-hop addresses.

ipv6 route FEC0::/62 FEC0::2:204:C1FF:FE50:F1C0
ipv6 route FEC0::/62 FEC0::3:204:C1FF:FE50:F1C0
ipv6 route FEC0:0:0:8::/62 FEC0::2:204:C1FF:FE50:F1C0
ipv6 route FEC0:0:0:8::/62 FEC0::3:204:C1FF:FE50:F1C0

Example 3-32. The router will load balance over these two IPv6 paths to the same destination
networks.

Honeypot#show ipv6 route static
S   FEC0::/62 [1/0]
     via FEC0::3:204:C1FF:FE50:F1C0
     via FEC0::2:204:C1FF:FE50:F1C0
S   FEC0:0:0:8::/62 [1/0]
     via FEC0::3:204:C1FF:FE50:F1C0
     via FEC0::2:204:C1FF:FE50:F1C0

Load sharing is also either per destination or per packet.

Load Sharing and Cisco Express Forwarding

Per destination load sharing distributes the load according to destination address. Given two paths to the same
network, all packets for one destination may travel over the first path, all packets for a second destination on
the same network may travel over the second path, all packets for a third destination may again be sent over
the first path, and so on. This is the default type of load sharing used by Cisco Express Forwarding (CEF). On
most platforms, CEF is the default switching mode for IPv4, but not IPv6.

CEF is a very efficient switching process. Its forwarding information is obtained and stored in tables before any
packet needs to use the information. CEF builds a forwarding information base (FIB) with information obtained
from the route table. All the destination networks entered in the route table are entered into the CEF FIB. If the
route table is stable and not changing, the FIB will not change. CEF uses a separate table, the adjacency
table, to maintain Layer 2 forwarding information for each entry in the FIB. The adjacency table is created as
Layer 2 information is learned, through IP ARP or IPv6 Neighbor Discovery, for instance. Both the FIB and
adjacency table are created before packets need to be forwarded. Not even the first packet to a destination is
process switched, as is the case with other switching schemes.

CEF performs per-destination load sharing by default. This is actually per source-destination pair load sharing.
All traffic that has a particular source address and is destined to a specific destination address will exit the
same interface. Traffic with a different source/destination address pair may exit the next interface.

Per packet load sharing is another method available to CEF switched IPv4 packets. IPv6 CEF only supports
per destination load sharing. Per packet load sharing means that one packet is sent over one link, the next
packet is sent over the next link, even if this next packet is to the same destination as the first, and so on,
given equal-cost paths. If the paths are unequal cost, the load sharing may be one packet over the higher-cost
link for every three packets over the lower-cost link, or some other proportion depending upon the ratio of
costs. Per packet load sharing may distribute the load more evenly than per destination load sharing,
depending upon the number of different source-destination pairs, but because the packets to a given
destination will be taking different paths, the packets are likely to arrive out of order, which is unacceptable for
some applications, such as Voice over IP.

To determine if CEF is enabled globally on a router, use the commands show ip cef and show ipv6 cef. If it
is not enabled by default, you can turn it on globally using the command ip cef for IPv4. To enable CEF for
IPv6, first enable CEF for IPv4, then use the command ipv6 cef.

Per packet load sharing is enabled for IPv4 using the interface command ip load-sharing per-packet. The
command ip load-sharing per-destination re-enables per destination load sharing. You can see which type



of load sharing is enabled using the show cef interface  command. This displays the CEF information that is
configured on the interface.

The router determines whether to use CEF switching based on the ingress interface and the type of source
and destination address. The ingress interface must be configured with CEF switching for the router to even
consider using CEF. If CEF is configured on the ingress interface, CEF will attempt to switch the packet. If for
some reason the packet cannot be CEF switched, CEF punts the packet down to the next-best and available
switching method. For IPv4, this would be fast switching , if it is enabled on the interface. For IPv6, this would
be process switching.

You can verify that CEF is enabled on an interface using the commands show cef interface  {interface} and
show ipv6 cef {interface} detail.

Per Destination Load Sharing and Fast Switching

IOS performs per destination load sharing on exit interfaces configured with fast switching. Fast switching is
the default IOS switching mode in some routers.

Fast switching works as follows:

1. When a router switches the first packet to a particular destination, a route table lookup is performed and
an exit interface is selected.

2. The necessary data-link information to frame the packet for the selected interface is then retrieved (from
the ARP cache, for instance), and the packet is encapsulated and transmitted.

3. The retrieved route and data-link information is then entered into a fast switching cache.

4. As subsequent packets to the same destination enter the router, the information in the fast cache allows
the router to immediately switch the packet without performing another route table and ARP cache lookup.

While switching time and processor utilization are decreased, fast switching means that all packets to a
specific destination, not source-destination pair, are routed out the same interface. When packets addressed to
a different host on the same network enter the router and an alternate route exists, the router may send all
packets for that destination on the alternate route. Therefore, the best the router can do is balance traffic on a
per destination basis.

Per Packet Load Sharing and Process Switching

Process switching simply means that for every packet, the router performs a route table lookup, selects an
interface, and then looks up the data link information. Because each routing decision is independent for each
packet, all packets to the same destination are not forced to use the same interface. To enable process
switching on an interface, use the command no ip route-cache for IPv4. You don't have to do anything to
enable process switching for IPv6. It is enabled by default.

In Example 3-33, host 192.168.1.15 has sent six pings to host 10.1.30.25. Using debug ip packet, the ICMP
echo request and echo reply packets are observed at Piglet. Looking at the exit interfaces and the forwarding
addresses, it can be observed that both Piglet and Rabbit are using S0 and S1 alternately. Note that the
command debug ip packet allows only process switched packets to be observed. Fast switched packets are
not displayed.

Note

The debug ip packet command displays only process switched packets.

Example 3-33. This router is alternating between S0 and S1 to send packets to the same destination.
Notice that the router on the other end of the two links is doing the same thing with the reply
packets.



Piglet#debug ip packet
IP packet debugging is on
Piglet#
IP: s=192.168.1.15 (Ethernet0), d=10.1.30.25 (Serial0), g=10.1.10.2, forward
IP: s=10.1.30.25 (Serial0), d=192.168.1.15 (Ethernet0), g=192.168.1.193, forward
IP: s=192.168.1.15 (Ethernet0), d=10.1.30.25 (Serial1), g=10.1.20.2, forward
IP: s=10.1.30.25 (Serial1), d=192.168.1.15 (Ethernet0), g=192.168.1.193, forward
IP: s=192.168.1.15 (Ethernet0), d=10.1.30.25 (Serial0), g=10.1.10.2, forward
IP: s=10.1.30.25 (Serial0), d=192.168.1.15 (Ethernet0), g=192.168.1.193, forward
IP: s=192.168.1.15 (Ethernet0), d=10.1.30.25 (Serial1), g=10.1.20.2, forward
IP: s=10.1.30.25 (Serial1), d=192.168.1.15 (Ethernet0), g=192.168.1.193, forward
IP: s=192.168.1.15 (Ethernet0), d=10.1.30.25 (Serial0), g=10.1.10.2, forward
IP: s=10.1.30.25 (Serial0), d=192.168.1.15 (Ethernet0), g=192.168.1.193, forward
IP: s=192.168.1.15 (Ethernet0), d=10.1.30.25 (Serial1), g=10.1.20.2, forward
IP: s=10.1.30.25 (Serial1), d=192.168.1.15 (Ethernet0), g=192.168.1.193, forward
Piglet#

Like many design choices, per packet load balancing has a price. The traffic may be distributed more evenly
among the various links than with per destination load balancing, but the lower switching time and processor
utilization of fast switching are lost.

Which Switching Method Will Be Used?

IOS makes switching decisions based on the configuration of the inbound interface first. If CEF is configured
on an inbound interface, the packet will be CEF switched regardless of the configuration on the outbound
interface.

If CEF is not enabled on the inbound interface, then IOS processes and forwards the packet, and based on the
configuration of the outbound interface, subsequent packets will be fast-switched or process switched. Table
3-1 shows which switching method will be used based on configuration of inbound and outbound interfaces.

Table 3-1. IOS switching determination is based on
configuration of inbound and outbound interfaces.

Inbound
Configuration

Outbound
Configuration

Switching Method
Used

CEF Process CEF
CEF Fast CEF
Process CEF Fast (or process if

IPv6)
Process Fast Fast
Fast CEF Fast (or process if

IPv6)
Fast Process Process

IOS will switch a packet using CEF only if CEF is enabled on the inbound interface. If CEF is not configured on
the inbound interface, the configuration of the exit interface determines the switching method. Notice that when
process or fast-switching is configured inbound and CEF is configured on the outbound interface, fast-
switching is used. CEF is only used if it is configured on the ingress interface. For IPv4, fast-switching is
enabled outbound, even if CEF is enabled on the interface.

There are times when a packet will not be switched using CEF even if it is enabled (for example, if access-list
logging is enabled and a packet will be logged). Packets will be punted down to the next fastest switching
method. For IPv4, the next fastest switching method is fast-switching. For IPv6, this is process switching.

Case Study: Recursive Table Lookups



All route entries do not necessarily need to point to the next-hop router. Figure 3-7 shows a simplified version
of the network of Figure 3-5. In this network, Pooh is configured as displayed in Example 3-34.

Figure 3-7. To reach network 10.1.30.0, Pooh must perform three route table lookups.

[View full size image]

Example 3-34. Pooh's static route entries use various addresses as the next-hop parameter. The
addresses are not necessarily the actual next-hop router interface.

ip route 10.1.30.0 255.255.255.0 10.1.10.2
ip route 10.1.10.0 255.255.255.0 192.168.1.194
ip route 192.168.1.192 255.255.255.224 192.168.1.66

If Pooh needs to send a packet to host 10.1.30.25, it will look into its route table and find that the subnet is
reachable via 10.1.10.2. Because that address is not on a directly connected network, Pooh must again
consult the table to find that network 10.1.10.0 is reachable via 192.168.1.194. That subnet is also not directly
connected, so a third table lookup is called for. Pooh will find that 192.168.1.192 is reachable via 192.168.1.66,
which is on a directly connected subnet. The packet can now be forwarded.

Because each table lookup costs processor time, under normal circumstances forcing a router to perform
multiple lookups is a poor design decision. Fast switching significantly reduces these adverse effects by
limiting the recursive lookups to the first packet to each destination, but a justification should still be identified
before using such a design.

Figure 3-8 shows an example of an instance in which recursive lookups might be useful. Here, Sanderz
reaches all networks via Heffalump. However, the network administrator plans to eliminate Heffalump and
repoint all of Sanderz's routes through Woozle. The first 12 entries point not to Heffalump, but to the
appropriate router attached to the 10.87.14.0 subnet. The last entry specifies that the 10.87.14.0 subnet is
reached via Heffalump.

Figure 3-8. Configuring Sanderz for recursive lookups enables the network administrator to redirect
all of that router's exit traffic from Heffalump to Woozle by changing one route entry.

[View full size image]



With this configuration, all of Sanderz's entries can be repointed through Woozle simply by changing the last
static entry as in Example 3-35.

Example 3-35. Sanderz's routing can easily be modified to forward all routes through a different next-
hop router simply by changing one static route entry.

Sanderz(config)# ip route 10.87.14.0 255.255.255.0 10.23.5.95
Sanderz(config)# no ip route 10.87.14.0 255.255.255.0 10.23.5.20

Had all the static routes referenced 10.23.5.20 as the next-hop address, it would have been necessary to
delete all 13 lines and type 13 new lines. Nevertheless, the effort saved in retyping static routes must be
weighed carefully against the extra processing burden that recursive lookups put on the router.



Troubleshooting Static Routes

Followers of the assorted American political scandals of the past 30 or so years will have heard a congressional
investigator ask the question, "What did he know and when did he know it?" The same question serves a
networking investigator well. When troubleshooting routing problems, the first step should almost always be to
examine the route table. What does the router know? How long has the information been in the route table? Does
the router know how to reach the destination in question? Is the information in the route table accurate? Knowing
how to trace a route is essential to successfully troubleshooting a network.

Case Study: Tracing a Failed Route

Figure 3-9 shows a previously configured network, with each router's associated static routes. A problem has been
discovered. Devices on subnet 192.168.1.0/27, connected to Pooh's Ethernet interface, can communicate with
devices on subnet 10.1.0.0/16 just fine. However, when a ping is sent from Pooh itself to subnet 10.1.0.0/16, the
ping fails (see Example 3-36). This seems strange. If packets being routed by Pooh successfully reach their
destinations, why do packets originated by the same router fail?

Figure 3-9. Packets from subnet 192.168.1.0/27 to subnet 10.1.0.0/16 are routed correctly, but Pooh itself
cannot ping any device on 10.1.0.0/16.

[View full size image]

Example 3-36. A device on subnet 192.168.1.0/27 successfully pings Piglet's Ethernet interface, but pings
from Pooh fail.

C:\WINDOWS>ping 10.1.5.1
Pinging 10.1.5.1 with 32 bytes of data:
Reply from 10.1.5.1: bytes=32 time=22ms TTL=253
Reply from 10.1.5.1: bytes=32 time=22ms TTL=253
Reply from 10.1.5.1: bytes=32 time=22ms TTL=253
Reply from 10.1.5.1: bytes=32 time=22ms TTL=253

Pooh#ping 10.1.5.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echoechoes to 10.1.5.1, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Pooh#

Addressing this problem requires tracing the route of the ping. First, Pooh's route table is examined (Example 3-
37). The destination address of 10.1.5.1 matches the route entry for 10.0.0.0/8, which (according to the table) is
reached via the next-hop address 192.168.1.34one of Eeyore's interfaces.

Example 3-37. A packet with a destination address of 10.1.5.1 matches the route entry for 10.0.0.0/8 and



will be forwarded to the next-hop router at 192.168.1.34.

Pooh#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
     10.0.0.0 is variably subnetted, 2 subnets, 2 masks
S      10.0.0.0 255.0.0.0 [1/0] via 192.168.1.34
S      10.4.7.25 255.255.255.255 [1/0] via 192.168.1.66
     192.168.1.0 255.255.255.224 is subnetted, 4 subnets
C      192.168.1.64 is directly connected, Serial0
C      192.168.1.32 is directly connected, Serial1
C      192.168.1.0 is directly connected, Ethernet0
S      192.168.1.192 [1/0] via 192.168.1.66
Pooh#

Next the route table for Eeyore must be examined (Example 3-38). The destination address 10.1.5.1 matches the
entry 10.1.0.0/16, with a next-hop address of 10.4.6.1. This address is one of Tigger's interfaces.

Example 3-38. 10.1.5.1 matches the entry for 10.1.0.0/16 and will be forwarded to 10.4.6.1.

Eeyore#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
      10.0.0.0 is variably subnetted, 3 subnets, 2 masks
C       10.4.6.0 255.255.255.0 is directly connected, Serial1
C       10.4.7.0 255.255.255.0 is directly connected, Ethernet0
S       10.1.0.0 255.255.0.0 [1/0] via 10.4.6.1
      192.168.1.0 255.255.255.224 is subnetted, 1 subnets
C       192.168.1.32 is directly connected, Serial0
S       192.0.0.0 255.0.0.0 [1/0] via 10.4.6.1
Eeyore#

Example 3-39 shows Tigger's route table. The destination address matches the entry for 10.1.0.0/16 and will be
forwarded to 192.168.1.194, which is at Piglet.

Example 3-39. 10.1.5.1 matches the entry for 10.1.0.0/16 and will be forwarded to 192.168.1.194.

Tigger#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
     10.0.0.0 is variably subnetted, 3 subnets, 2 masks
C      10.4.6.0 255.255.255.0 is directly connected, Serial1
S      10.4.7.0 255.255.255.0 [1/0] via 10.4.6.2
S      10.1.0.0 255.255.0.0 [1/0] via 192.168.1.194
     192.168.1.0 255.255.255.224 is subnetted, 3 subnets
C      192.168.1.64 is directly connected, Serial0
S      192.168.1.0 [1/0] via 192.168.1.65
C      192.168.1.192 is directly connected, Ethernet0
Tigger#

Piglet's route table (Example 3-40) reveals that the target network, 10.1.0.0, is directly connected. In other words,



the packet has arrived. The target address 10.1.5.1 is Piglet's own interface to that network. Because the path to
the address has just been verified as good, we can assume that the ICMP echo packets from Pooh are reaching
the destination.

Example 3-40. The destination network, 10.1.0.0, is directly connected to Piglet.

Piglet#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
     10.0.0.0 255.255.0.0 is subnetted, 2 subnets
C      10.1.0.0 is directly connected, Ethernet1
S      10.4.0.0 [1/0] via 192.168.1.193
     192.168.1.0 is variably subnetted, 2 subnets, 2 masks
S      192.168.1.0 255.255.255.0 [1/0] via 192.168.1.193
C      192.168.1.192 255.255.255.224 is directly connected, Ethernet0
Piglet#

The next step is to trace the path of the responding ICMP echo reply packets. To trace this path, you need to know
the source address of the echo packet. That address will be the destination address of the echo reply packet. The
source address of a packet that is originated from a router is the address of the interface from which the packet
was transmitted.[7] In this example, Pooh originally forwarded the echo packet to 192.168.1.34. Figure 3-9 shows
that the source address of that packet is 192.168.1.33. So this address is the destination address to which Piglet
will send the echo reply.

[7] Unless the Extended Ping utility is used to set the source address to something different.

Referring again to Piglet's route table in Example 3-34, 192.168.1.33 will match the entry for 192.168.1.0/24 and be
forwarded to 192.168.1.193, which is another of Tigger's interfaces. A re-examination of Tigger's route table in
Example 3-39 at first suggests that there is an entry for 192.168.1.0. But take care to interpret correctly the
information that is actually there.

Compare the entries in Tigger's route table for the 10.0.0.0 subnets to those of the 192.168.1.0 subnets. The
heading for the former says that 10.0.0.0 is variably subnetted; in other words, Tigger's static route to subnet
10.4.7.0 uses a 24-bit mask, and the static route to subnet 10.1.0.0 uses a 16-bit mask. The table records the
correct mask at each subnet.

The heading for 192.168.1.0 is different. This heading states that Tigger knows of three subnets of 192.168.1.0
and that they all have a mask of 255.255.255.224. This mask will be used on the destination address of
192.168.1.33 to derive a destination network of 192.168.1.32/27. The route table has entries for 192.168.1.64/27,
192.168.1.0/27, and 192.168.1.192/27. There is no entry for 192.168.1.32/27, so the router does not know how to
reach this subnet.

The problem, then, is that the ICMP echo reply packet is being dropped at Tigger. One solution is to create another
static route entry for network 192.168.1.32, with a mask of 255.255.255.224 and pointing to a next hop of either
192.168.1.65 or 10.4.6.2. Another solution would be to change the mask in the existing static route entry for
192.168.1.0 from 255.255.255.224 to 255.255.255.0.

The moral of this story is that when you are tracing a route, you must consider the complete communication
process.

Note

Check both the destination and return path when a route fails.

Verify not only that the path to a destination is good but also that the return path is good.

Case Study: A Protocol Conflict



Figure 3-10 shows two routers connected by two Ethernet networks, one of which includes a simple bridge. This
bridge handles traffic for several other links not shown and occasionally becomes congested. The host Milne is a
mission-critical server; the network administrator is worried about traffic to Milne being delayed by the bridge, so a
static host route has been added in Roo that will direct packets destined for Milne across the top Ethernet,
avoiding the bridge.

Figure 3-10. A host route directs packets from Roo to Milne across the top Ethernet, avoiding the
occasionally congested bridge.

This solution seems to be logical, but it isn't working. After the static route was added, packets routed through Roo
no longer reach the server. Not only that, but packets routed through Kanga no longer reach the server, although
no changes were made to that router.

The first step, as always, is to check the route table. Roo's route table (Example 3-41) indicates that packets with a
destination address of 172.16.20.75 will, in fact, be forwarded to Kanga's E1 interface, as desired. Kanga is
directly connected to the destination network, so no more routing should be occurring; a quick check verifies that
the Ethernet interfaces are functioning at both Kanga and at Milne.

Example 3-41. Roo's route table, showing the static host route to Milne via Kanga's E1 interface.

Roo#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route
Gateway of last resort is not set
     172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
C       172.16.20.0/24 is directly connected, Ethernet0
C       172.16.21.0/24 is directly connected, Ethernet1
S       172.16.20.75/32 [1/0] via 172.16.21.2
Roo#

In Example 3-42, a trace is performed from Roo to Milne, and a symptom is found. Instead of delivering the packets
to Milne, Kanga is forwarding them to Roo's E0 interface. Roo forwards the packets to Kanga's E1 interface, and
Kanga sends the packets right back to Roo. A routing loop seems to have occurred, but why?

Example 3-42. A trace from Roo to Milne reveals that Kanga is forwarding the packets back to Roo
instead of delivering them to the correct destination.

Roo#trace 172.16.20.75
Type escape sequence to abort.



Tracing the route to 172.16.20.75
1 172.16.21.2 0 msec 0 msec 0 msec
2 172.16.20.1 4 msec 0 msec 0 msec
3 172.16.21.2 4 msec 0 msec 0 msec
4 172.16.20.1 0 msec 0 msec 4 msec
5 172.16.21.2 0 msec 0 msec 4 msec
6 172.16.20.1 0 msec 0 msec 4 msec
7 172.16.21.2 0 msec 0 msec 4 msec
8 172.16.20.1 0 msec 0 msec 4 msec
9 172.16.21.2 4 msec 0 msec 4 msec
10 172.16.20.1 4 msec 0 msec 4 msec
11 172.16.21.2 4 msec
Roo#

The suspicious aspect of all of this is that Kanga should not be routing the packet, which appears to be the case.

Kanga should recognize that the destination address of the packet is for its directly connected network 172.16.20.0
and should be using the data link to deliver the packet to the host. Therefore, suspicion should fall on the data link.
Just as the route table should be examined to see whether the router has the correct information for reaching a
network across a logical path, the ARP cache should be examined to see whether the router has the correct
information for reaching a host across a physical path.

Example 3-43 shows the ARP cache for Kanga. The IP address for Milne is in Kanga's cache as expected, with a
MAC identifier of 00e0.1e58.dc39. When Milne's interface is checked, though, it shows that it has a MAC identifier
of 0002.6779.0f4c; Kanga has somehow acquired incorrect information.

Example 3-43. Kanga's ARP cache has an entry for Milne, but the associated data-link identifier is wrong.

Kanga#show arp
Protocol Address     Age (min)  Hardware Addr   Type  Interface
Internet 172.16.21.1         2  00e0.1e58.dc3c  ARPA  Ethernet1
Internet 172.16.20.2         -  00e0.1e58.dcb1  ARPA  Ethernet0
Internet 172.16.21.2         -  00e0.1e58.dcb4  ARPA  Ethernet1
Internet 172.16.20.75        2  00e0.1e58.dc39  ARPA  Ethernet0
Kanga#

Another look at Kanga's ARP table reveals that the MAC identifier associated with Milne is suspiciously similar to
the MAC identifier of Kanga's own Cisco interfaces. (The MAC addresses with no ages associated with them are
for the router's interfaces.) Because Milne is not a Cisco product, the first three octets of its MAC identifier should
be different from the first three octets of Kanga's MAC identifier. The only other Cisco product in the network is
Roo, so its ARP cache is examined (Example 3-44); 00e0.1e58.dc39 is the MAC identifier of Roo's E0 interface.

Example 3-44. Roo's ARP cache shows that the MAC identifier that Kanga has for Milne is actually Roo's
E0 interface.

Roo#show arp
Protocol Address     Age (min)  Hardware Addr    Type   Interface
Internet 172.16.21.1        -   00e0.1e58.dc3c   ARPA   Ethernet0
Internet 172.16.20.1        -   00e0.1e58.dc39   ARPA   Ethernet0
Internet 172.16.20.2        7   00e0.1e58.dcb1   ARPA   Ethernet0
Internet 172.16.21.2        7   00e0.1e58.dcb4   ARPA   Ethernet1
Roo#

So Kanga mistakenly believes that the E0 interface of Roo is Milne. It frames packets destined for Milne with a
destination identifier of 00e0.1e58.dc39; Roo accepts the frame, reads the destination address of the enclosed
packet, and routes the packet back to Kanga.

But how did Kanga get the wrong information? The answer is proxy ARP. When Kanga first receives a packet for
Milne, it will use ARP to determine that device's data-link identifier. Milne responds, but Roo also hears the ARP



request on its E0 interface. Because Roo has a route to Milne on a different network from the one on which it
received the ARP Request, it issues a proxy ARP in reply. Kanga receives Milne's ARP reply and enters it into the
ARP cache. The proxy ARP reply from Roo arrives later because of the delay of the bridge. The original ARP
cache entry is overwritten by what Kanga thinks is new information.

There are two solutions to the problem. The first is to turn off proxy ARP at Roo's E0 with the following command
sequence:

Roo(config)#interface e0
Roo(config-if)#no ip proxy-arp

The second solution is to configure a static ARP entry for Milne at Kanga with the following command:

Kanga(config)#arp 172.16.20.75 0002.6779.0f4c arpa

This entry will not be overwritten by any ARP reply. Example 3-45 shows the static ARP entry being entered and
the resulting ARP cache at Kanga. Note that because the entry is static, no age is associated with it.

Example 3-45. A static ARP entry on Kanga corrects the problem caused by proxy ARP.

Kanga(config)#arp 172.16.20.75 0002.6779.0f4c arpa
Kanga(config)#^Z
Kanga#
%SYS-5-CONFIG_I: Configured from console by console
Kanga#show arp
Protocol Address     Age (min)   Hardware Addr    Type   Interface
Internet 172.16.21.1        10   00e0.1e58.dc3c   ARPA   Ethernet1
Internet 172.16.20.2         -   00e0.1e58.dcb1   ARPA   Ethernet0
Internet 172.16.21.2         -   00e0.1e58.dcb4   ARPA   Ethernet1
Internet 172.16.20.75        -   0002.6779.0f4c   ARPA
Kanga#

The circumstances of the network should help determine which of the two solutions is best. A static ARP entry
means that if the network interface at Milne is ever replaced, someone must remember to change the ARP entry to
reflect the new MAC identifier. On the other hand, turning off proxy ARP is a good solution only if no hosts make
use of it.

Case Study: A Replaced Router

Figure 3-11 shows two routers, Honeypot and Honeybee, connected via a Frame Relay link. The routers are
configured for both IPv4 and IPv6, and use static routes to create the route tables.

Figure 3-11. A simple network with both IPv4 and IPv6.

Example 3-46 shows the route configurations for Honeypot and Example 3-47 shows the route configurations for
Honeybee.



Example 3-46. Route configurations for Honeypot.

ip route 10.4.0.0 255.255.0.0 192.168.1.193
ip route 192.168.1.0 255.255.255.0 192.168.1.193
ipv6 route FEC0::/62 Serial 0/0.2
ipv6 route FEC0:0:0:8::/62 FEC0::3:204:C1FF:FE50:F1C0

Example 3-47. Route configurations for Honeybee.

ip route 10.1.0.0 255.255.0.0 192.168.1.194
ipv6 route FEC0:0:0:5::/64 Serial 0/0.1

Example 3-48 shows pings and traces between the two routers are working fine. Both IPv4 and IPv6 traffic is
working fine between the two sites.

Example 3-48. Pings and traces show two routers can successfully communicate with each other.

Honeypot#ping
Protocol [ip]:
Target IP address: 10.4.8.1
Extended commands [n]: y
Source address or interface: 10.1.5.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.4.8.1, timeout is 2 seconds:
Packet sent with a source address of 10.1.5.1
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 32/32/33 ms

Honeypot#ping fec0:0:0:8:204:c1ff:fe50:f1c0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to FEC0::8:204:C1FF:FE50:F1C0, timeout is 2 secon
ds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 32/32/33 ms

Honeypot#trace
Protocol [ip]: ipv6
Target IPv6 address: fec0:0:0:8:204:c1ff:fe50:f1c0
Source address: fec0:0:0:5:230:94ff:fe24:b780
Type escape sequence to abort.
Tracing the route to FEC0::8:204:C1FF:FE50:F1C0
  1 FEC0::3:204:C1FF:FE50:F1C0 24 msec 24 msec 24 msec

Honeypot#trace
Protocol [ip]: ipv6
Target IPv6 address: fec0::a:0:0:0:1
Source address: fec0::5:230:94ff:fe24:b780
Type escape sequence to abort.
Tracing the route to FEC0:0:0:A::1
 1 FEC0::3:204:C1FF:FE50:F1C0 24 msec 24 msec 24 msec

Honeypot can reach Honeybee's Ethernet address from its own Ethernet address, for both IPv4 and IPv6. Another
address, FEC0:0:0:A::1, is also reachable from Honeypot, via Honeybee.

Honeybee, however, is due to be replaced with a new router. The router is replaced, Honeybee's configuration is
loaded into the new router, and all the interfaces are up. Testing shows that IPv4 traffic is working between the two
sites, but IPv6 traffic to some addresses fails (see Example 3-49).

Example 3-49. After a router replacement, IPv4 works fine, while IPv6 fails.



Honeypot#ping
Protocol [ip]:
Target IP address: 10.4.8.1
Extended commands [n]: y
Source address or interface: 10.1.5.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.4.8.1, timeout is 2 seconds:
Packet sent with a source address of 10.1.5.1
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/30/32 ms

Honeypot#ping fec0:0:0:8:204:c1ff:fe50:f1c0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to FEC0::8:204:C1FF:FE50:F1C0, timeout is 2 seconds:
...H.
Success rate is 0 percent (0/5)

Honeypot#trace
Protocol [ip]: ipv6
Target IPv6 address: fec0::8:204:c1ff:fe50:f1c0
Source address: fec0::5:230:94ff:fe24:b780
Type escape sequence to abort.
Tracing the route to FEC0::8:204:C1FF:FE50:F1C0
  1 FEC0::3:2B0:64FF:FE30:1DE0 24 msec 24 msec 24 msec
  2  *  !H  *

Honeypot#trace
Protocol [ip]: ipv6
Target IPv6 address: fec0::a:0:0:0:1
Source address: fec0::5:230:94ff:fe24:b780
Type escape sequence to abort.
Tracing the route to FEC0:0:0:A::1
 1 FEC0::3:2B0:64FF:FE30:1DE0 24 msec 20 msec 20 msec

Pings and traces to the IPv6 address FEC0::8:204:c1FF:FE50:F1C0, Honeybee's Ethernet IPv6 address, fail. A
trace to FEC0::A:0:0:0:1 is still successful.

Take a look at Honeypot's route tables in Example 3-50. Honeypot's IPv6 route table shows a static route entry for
FEC0:0:0:8::/62 via the next-hop address FEC0::3:204:C1FF:FE50:F1C0.

Example 3-50. The IPv6 route table has not changed. Static route are installed.

Honeypot#show ipv6 route
IPv6 Routing Table - 8 entries
L   FE80::/10 [0/0]
     via ::, Null0
S   FEC0::/62 [1/0]
     via ::, Serial0/0.2
C   FEC0:0:0:3::/64 [0/0]
     via ::, Serial0/0.2
L   FEC0::3:230:94FF:FE24:B780/128 [0/0]
     via ::, Serial0/0.2
C   FEC0:0:0:5::/64 [0/0]
     via ::, Ethernet0/0
L   FEC0::5:230:94FF:FE24:B780/128 [0/0]
     via ::, Ethernet0/0
S   FEC0:0:0:8::/62 [1/0]
     via FEC0::3:204:C1FF:FE50:F1C0

FEC0:0:0:8::/62 is known via FEC0::3:204:C1FF:FE50:F1C0, and FEC0:0:0:3::/64 is connected to Serial0/0.2.
Traffic for both FEC0:0:0:8::/64 and FEC0:0:0:A::/64 are forwarded out Serial 0/0.2 to Honeybee.



These route entries are exactly the same as they were before the router Honeybee was replaced. So what's the
problem? Maybe Honeybee's Ethernet didn't come up after the router was replaced. Example 3-51 displays the
state of Honeybee's Ethernet interface.

Example 3-51. show ipv6 interface ethernet 0/0  displays the status of the interface and some information
about the IPv6 configuration.

Honeybee#show ipv6 interface e 0/0
Ethernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::2B0:64FF:FE30:1DE0
  Global unicast address(es):
    FEC0::8:2B0:64FF:FE30:1DE0, subnet is FEC0:0:0:8::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF30:1DE0

The interface is up and IPv6 is configured on it. According to the documentation and diagrams for the network, this
is the interface to which a ping was successful before the router replacement, and now fails.

Look closer at the Ethernet output. The last 64 bits of the Global Unicast Address have changed. The address is
now FEC0::8:2B0:64FF:FE30:1DE0. The IPv6 address is an EUI-64 address; therefore, the last 64 bits of the
address are determined by the MAC address on the interface. When the router was replaced, the MAC address
changed. FEC0::8:204:C1FF:FE50:F1C0 no longer exists on the router. This is why the address is no longer
pingable.

But, Honeypot's static route points to the next-hop address FEC0::3:204:c1FF:FE50:F1C0 for the destination
FEC0:0:0:8::/62, according to the route table (Example 3-50), and if the MAC addresses have changed, this
address is no longer the serial interface's address. Example 3-52 displays Honeybee's new serial interface
address.

Example 3-52. All IPv6 serial interfaces on a router configured with EUI-64 addresses will have the same
final 64 bits, which are derived from a MAC address on the router.

Honeybee#show ipv6 interface serial0/0.1
Serial0/0.1 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::2B0:64FF:FE30:1DE0
  Description: Link to Piglet
  Global unicast address(es):
    FEC0::3:2B0:64FF:FE30:1DE0, subnet is FEC0:0:0:3::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF30:1DE0

Honeypot's IPv6 static route for addresses in the range FEC0:0:0:8::/62 directs traffic to the next-hop address
FEC0::3:204:C1FF:FE50:F1C0. The configured next-hop address is the MAC address of the old router, yet traffic
using this route (traffic destined to FEC0:0:0:A::1) is still routed successfully.

Even though a next-hop address is specified, and the next-hop address is not valid anymore, the old address and
the new address of Honeybee's serial interface belong to the same subnet (FEC0:0:0:3::/64), and as seen in
Honeypot's route table, this subnet is connected to Honeypot's interface Serial 0/0.2. Through recursive forwarding
table lookups, the traffic destined for FEC0:0:0:A::1 is forwarded out Serial 0/0.2, even though the specified next-
hop address does not exist.

Whenever a router or interface card is replaced, remember to modify any static route entries that reference an EUI-
64 IPv6 address on the old router.

Case Study: Tracing An IPv6 Failed Route

A link is added to the network in Figure 3-3 between Honeypot and Honeytree to have an alternative route in case



A link is added to the network in Figure 3-3 between Honeypot and Honeytree to have an alternative route in case
the primary route becomes unavailable. Figure 3-12 shows the new network. The IPv6 applications using the
network are not sensitive to delay, but they are bandwidth-intensive, so the network administrator decides to use
the new link also for load sharing. Static routes are entered in each router to take advantage of the new link.

Figure 3-12. Alternative route added to the IPv6 network creates a triangle, with alternate paths to reach
each router.

[View full size image]

As Example 3-53 shows, routes are added into Honeypot to create a second route for each of the router's existing
routes. Similar routes are entered for Honeytree and Honeybee in Example 3-54 and Example 3-55.

Example 3-53. Honeypot's router configurations for the new network in Figure 3-12.

ipv6 route FEC0::/62 FEC0::2:2B0:64FF:FE30:1DE0
ipv6 route FEC0::/62 FEC0::3:204:C1FF:FE50:F1C0
ipv6 route FEC0:0:0:8::/62 FEC0::2:2B0:64FF:FE30:1DE0
ipv6 route FEC0:0:0:8::/62 FEC0::3:204:C1FF:FE50:F1C0

Example 3-54. Honeytree's router configurations for the new network in Figure 3-12.

ipv6 route FEC0:0:0:3::/64 FEC0::2:230:94FF:FE24:B780
ipv6 route FEC0:0:0:3::/64 FEC0::1:204:C1FF:FE50:F1C0
ipv6 route FEC0:0:0:5::/64 FEC0::2:230:94FF:FE24:B780
ipv6 route FEC0:0:0:5::/64 FEC0::1:204:C1FF:FE50:F1C0
ipv6 route FEC0:0:0:8::/64 FEC0::1:204:C1FF:FE50:F1C0
ipv6 route FEC0:0:0:8::/64 FEC0::2:230:94FF:FE24:B780

Example 3-55. Honeybee's router configurations for the new network in Figure 3-12.

ipv6 route FEC0:0:0:2::/64 FEC0::1:2B0:64FF:FE30:1DE0
ipv6 route FEC0:0:0:2::/64 FEC0::3:230:94FF:FE24:B780
ipv6 route FEC0:0:0:5::/64 FEC0::1:2B0:64FF:FE30:1DE0
ipv6 route FEC0:0:0:5::/64 FEC0::3:230:94FF:FE24:B780
ipv6 route FEC0:0:0:B::/64 FEC0::3:230:94FF:FE24:B780
ipv6 route FEC0:0:0:B::/64 FEC0::1:2B0:64FF:FE30:1DE0

IPv6 routing is now intermittently failing. Sometimes pings work, sometimes not. A look at the route tables shows all
static routes in place as designed. Pings from Honeypot to Honeybee's Ethernet interface address result in
success sometimes, and host unreachable at other times (see Example 3-56).

Example 3-56. IPv6 pings are sometimes successful.



Honeypot#ping fec0::8:204:c1ff:fe50:f1c0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to FEC0::8:204:C1FF:FE50:F1C0, timeout is 2 secon
ds:
!!HHH
Success rate is 40 percent (2/5), round-trip min/avg/max = 60/90/120 ms
Honeypot#

Debugging IPv6 ICMP packets on Honeypot (see Example 3-57) reveal some reply packets received successfully,
and some ICMP destination unreachable messages coming from Honeytree.

Example 3-57. Debugging on Honeypot shows some successful packets; others fail.

ICMPv6: Sending echo request to FEC0::8:204:C1FF:FE50:F1C0
ICMPv6: Received ICMPv6 packet from FEC0::8:204:C1FF:FE50:F1C0, type 129
ICMPv6: Received echo reply from FEC0::8:204:C1FF:FE50:F1C0
ICMPv6: Sending echo request to FEC0::8:204:C1FF:FE50:F1C0
ICMPv6: Received ICMPv6 packet from FEC0::2:2B0:64FF:FE30:1DE0, type 1
ICMPv6: Received ICMP unreachable code 3 from FEC0::2:2B0:64FF:FE30:1DE0

Debugging ICMPv6 on Honeytree (see Example 3-58) shows that IPv6 packets are coming in S0/0.3 and S0/0.2.

Example 3-58. Debugging shows packets arriving on two different interfaces.

Honeytree#
 IPV6: source FEC0::2:230:94FF:FE24:B780 (Serial0/0.3)
       dest FEC0::8:204:C1FF:FE50:F1C0 (Serial0/0.2)
       traffic class 0, flow 0x0, len 100+4, prot 58, hops 63, forwarding
 IPV6: source FEC0::8:204:C1FF:FE50:F1C0 (Serial0/0.2)
       dest FEC0::2:230:94FF:FE24:B780 (Serial0/0.3)
       traffic class 0, flow 0x0, len 100+4, prot 58, hops 63, forwarding
 IPV6: source FEC0::2:230:94FF:FE24:B780 (Serial0/0.3)
       dest FEC0::8:204:C1FF:FE50:F1C0 (Serial0/0.3)
       traffic class 0, flow 0x0, len 100+4, prot 58, hops 63, destination is not
connected
 IPv6: SAS picked source FEC0::2:2B0:64FF:FE30:1DE0 for FEC0::2:230:94FF:FE24:B780
(Serial0/0.3)
 ICMPv6: Sending ICMP unreachable code 3 to FEC0::2:230:94FF:FE24:B780 about
FEC0::8:204:C1FF:FE50:F1C0

Packets with a source address fec0::2:230:94ff:fe24:b780 are arriving at Honeytree, interface S0/0.3 (from
Honeypot over the link connecting Honeypot to Honeytree). The exit interface, for destination
fec0::8:204:c1ff:fe50:f1c0, is either S0/0.2 or S0/0.3. Honeytree is performing per-packet load-sharing, alternating
forwarding packets between S0/0.2 and S0/0.3. When the outgoing interface to the destination is S0/0.2 and the
incoming interface is S0/0.3, the packet is forwarded. When IOS forwards the packet to S0/0.3, the same interface
on which the packet arrived, pings fail, the router generates an ICMP error message.

A packet destined out the same serial interface on which it arrived indicates a routing loop. Since the routers are
process switching and thus per packet load sharing, each router alternates forwarding packets using each of its
two route entries. Some packets will thus arrive on the same interface to which the packet is destined.



Looking Ahead

For precise control over routing behavior in a network, static routing is a powerful tool. However, if
topology changes are prevalent, the demands of manual reconfiguration may make static routing
administratively unfeasible. Dynamic routing protocols enable a network to respond quickly and
automatically to topology changes. Before examining the details of specific IP routing protocols, the
general issues surrounding all dynamic protocols must be examined. The next chapter introduces
dynamic routing protocols.



Summary Table: Chapter 3 Command Review

Command Description
arp ip-address
hardware-
address

Statically maps an IP type [alias] address
to a hardware address.

debug ip packet Displays information on IP packets
received, generated, and forwarded.
Information on fast-switched packets will
not be displayed.

debug ipv6
packet

Displays information on IPv6 packets
received, generated, and forwarded.

ip cef Enables Cisco Express Forwarding for
IPv4.

ip load-sharing
{per-packet |
per-destination}

Configures the type of load-sharing on an
outbound interface.

ip proxy-arp Enables proxy ARP.
ip route prefix
mask {address |
interface [next-
hop-address]}
[distance]
[permanent]
[name name]
[tag tag-number]

Statically adds a route entry to the route
table.

ip route-cache Configures the type of switching cache an
interface will use for IPv4.

ipv6 cef Enables Cisco Express Forwarding for
IPv6. IPv4 CEF must be enabled before
IPv6 CEF can be enabled.

ipv6 unicast-
routing

Enables IPv6 routing. IPv6 routing is not
enabled by default.

ipv6 route
prefix/prefix
length {address |
interface [next-
hop-address]}
[distance]
[permanent]
[name name]
[tag tag-number]

Statically adds an IPv6 route.

show cdp
neighbor detail

Displays information about a neighbor
router, including IOS version, and IPv4 and
IPv6 interface configuration.

show ip cef Displays CEF forwarding cache or a
message indicating CEF is not enabled.

show ipv6 cef  



show ipv6 cef
{interface} detail

Displays whether CEF is enabled on an
interface, among other things.

show ipv6
interface
{interface}

Displays interface and IPv6 specific
interface information.

show ip route Displays the IP route table.
show ipv6 route Displays the IPv6 route table.



Review Questions

1 What information must be stored in the route table?

2 What does it mean when a route table says that an address is variably subnetted?

3 What are discontiguous subnets?

4 What IOS command is used to examine the IPv4 route table?

5 What IOS command is used to examine the IPv6 route table?

6 What are the two bracketed numbers associated with the nondirectly connected routes in
the route table?

7 When static routes are configured to reference an exit interface instead of a next-hop
address, how will the route table be different?

8 What is a summary route? In the context of static routing, how are summary routes useful?

9 What is an administrative distance?

10 What is a floating static route?

11 What is the difference between equal-cost and unequal-cost load sharing?

12 How does the switching mode at an interface affect load sharing?

13 What is a recursive table lookup?



Configuration Exercises

1 Configure static routes for each router of the network shown in Figure 3-13. Write the
routes so that every subnet of the Internet has an individual entry.

Figure 3-13. The network for Configuration Exercises 1 and 2.

[View full size image]

2 Rewrite the static routes created in Configuration Exercise 1 to use the minimum possible
route entries.[8] (Hint: RTA will have only two static route entries.)

[8] If this exercise is being implemented in a lab, be sure to add the command ip
classless to all six routers.

3 For the network shown in Figure 3-14, write static routes for each router. Assume that all
links are identical media. Use load balancing on equal cost paths and floating static routes
for maximum efficiency and redundancy.

Figure 3-14. The network for Configuration Exercise 3.

[View full size image]





Troubleshooting Exercises

1 In the network of Figure 3-2 and the associated configurations, the route entries for Piglet are changed from

    Piglet(config)# ip route 192.168.1.0 255.255.255.0 192.168.1.193
    Piglet(config)# ip route 10.4.0.0 255.255.0.0 192.168.1.193

to

    Piglet(config)# ip route 192.168.1.0 255.255.255.224 192.168.1.193
    Piglet(config)# ip route 10.0.0.0 255.255.0.0 192.168.1.193

What is the result?

2 Example 3-59 shows the static route configurations for the routers in Figure 3-15.

Figure 3-15. The network for Troubleshooting Exercise 2.

Example 3-59. Static route configurations for routers in Figure 3-15.

!RTA
ip route 172.20.96.0 255.255.240.0 172.20.20.1
ip route 172.20.82.0 255.255.240.0 172.20.20.1
ip route 172.20.64.0 255.255.240.0 172.20.20.1
ip route 172.20.160.0 255.255.240.0 172.20.30.255
ip route 172.20.144.0 255.255.240.0 172.20.30.255
ip route 172.20.128.0 255.255.240.0 172.20.30.255
_________________________________________________
!RTB
ip route 172.20.192.0 255.255.240.0 172.20.16.50
ip route 172.20.224.0 255.255.240.0 172.20.16.50
ip route 172.20.128.0 255.255.240.0 172.20.16.50
ip route 172.20.160.0 255.255.240.0 172.20.30.255
ip route 172.20.144.0 255.255.240.0 172.20.30.255
ip route 172.20.128.0 255.255.240.0 172.20.30.255
_________________________________________________
!RTC
ip route 172.20.192.0 255.255.240.0 172.20.16.50
ip route 172.20.208.0 255.255.255.0 172.20.16.50
ip route 172.20.224.0 255.255.240.0 172.20.16.50
ip route 172.20.96.0 255.255.240.0 172.20.20.1
ip route 172.20.82.0 255.255.240.0 172.20.20.1



ip route 172.20.64.0 255.255.240.0 172.20.20.1

Users are complaining of several connectivity problems in this internet. Find the mistakes in the static route
configurations.

3 Figure 3-16 shows another network in which users are complaining of connectivity problems. Example 3-60
through Example 3-63 show the route tables of the four routers.

Figure 3-16. The network for Troubleshooting Exercise 3.

[View full size image]

Find the mistakes in the static route configurations.

Example 3-60. The route table of RTA in Figure 3-16.

RTA#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U  per-user static route
Gateway of last resort is not set
     10.0.0.0/8 is subnetted, 9 subnets
S      10.5.9.0 [1/0] via 10.5.3.2
S      10.5.8.0 [1/0] via 10.5.3.2
S      10.5.7.0 [1/0] via 10.5.3.2
S      10.5.6.0 [1/0] via 10.5.3.2
S      10.5.5.0 [1/0] via 10.5.3.2
S      10.5.4.0 [1/0] via 10.5.3.2
C      10.5.3.0 is directly connected, Serial0
C      10.5.2.0 is directly connected, TokenRing1
C      10.5.1.0 is directly connected, TokenRing0
RTA#

Example 3-61. The route table of RTB in Figure 3-16.

RTB#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U  per-user static route
Gateway of last resort is not set
     10.0.0.0/8 is subnetted, 9 subnets
S      10.5.9.0 [1/0] via 10.5.5.2
S      10.5.8.0 [1/0] via 10.5.5.2
S      10.5.7.0 [1/0] via 10.5.5.2
S      10.5.6.0 [1/0] via 10.5.5.2
C      10.5.5.0 is directly connected, Serial1
C      10.5.4.0 is directly connected, TokenRing0
C      10.5.3.0 is directly connected, Serial0
S      10.5.2.0 [1/0] via 10.5.3.1
S      10.5.1.0 [1/0] via 10.5.3.1
RTB#



Example 3-62. The route table of RTC in Figure 3-16.

RTC#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U  per-user static route, o - ODR
Gateway of last resort is not set
     10.0.0.0/24 is subnetted, 8 subnets
S      10.5.9.0 [1/0] via 10.5.7.2
S      10.5.8.0 [1/0] via 10.5.5.1
C      10.5.7.0 is directly connected, Serial1
C      10.5.6.0 is directly connected, Ethernet0
S      10.1.1.0 [1/0] via 10.5.5.1
C      10.5.5.0 is directly connected, Serial0
S      10.5.3.0 [1/0] via 10.5.5.1
S      10.5.2.0 [1/0] via 10.5.5.1
RTC#

Example 3-63. The route table of RTD in Figure 3-16.

RTD#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U  per-user static route, o - ODR
Gateway of last resort is not set
     10.0.0.0/24 is subnetted, 9 subnets
C      10.5.9.0 is directly connected, Ethernet1
C      10.5.8.0 is directly connected, Ethernet0
C      10.5.7.0 is directly connected, Serial0
S      10.5.6.0 [1/0] via 10.5.7.1
S      10.5.5.0 [1/0] via 10.5.7.1
S      10.4.5.0 [1/0] via 10.5.7.1
S      10.5.3.0 [1/0] via 10.5.7.1
S      10.5.2.0 [1/0] via 10.5.7.1
S      10.5.1.0 [1/0] via 10.5.7.1
RTD#



Chapter 4. Dynamic Routing Protocols
This chapter covers the following subjects:

Routing Protocol Basics

Distance Vector Routing Protocols

Link State Routing Protocols

Interior and Exterior Gateway Protocols

Static or Dynamic Routing?

The previous chapter explains what a router needs to recognize to correctly switch packets to their
respective destinations, and how that information is put into the route table manually. This chapter
shows how routers can discover this information automatically and share that information with other
routers via dynamic routing protocols. A routing protocol  is the language a router speaks with other
routers to share information about the reachability and status of networks.

Dynamic routing protocols not only perform these path-determination and route-table-update functions,
but also determine the next-best path if the best path to a destination becomes unusable. The
capability to compensate for topology changes is the most important advantage dynamic routing offers
over static routing.

Obviously, for communication to occur, the communicators must speak the same language. Since the
advent of IP routing, there have been eight major IP routing protocols from which to choose;[1] if one
router speaks RIP and another speaks OSPF, they cannot share routing information because they are
not speaking the same language. Subsequent chapters examine all the IP routing protocols in current
use, and even consider how to make a router "bilingual," but first it is necessary to explore some
characteristics and issues common to all routing protocolsIP or otherwise.

[1] Of these eight protocols, BGP has obsoleted EGP, the Cisco Systems EIGRP obsoleted
its IGRP, and RIPv2 is quickly replacing RIPv1.



Routing Protocol Basics

All dynamic routing protocols are built around an algorithm. Generally, an algorithm is a step-by-step
procedure for solving a problem. A routing algorithm must, at a minimum, specify the following:

A procedure for passing reachability information about networks to other routers

A procedure for receiving reachability information from other routers

A procedure for determining optimal routes based on the reachability information it has and for
recording this information in a route table

A procedure for reacting to, compensating for, and advertising topology changes in a network

A few issues common to any routing protocol are path determination, metrics, convergence, and load
balancing.

Path Determination

All subnets within a network must be connected to a router, and wherever a router has an interface on
a network, that interface must have an address on the network.[2] This address is the originating point
for reachability information.

[2] Many point-to-point links are configured as "unnumbered" linksthat is, there is no address
assigned to the connected point-to-point interfaceso as to conserve addresses. But
unnumbered links do not violate the rule that every interface must have an address; they use
another address on the router, usually the loopback address, as a proxy address.

Figure 4-1 shows a simple three-router network. Router A recognizes networks 192.168.1.0,
192.168.2.0, and 192.168.3.0 because it has interfaces on those networks with corresponding
addresses and appropriate address masks. Likewise, Router B recognizes 192.168.3.0, 192.168.4.0,
192.168.5.0, and 192.186.6.0; Router C recognizes 192.168.6.0, 192.168.7.0, and 198.168.1.0. Each
interface implements the data link and physical protocols of the network to which it is attached, so the
router also recognizes the state of the network (up or down).

Figure 4-1. Each router knows about its directly connected networks from its assigned
addresses and masks.

At first glance, the information-sharing procedure seems simple. Look at Router A:

1. Router A examines its IP addresses and associated masks and deduces that it is attached to
networks 192.168.1.0, 192.186.2.0, and 192.168.3.0.



2. Router A enters these networks into its route table, along with some sort of flag indicating that the
networks are directly connected.

3. Router A places the information into a packet: "My directly connected networks are 192.168.1.0,
192.186.2.0, and 192.168.3.0."

4. Router A transmits copies of these route information packets, or routing updates, to Routers B
and C.

Routers B and C, having performed the same steps, have sent updates with their directly connected
networks to A. Router A enters the received information into its route table, along with the source
address of the router that sent the update packet. Router A now recognizes all the networks and the
addresses of the routers to which they are attached.

This procedure does seem quite simple. So why are routing protocols so much more complicated than
this? Look again at Figure 4-1:

What should Router A do with the updates from B and C after it has recorded the information in
the route table? Should it, for instance, pass B's routing information packet to C and pass C's
packet to B?

If Router A does not forward the updates, information sharing might not be complete. For instance,
if the link between B and C does not exist, those two routers would not recognize each other's
networks. Router A must forward the update information, but this step opens a new set of
problems.

If Router A hears about network 192.168.4.0 from both Router B and Router C, which router
should be used to reach that network? Are they both valid? Which one is the best path?

What mechanism will be used to ensure that all routers receive all routing information while
preventing update packets from circulating endlessly through the network?

The routers share certain directly connected networks (192.168.1.0, 192.168.3.0, and
192.168.6.0). Should the routers still advertise these networks?

These questions are almost as simplistic as the preceding preliminary explanation of routing protocols,
but they should give you an indication for some of the issues that contribute to the complexity of the
protocols. Each routing protocol addresses these questions one way or another, which will become
clear in following sections and chapters.

Metrics

When there are multiple routes to the same destination, a router must have a mechanism for calculating
the best path. A metric is a variable assigned to routes as a means of ranking them from best to worst
or from most preferred to least preferred. Consider the following example of why metrics are needed.

Assuming that information sharing has properly occurred in the network of Figure 4-1, Router A might
have a route table that looks like Table 4-1.

Table 4-1. Rudimentary route table for
Router A of Figure 4-1.

Network Next-Hop Router

192.168.1.0 Directly connected

192.168.2.0 Directly connected

192.168.3.0 Directly connected

192.168.4.0 B, C

192.168.5.0 B, C



192.168.6.0 B, C

192.168.7.0 B, C

This route table says that the first three networks are directly connected and that no routing is needed
from Router A to reach them, which is correct. The last four networks, according to this table, can be
reached via Router B or Router C. This information is also correct. But if network 192.168.7.0 can be
reached via either Router B or Router C, which path is the preferable path? Metrics are needed to rank
the alternatives.

Different routing protocols use different metrics. For example, RIP defines the "best" route as the one
with the least number of router hops; EIGRP defines the "best" route based on a combination of the
lowest bandwidth along the route and the total delay of the route. The following sections provide basic
definitions of these and other commonly used metrics. Further complexitiessuch as how some routing
protocols such as EIGRP use multiple parameters to compute a metric and deal with routes that have
identical metric valuesare covered later, in the protocol-specific chapters of this book.

Hop Count

A hop-count metric simply counts router hops. For instance, from Router A, it is one hop to network
192.168.5.0 if packets are sent out interface 192.168.3.1 (through Router B) and two hops if packets
are sent out 192.168.1.1 (through Routers C and B). Assuming hop count is the only metric being
applied, the best route is the one with the fewest hops, in this case, A-B.

But is the A-B link really the best path? If the A-B link is a DS-0 link and the A-C and C-B links are T-1
links, the two-hop route might actually be best, because bandwidth plays a role in how efficiently traffic
travels through the network.

Bandwidth

A bandwidth metric would choose a higher-bandwidth path over a lower-bandwidth link. However,
bandwidth by itself still might not be a good metric. What if one or both of the T1 links are heavily
loaded with other traffic and the 56K link is lightly loaded? Or what if the higher-bandwidth link also has
a higher delay?

Load

This metric reflects the amount of traffic utilizing the links along the path. The best path is the one with
the lowest load.

Unlike hop count and bandwidth, the load on a route changes, and, therefore, the metric will change.
Care must be taken here. If the metric changes too frequently, route flappingthe frequent change of
preferred routesmight occur. Route flaps can have adverse effects on the router's CPU, the bandwidth
of the data links, and the overall stability of the network.

Delay

Delay is a measure of the time a packet takes to traverse a route. A routing protocol using delay as a
metric would choose the path with the least delay as the best path. There might be many ways to
measure delay. Delay might take into account not only the delay of the links along the route, but also
such factors as router latency and queuing delay. On the other hand, the delay of a route might not be
measured at all; it might be a sum of static quantities defined for each interface along the path. Each
individual delay quantity would be an estimate based on the type of link to which the interface is



connected.

Reliability

Reliability measures the likelihood that the link will fail in some way and can be either variable or fixed.
Examples of variable-reliability metrics are the number of times a link has failed, or the number of errors
it has received within a certain time period. Fixed-reliability metrics are based on known qualities of a
link as determined by the network administrator. The path with highest reliability would be selected as
best.

Cost

This metric is configured by a network administrator to reflect more- or less-preferred routes. Cost
might be defined by any policy or link characteristic or might reflect the arbitrary judgment of the
network administrator. Therefore, "cost" is a term of convenience describing a dimensionless metric.

The term cost is often used as a generic term when speaking of route choices. For example, "RIP
chooses the lowest-cost path based on hop count." Another generic term is shortest, as in "RIP
chooses the shortest path based on hop count." When used in this context, either lowest-cost (or
highest-cost) and shortest (or longest) merely refer to a routing protocol's view of paths based on its
specific metrics.

Convergence

A dynamic routing protocol must include a set of procedures for a router to inform other routers about
its directly connected networks, to receive and process the same information from other routers, and to
pass along the information it receives from other routers. Further, a routing protocol must define a
metric by which best paths might be determined.

A further criterion for routing protocols is that the reachability information in the route tables of all
routers in the network must be consistent. If Router A in Figure 4-1 determines that the best path to
network 192.168.5.0 is via Router C and if Router C determines that the best path to the same network
is through Router A, Router A will send packets destined for 192.168.5.0 to C, C will send them back to
A, A will again send them to C, and so on. This continuous circling of traffic between two or more
destinations is referred to as a routing loop.

The process of bringing all route tables to a state of consistency is called convergence. The time it
takes to share information across a network and for all routers to calculate best paths is the
convergence time.

Figure 4-2 shows a network that was converged, but now a topology change has occurred. The link
between the two left-most routers has failed; both routers, being directly connected, know about the
failure from the data link protocol and proceed to inform their neighbors of the unavailable link. The
neighbors update their route tables accordingly and inform their neighbors, and the process continues
until all routers know about the change.

Figure 4-2. Reconvergence after a topology change takes time. While the network is in an
unconverged state, routers are susceptible to bad routing information.



Notice that at time t2 the three left-most routers recognize the topology change but the three right-most
routers have not yet received that information. Those three have old information and will continue to
switch packets accordingly. It is during this intermediate time, when the network is in an unconverged
state, that routing errors might occur. Therefore, convergence time is an important factor in any routing
protocol. The faster a network can reconverge after a topology change, the better.

Load Balancing

Recall from Chapter 3, "Static Routing," that load balancing is the practice of distributing traffic among
multiple paths to the same destination, so as to use bandwidth efficiently. As an example of the
usefulness of load balancing, consider Figure 4-1 again. All the networks in Figure 4-1 are reachable
from two paths. If a device on 192.168.2.0 sends a stream of packets to a device on 192.168.6.0,
Router A might send them all via Router B or Router C. In both cases, the network is one hop away.
However, sending all packets on a single route probably is not the most efficient use of available
bandwidth. Instead, load balancing should be implemented to alternate traffic between the two paths.
As noted in Chapter 3, load balancing can be equal cost or unequal cost, and per packet or per
destination.



Distance Vector Routing Protocols

Most routing protocols fall into one of two classes: distance vector  or link state. The basics of distance
vector routing protocols are examined here; the next section covers link state routing protocols. Most
distance vector algorithms are based on the work done of R. E. Bellman,[3] L. R. Ford, and D. R.
Fulkerson,[4] and for this reason occasionally are referred to as Bellman-Ford or Ford-Fulkerson
algorithms. A notable exception is EIGRP, which is based on an algorithm developed by J. J. Garcia
Luna Aceves.

[3] R. E. Bellman. Dynamic Programming. Princeton, New Jersey: Princeton University
Press; 1957.

[4] L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton, New Jersey: Princeton
University Press; 1962.

The name distance vector is derived from the fact that routes are advertised as vectors of (distance,
direction), where distance is defined in terms of a metric and direction is defined in terms of the next-
hop router. For example, "Destination A is a distance of five hops away, in the direction of next-hop
Router X." As that statement implies, each router learns routes from its neighboring routers'
perspectives and then advertises the routes from its own perspective. Because each router depends on
its neighbors for information, which the neighbors in turn might have learned from their neighbors, and
so on, distance vector routing is sometimes facetiously referred to as "routing by rumor."

Distance vector routing protocols include the following:

Routing Information Protocol (RIP) for IP

Xerox Networking System's XNS RIP

Novell's IPX RIP

The Cisco Systems Internet Gateway Routing Protocol (IGRP) and Enhanced Internet Gateway
Routing Protocol (EIGRP)

DEC's DNA Phase IV

AppleTalk's Routing Table Maintenance Protocol (RTMP)

Common Characteristics

A typical distance vector routing protocol uses a routing algorithm in which routers periodically send
routing updates to all neighbors by broadcasting their entire route tables.[5]

[5] A notable exception to this convention is the Cisco Enhanced IGRP. EIGRP is a distance
vector protocol, but its updates are not periodic, are not broadcasted, and do not contain the
full route table. EIGRP is covered in Chapter 7, "Enhanced Interior Gateway Routing Protocol
(EIGRP)."

The preceding statement contains a lot of information. Following sections consider it in more detail.

Periodic Updates

Periodic updates means that at the end of a certain time period, updates will be transmitted. This
period typically ranges from 10 seconds for AppleTalk's RTMP to 90 seconds for the Cisco IGRP. At



issue here is the fact that if updates are sent too frequently, congestion and router CPU overloading
might occur; if updates are sent too infrequently, convergence time might be unacceptably high.

Neighbors

In the context of routers, neighbors means routers sharing a common data link or some higher-level
logical adjacency. A distance vector routing protocol sends its updates to neighboring routers[6] and
depends on them to pass the update information along to their neighbors. For this reason, distance
vector routing is said to use hop-by-hop updates.

[6] This statement is not entirely true. Hosts also can listen to routing updates in some
implementations; but all that is important for this discussion is how routers work.

Broadcast Updates

When a router first becomes active on a network, how does it find other routers and how does it
announce its own presence? Several methods are available. The simplest is to send the updates to the
broadcast address (in the case of IP, 255.255.255.255). Neighboring routers speaking the same routing
protocol will hear the broadcasts and take appropriate action. Hosts and other devices uninterested in
the routing updates will simply drop the packets.

Full Routing Table Updates

Most distance vector routing protocols take the very simple approach of telling their neighbors
everything they know by broadcasting their entire route table, with some exceptions that are covered in
following sections. Neighbors receiving these updates glean the information they need and discard
everything else.

Routing by Rumor

Figure 4-3 shows a distance vector algorithm in action. In this example, the metric is hop count. At time
t0, Routers A through D have just become active. Looking at the route tables across the top row, at t0
the only information any of the four routers has is its own directly connected networks. The tables
identify these networks and indicate that they are directly connected by having no next-hop router and
by having a hop count of 0. Each of the four routers will broadcast this information on all links.

Figure 4-3. Distance vector protocols converge hop-by-hop.

[View full size image]



At time t1, the first updates have been received and processed by the routers. Look at Router A's table
at t1. Router B's update to Router A said that Router B can reach networks 10.1.2.0 and 10.1.3.0, both
zero hops away. If the networks are zero hops from B, they must be one hop from A. Router A
incremented the hop count by one and then examined its route table. It already recognized 10.1.2.0,
and the hop count (zero) was less than the hop count B advertised, (one), so A disregarded that
information.

Network 10.1.3.0 was new information, however, so A entered this in the route table. The source
address of the update packet was Router B's interface (10.1.2.2) so that information is entered along
with the calculated hop count.

Notice that the other routers performed similar operations at the same time t1. Router C, for instance,
disregarded the information about 10.1.3.0 from B and 10.1.4.0 from C but entered information about
10.1.2.0, reachable via B's interface address 10.1.3.1, and 10.1.5.0, reachable via C's interface
10.1.4.2. Both networks were calculated as one hop away.

At time t2, the update period has again expired and another set of updates has been broadcast. Router
B sent its latest table; Router A again incremented B's advertised hop counts by one and compared.
The information about 10.1.2.0 is again discarded for the same reason as before. 10.1.3.0 is already
known, and the hop count hasn't changed, so that information is also discarded. 10.1.4.0 is new
information and is entered into the route table.

The network is converged at time t3. Every router recognizes every network, the address of the next-
hop router for every network, and the distance in hops to every network.

It is time for an analogy. You are wandering in the Sangre de Cristo mountains of northern New
Mexicoa wonderful place to wander if you aren't lost. But you are lost. You come upon a fork in the trail
and a sign pointing west, reading "Taos, 15 miles." You have no choice but to trust the sign. You have
no clue what the terrain is like over that 15 miles; you don't know whether there is a better route or
even whether the sign is correct. Someone could have turned it around, in which case you will travel
deeper into the forest instead of to safety!

Distance vector algorithms provide road signs to networks.[7] They provide the direction and the
distance, but no details about what lies along the route. And like the sign at the fork in the trail, they are
vulnerable to accidental or intentional misdirection. Following are some of the difficulties and
refinements associated with distance vector algorithms.

[7] The road sign analogy is commonly used. You can find a good presentation in Radia



Perlman's Interconnections, pp. 205210.

Route Invalidation Timers

Now that the network in Figure 4-3 is fully converged, how will it handle reconvergence when some
part of the topology changes? If network 10.1.5.0 goes down, the answer is simple enoughRouter D, in
its next scheduled update, flags the network as unreachable and passes the information along.

But what if, instead of 10.1.5.0 going down, Router D fails? Routers A, B, and C still have entries in
their route tables about 10.1.5.0; the information is no longer valid, but there's no router to inform them
of this fact. They will unknowingly forward packets to an unreachable destinationa black hole has
opened in the network.

This problem is handled by setting a route invalidation timer for each entry in the route table. For
example, when Router C first hears about 10.1.5.0 and enters the information into its route table, C sets
a timer for that route. At every regularly scheduled update from Router D, C discards the update's
already-known information about 10.1.5.0 as described in "Routing by Rumor." But as C does so, it
resets the timer on that route.

If Router D goes down, C will no longer hear updates about 10.1.5.0. The timer will expire, C will flag
the route as unreachable and will pass the information along in the next update.

Typical periods for route timeouts range from three to six update periods. A router would not want to
invalidate a route after a single update has been missed, because this event might be the result of a
corrupted or lost packet or some sort of network delay. At the same time, if the period is too long,
reconvergence will be excessively slow.

Split Horizon

According to the distance vector algorithm as it has been described so far, at every update period each
router broadcasts its entire route table to every neighbor. But is this really necessary? Every network
known by Router A in Figure 4-3, with a hop count higher than zero, has been learned from Router B.
Common sense suggests that for Router A to broadcast the networks it has learned from Router B back
to Router B is a waste of resources. Obviously, B already "knows" about those networks.

A route pointing back to the router from which packets were received is called a reverse route. Split
horizon is a technique for preventing reverse routes between two routers.

Besides not wasting resources, there is a more important reason for not sending reachability
information back to the router from which the information was learned. The most important function of a
dynamic routing protocol is to detect and compensate for topology changesif the best path to a network
becomes unreachable, the protocol must look for a next-best path.

Look yet again at the converged network of Figure 4-3 and suppose that network 10.1.5.0 goes down.
Router D will detect the failure, flag the network as unreachable, and pass the information along to
Router C at the next update interval. However, before D's update timer triggers an update, something
unexpected happens. C's update arrives, claiming that it can reach 10.1.5.0, one hop away! Remember
the road sign analogy? Router D has no way of recognizing that C is not advertising a legitimate next-
best path. It will increment the hop count and make an entry into its route table indicating that 10.1.5.0
is reachable via Router C's interface 10.1.4.1, just two hops away.

Now a packet with a destination address of 10.1.5.3 arrives at Router C, which consults its route table
and forwards the packet to D. Router D consults its route table and forwards the packet to C, C
forwards it back to D, ad infinitum. A routing loop has occurred.

Implementing split horizon prevents the possibility of such a routing loop. There are two categories of
split horizon: simple split horizon and split horizon with poisoned reverse.

The rule for simple split horizon is, when sending updates out a particular interface, do not include



networks that were learned from updates received on that interface.

The routers in Figure 4-4 implement simple split horizon. Router C sends an update to Router D for
networks 10.1.1.0, 10.1.2.0, and 10.1.3.0. Networks 10.1.4.0 and 10.1.5.0 are not included because
they were learned from Router D. Likewise, updates to Router B include 10.1.4.0 and 10.1.5.0 with no
mention of 10.1.1.0, 10.1.2.0, and 10.1.3.0.

Figure 4-4. Simple split horizon does not advertise routes back to the neighbors from whom
the routes were learned.

[View full size image]

Simple split horizon works by suppressing information. Split horizon with poisoned reverse is a
modification that provides more positive information.

The rule for split horizon with poisoned reverse is, when sending updates out a particular interface,
designate any networks that were learned from updates received on that interface as unreachable.

In the scenario of Figure 4-4, Router C would in fact advertise 10.1.4.0 and 10.1.5.0 to Router D, but
the network would be marked as unreachable. Figure 4-5 shows what the route tables from C to B and
D would look like. Notice that a route is marked as unreachable by setting the metric to infinity; in other
words, the network is an infinite distance away. Coverage of a routing protocol's concept of infinity
continues in the next section.

Figure 4-5. Split horizon with poisoned reverse advertises reverse routes but with an
unreachable (infinite) metric.

[View full size image]

Split horizon with poisoned reverse is considered safer and stronger than simple split horizona sort of
"bad news is better than no news at all" approach. For example, suppose that Router B in Figure 4-5
receives corrupted information, causing it to proceed as if subnet 10.1.1.0 is reachable via Router C.
Simple split horizon would do nothing to correct this misperception, whereas a poisoned reverse update
from Router C would immediately stop the potential loop. For this reason, most modern distance vector
implementations use split horizon with poisoned reverse. The trade-off is that routing update packets
are larger, which might exacerbate any congestion problems on a link.



Counting to Infinity

Split horizon will break loops between neighbors, but it will not stop loops in a network such as the one
in Figure 4-6. Again, 10.1.5.0 has failed. Router D sends the appropriate updates to its neighbors,
Router C (the dashed arrows), and Router B (the solid arrows). Router B marks the route via D as
unreachable, but Router A is advertising a next-best path to 10.1.5.0, which is three hops away. B posts
that route in its route table.

Figure 4-6. Split horizon will not prevent routing loops here.

B now informs D that it has an alternative route to 10.1.5.0. D posts this information and updates C,
saying that it has a four-hop route to the network. C tells A that 10.1.5.0 is five hops away. A tells B that
the network is now six hops away.

"Ah," Router B thinks, "Router A's path to 10.1.5.0 has increased in length. Nonetheless, it's the only
route I've got, so I'll use it!"

B changes the hop count to seven, updates D, and around it goes again. This situation is the counting-
to-infinity problem because the hop count to 10.1.5.0 will continue to increase to infinity. All routers are
implementing split horizon, but it doesn't help.

The way to alleviate the effects of counting to infinity is to define infinity. Most distance vector protocols
define infinity to be 16 hops. As the updates continue to loop among the routers in Figure 4-6, the hop
count to 10.1.5.0 in all routers will eventually increment to 16. At that time, the network will be
considered unreachable.

This method is also how routers advertise a network as unreachable. Whether it is a poisoned reverse
route, a network that has failed, or a network beyond the maximum network diameter of 15 hops, a
router will recognize any 16-hop route as unreachable.

Setting a maximum hop count of 15 helps solve the counting-to-infinity problem, but convergence will
still be very slow. Given an update period of 30 seconds, a network could take up to 7.5 minutes to
reconverge and is susceptible to routing errors during this time. Triggered updates can be used to
reduce this convergence time.

Triggered Updates

Triggered updates, also known as flash updates, are very simple: If a metric changes for better or for



worse, a router will immediately send out an update without waiting for its update timer to expire.
Reconvergence will occur far more quickly than if every router had to wait for regularly scheduled
updates, and the problem of counting to infinity is greatly reduced, although not completely eliminated.
Regular updates might still occur along with triggered updates. Thus a router might receive bad
information about a route from a not-yet-reconverged router after having received correct information
from a triggered update. Such a situation shows that confusion and routing errors might still occur while
a network is reconverging, but triggered updates will help to iron things out more quickly.

A further refinement is to include in the update only the networks that actually triggered it, rather than
the entire route table. This technique reduces the processing time and the impact on network
bandwidth.

Holddown Timers

Triggered updates add responsiveness to a reconverging network. Holddown timers introduce a
certain amount of skepticism to reduce the acceptance of bad routing information.

If the distance to a destination increases (for example, the hop count increases from two to four), the
router sets a holddown timer for that route. Until the timer expires, the router will not accept any new
updates for the route.

Obviously, a trade-off is involved here. The likelihood of bad routing information getting into a table is
reduced but at the expense of the reconvergence time. Like other timers, holddown timers must be set
with care. If the holddown period is too short, it will be ineffective, and if it is too long, normal routing
will be adversely affected.

Asynchronous Updates

Figure 4-7 shows a group of routers connected to an Ethernet backbone. The routers should not
broadcast their updates at the same time; if they do, the update packets will collide. Yet this situation is
exactly what can happen when several routers share a broadcast network. System delays related to
the processing of updates in the routers tend to cause the update timers to become synchronized. As a
few routers become synchronized, collisions will begin to occur, further contributing to system delays,
and eventually all routers sharing the broadcast network might become synchronized.

Figure 4-7. If update timers become synchronized, collisions might occur.

Asynchronous updates might be maintained by one of two methods:

Each router's update timer is independent of the routing process and is, therefore, not affected by
processing loads on the router.

A small random time, or timing jitter , is added to each update period as an offset.

If routers implement the method of rigid, system-independent timers, all routers sharing a broadcast
network must be brought online in a random fashion. Rebooting the entire group of routers
simultaneouslysuch as might happen during a widespread power outage, for examplecould result in all
the timers attempting to update at the same time.



Adding randomness to the update period is effective if the variable is large enough in proportion to the
number of routers sharing the broadcast network. Sally Floyd and Van Jacobson[8] have calculated
that a too-small randomization will be overcome by a large enough network of routers, and that to be
effective the update timer should range up to 50 percent of the median update period.

[8] S. Floyd and V. Jacobson. "The Synchronisation of Periodic Routing Messages." ACM
Sigcomm '93 Symposium, September 1993.



Link State Routing Protocols

The information available to a distance vector router has been compared to the information available
from a road sign. Link state routing protocols are like a road map. A link state router cannot be fooled
as easily into making bad routing decisions, because it has a complete picture of the network. The
reason is that unlike the routing-by-rumor approach of distance vector, link state routers have firsthand
information from all their peer[9] routers. Each router originates information about itself, its directly
connected links, the state of those links (hence the name), and any directly connected neighbors. This
information is passed around from router to router, each router making a copy of it, but never changing
it. The ultimate objective is that every router has identical information about the network, and each
router will independently calculate its own best paths.

[9] That is, all routers speaking the same routing protocol.

Link state protocols, sometimes called shortest path first or distributed database protocols, are built
around a well-known algorithm from graph theory, E. W. Dijkstra's shortest path algorithm. Examples of
link state routing protocols are

Open Shortest Path First (OSPF) for IP

The ISO's Intermediate System-to-Intermediate System (IS-IS) for CLNS and IP

DEC's DNA Phase V

Novell's NetWare Link Services Protocol (NLSP)

Although link-state protocols are rightly considered more complex than distance vector protocols, the
basic functionality is not complex at all:

1. Each router establishes a relationshipan adjacencywith each of its neighbors.

2. Each router sends a data unit we will call link state advertisements (LSAs) to each neighbor.[10]
The LSA lists each of the router's links, and for each link, it identifies the link, the state of the link,
the metric cost of the router's interface to the link, and any neighbors that might be connected to
the link. Each neighbor receiving an advertisement in turn forwards (floods) the advertisement to
its own neighbors.

[10] LSA is an OSPF term. The corresponding data unit created by IS-IS is called link
state PDU (LSP). But for this general discussion, "LSA" fits our needs.

3. Each router stores a copy of all the LSAs it has seen in a database. If all works well, the
databases in all routers should be identical.

4. The completed topological database, also called the link state database, is used by the Dijkstra
algorithm to compute a graph of the network indicating the shortest path to each router. The link
state protocol can then consult the link state database to find what subnets are attached to each
router, and enter this information into the routing table.

Neighbors

Neighbor discovery is the first step in getting a link state environment up and running. In keeping with
the friendly neighbor terminology, a Hello protocol is used for this step. The protocol will define a Hello
packet format and a procedure for exchanging the packets and processing the information the packets
contain.

At a minimum, the Hello packet will contain a router ID  (RID) and the address of the network on which



the packet is being sent. The router ID is something by which the router originating the packet can be
uniquely distinguished from all other routers; for instance, an IP address from one of the router's
interfaces. Other fields of the packet might carry a subnet mask, Hello intervals, a specified maximum
period the router will wait to hear a Hello before declaring the neighbor "dead," a descriptor of the
circuit type, and flags to help in bringing up adjacencies.

When two routers have discovered each other as neighbors, they go through a process of
synchronizing their databases in which they exchange and verify database information until their
databases are identical. The details of database synchronization are described in Chapters 8,
"OSPFv2," and 10, "Integrated IS-IS." To perform this database synchronization, the neighbors must be
adjacentthat is, they must agree on certain protocol-specific parameters such as timers and support of
optional capabilities. By using Hello packets to build adjacencies, link state protocols can exchange
information in a controlled fashion. Contrast this approach with distance vector, which simply
broadcasts updates out any interface configured for that routing protocol.

Beyond building adjacencies, Hello packets serve as keepalives to monitor the adjacency. If Hellos are
not heard from an adjacent neighbor within a certain established time, the neighbor is considered
unreachable and the adjacency is broken. A typical interval for the exchange of Hello packets is ten
seconds, and a typical dead period is four times that.

Link State Flooding

After the adjacencies are established, the routers might begin sending out LSAs. As the term flooding
implies, the advertisements are sent to every neighbor. In turn, each received LSA is copied and
forwarded to every neighbor except the one that sent the LSA. This process is the source of one of link
state's advantages over distance vector. LSAs are forwarded almost immediately, whereas distance
vector protocols based on the Bellman-Ford algorithm must run its algorithm and update its route table
before routing updates, even the triggered ones, can be forwarded. As a result, link state protocols
converge much faster than distance vector protocols converge when the topology changes.

The flooding process is the most complex piece of a link state protocol. There are several ways to
make flooding more efficient and more reliable, such as using unicast and multicast addresses,
checksums, and positive acknowledgments. These topics are examined in the protocol-specific
chapters, but two procedures are vitally important to the flooding process: sequencing and aging.

Sequence Numbers

A difficulty with flooding, as described so far, is that when all routers have received all LSAs, the
flooding must stop. A time-to-live value in the packets could simply be relied on to expire, but it is hardly
efficient to permit LSAs to wander the network until they expire. Take the network in Figure 4-8. Subnet
172.22.4.0 at Router A has failed, and A has flooded an LSA to its neighbors B and D, advertising the
new state of the link. B and D dutifully flood to their neighbors, and so on.

Figure 4-8. When a topology change occurs, LSAs advertising the change will be flooded
throughout the network.



Look next at what happens at Router C. An LSA arrives from Router B at time t1, is entered into C's
topological database, and is forwarded to Router F. At some later time t3, another copy of the same
LSA arrives from the longer A-D-E-F-C route. Router C sees that it already has the LSA in its database;
the question is, should C forward this LSA to Router B? The answer is no because B has already
received the advertisement. Router C knows this because the sequence number of the LSA it received
from Router F is the same as the sequence number of the LSA it received earlier from Router B.

When Router A sent out the LSA, it included an identical sequence number in each copy. This
sequence number is recorded in the routers' topological databases along with the rest of the LSA;
when a router receives an LSA that is already in the database and its sequence number is the same,
the received information is discarded. If the information is the same but the sequence number is
greater, the received information and new sequence number are entered into the database and the
LSA is flooded. In this way, flooding is abated when all routers have seen a copy of the most recent
LSA.

As described so far, it seems that routers could merely verify that their link state databases contain the
same LSA as the newly received LSA and make a flood/discard decision based on that information,
without needing a sequence number. But imagine that immediately after Figure 4-8's network
172.22.4.0 failed, it came back up. Router A might send out an LSA advertising the network as down,
with a sequence number of 166; then it sends out a new LSA announcing the same network as up, with
a sequence number of 167. Router C receives the down LSA and then the up LSA from the A-B-C path,
but then it receives a delayed down LSA from the A-D-E-F-C path. Without the sequence numbers, C
would not know whether or not to believe the delayed down LSA. With sequence numbers, C's
database will indicate that the information from Router A has a sequence number of 167; the late LSA
has a sequence number of 166 and is therefore recognized as old information and discarded.

Because the sequence numbers are carried in a set field within the LSAs, the numbers must have some
upper boundary. What happens when this maximum sequence number is reached?

Linear Sequence Number Spaces

One approach is to use a linear sequence number space so large that it is unlikely the upper limit will
ever be reached. If, for instance, a 32-bit field is used, there are 232 = 4,294,967,296 available
sequence numbers starting with zero. Even if a router was creating a new link state packet every 10
seconds, it would take 1361 years to exhaust the sequence number supply; few routers are expected to
last so long.

In this imperfect world, unfortunately, malfunctions occur. If a link state routing process somehow runs
out of sequence numbers, it must shut itself down and stay down long enough for its LSAs to age out
of all databases before starting over at the lowest sequence number (see the section "Aging," later in
this chapter).



this chapter).

A more common difficulty presents itself during router restarts. If Router A restarts, it probably will have
no way of remembering the sequence number it last used and must begin again at, say, one. But if its
neighbors still have Router A's previous sequence numbers in their databases, the lower sequence
numbers will be interpreted as older sequence numbers and will be ignored. Again, the routing process
must stay down until all old LSAs are aged out of the network. Given that a maximum age might be an
hour or more, this solution is not very attractive.

A better solution is to add a new rule to the flooding behavior described thus far: If a restarted router
issues to a neighbor an LSA with a sequence number that appears to be older than the neighbor's
stored sequence number, the neighbor will send its own stored LSA and sequence number back to the
router. The router will thus learn the sequence number it was using before it restarted and can adjust
accordingly.

Care must be taken, however, that the last-used sequence number was not close to the maximum;
otherwise, the restarting router will simply have to restart again. A rule must be set limiting the "jump"
the router might make in sequence numbersfor instance, a rule might say that the sequence numbers
cannot make a single increase more than one-half the total sequence number space. (The actual
formulas are more complex than this example, taking into account age constraints.)

IS-IS uses a 32-bit linear sequence number space.

Circular Sequence Number Spaces

Another approach is to use a circular sequence number space, where the numbers "wrap"that is, in a
32-bit space, the number following 4,294,967,295 is 0. Malfunctions can cause interesting dilemmas
here, too. A restarting router might encounter the same believability problem as discussed for linear
sequence numbers.

Circular sequence numbering creates a curious bit of illogic. If x is any number between 1 and
4,294,967,295 inclusive, then 0 < x < 0. This situation can be managed in well-behaved networks by
asserting two rules for determining when a sequence number is greater than or less than another
sequence number. Given a sequence number space n and two sequence numbers a and b, a is
considered more recent (of larger magnitude) in either of the following situations:

     a > b, and (a  b)  n/2
     a < b, and (b  a) > n/2

For the sake of simplicity, take a sequence number space of six bits, shown in Figure 4-9:

     n = 26 = 64
     so n/2 = 32.

Figure 4-9. Six-Bit Circular Address Space



Given two sequence numbers 48 and 18, 48 is more recent because by rule (1)

     48 > 18 and (48  18) = 30 and 30 < 32.

Given two sequence numbers 3 and 48, 3 is more recent because by rule (2)

     3 < 48 and (48  3) = 45 and 45 > 32.

Given two sequence numbers 3 and 18, 18 is more recent because by rule (1)

     18 > 3 and (18  3) = 15 and 15 < 32.

So the rules seem to enforce circularity.

But what about a not-so-well-behaved network? Imagine a network running a six-bit sequence number
space. Now imagine that one of the routers on the network malfunctions, but as it does so, it blurts out
three identical LSAs with a sequence number of 44 (101100). Unfortunately, a neighboring router is
also malfunctioningit is dropping bits. The neighbor drops a bit in the sequence number field of the
second LSA, drops yet another bit in the third LSA, and floods all three. The result is three identical
LSAs with three different sequence numbers:

44 (101100)
40 (101000)
8 (001000)

Applying the circularity rules reveals that 44 is more recent than 40, which is more recent than 8, which
is more recent than 44! The result is that every LSA will be continuously flooded, and databases will be
continually overwritten with the "latest" LSA, until finally buffers become clogged with LSAs, CPUs
become overloaded, and the entire network comes crashing down.

This chain of events sounds quite far-fetched. It is, however, factual. The ARPANET, the precursor of
the modern Internet, ran an early link state protocol with a six-bit circular sequence number space; on
October 27, 1980, two routers experiencing the malfunctions just described brought the entire
ARPANET to a standstill.[11]

[11] E. C. Rosen. "Vulnerabilities of Network Control Protocols: An Example." Computer
Communication Review, July 1981.



Lollipop-Shaped Sequence Number Spaces

This whimsically-named construct was proposed by Dr. Radia Perlman.[12] Lollipop-shaped sequence
number spaces are a hybrid of linear and circular sequence number spaces; if you think about it, a
lollipop has a linear component and a circular component. The problem with circular spaces is that
there is no number less than all other numbers. The problem with linear spaces is that they arewellnot
circular. That is, their set of sequence numbers is finite.

[12] R. Perlman. "Fault-Tolerant Broadcasting of Routing Information." Computer Networks,
Vol. 7, December 1983, pp. 395405.

When Router A restarts, it would be nice to begin with a number a that is less than all other numbers.
Neighbors will recognize this number for what it is, and if they have a pre-restart number b in their
databases from Router A, they can send that number to Router A and Router A will jump to that
sequence number. Router A might be able to send more than one LSA before hearing about the
sequence number it had been using before restarting. Therefore, it is important to have enough restart
numbers so that A cannot use them all before neighbors either inform it of a previously used number, or
the previously used number ages out of all databases.

These linear restart numbers form the stick of the lollipop. When they have been used up, or after a
neighbor has provided a sequence number to which A can jump, A enters a circular number space, the
candy part of the lollipop.

One way of designing a lollipop address space is to use signed sequence numbers, where k< 0 < k.
The negative numbers counting up from k to 1 form the stick, and the positive numbers from 0 to k are
the circular space. Perlman's rules for the sequence numbers are as follows. Given two numbers a and
b and a sequence number space n, b is more recent than a if and only if

a < 0 and a < b, or

a > 0, a < b, and (b a) < n/2, or

a > 0, b > 0, a > b, and (a b) > n/2

Figure 4-10 shows an implementation of the lollipop-shaped sequence number space. A 32-bit signed
number space N is used, yielding 231 positive numbers and 231 negative numbers. N (231, or
0x80000000) and N 1 (231 1, or 0x7FFFFFFF) are not used. A router coming online will begin its
sequence numbers at N + 1 (0x80000001) and increment up to zero, at which time it has entered the
circular number space. When the sequence reaches N 2 (0x7FFFFFFE), the sequence wraps back to
zero (again, N 1 is unused).

Figure 4-10. Lollipop-shaped sequence number space.



Next, suppose the router restarts. The sequence number of the last LSA sent before the restart is
0x00005de3 (part of the circular sequence space). As it synchronizes its database with its neighbor
after the restart, the router sends an LSA with a sequence number of 0x80000001 (N + 1). The
neighbor looks into its own database and finds the pre-restart LSA with a sequence number of
0x00005de3. The neighbor sends this LSA to the restarted router, essentially saying, "This is where
you left off." The restarted router then records the LSA with the positive sequence number. If it needs to
send a new copy of the LSA at some future time, the new sequence number will be 0x00005de6.

Lollipop sequence spaces were used with the original version of OSPF, OSPFv1 (RFC 1131). Although
the use of signed numbers was an improvement over the linear number space, the circular part was
found to be vulnerable to the same ambiguities as a purely circular space. The deployment of OSPFv1
never progressed beyond the experimental stage. The current version of OSPF, OSPFv2 (originally
specified in RFC 1247), adopts the best features of linear and lollipop sequence number spaces. It
uses a signed number space like lollipop sequence numbers, beginning with 0x80000001. However,
when the sequence number goes positive, the sequence space continues to be linear until it reaches
the maximum of 0x7FFFFFFF. At that point, the OSPF process must flush the LSA from all link state
databases before restarting.

Aging

The LSA format should include a field for the age of the advertisement. When an LSA is created, the
router sets this field to one. As the packet is flooded, each router increments the age of the
advertisement.[13]

[13] Of course, another option would be to start with some maximum age and decrement.
OSPF increments; IS-IS decrements.

This process of aging adds another layer of reliability to the flooding process. The protocol defines a
maximum age difference (MaxAgeDiff) value for the network. A router might receive multiple copies of
the same LSA with identical sequence numbers but different ages. If the difference in the ages is lower
than the MaxAgeDiff, it is assumed that the age difference was the result of normal network latencies;
the original LSA in the database is retained, and the newer LSA (with the greater age) is not flooded. If
the difference is greater than the MaxAgeDiff value, it is assumed that an anomaly has occurred in the
network in which a new LSA was sent without incrementing the sequence number. In this case, the
newer LSA will be recorded, and the packet will be flooded. A typical MaxAgeDiff value is 15 minutes
(used by OSPF).

The age of an LSA continues to be incremented as it resides in a link state database. If the age for a
link state record is incremented up to some maximum age (MaxAge)again defined by the specific
routing protocolthe LSA, with age field set to the MaxAge value, is flooded to all neighbors and the



record is deleted from the databases.

If the LSA is to be flushed from all databases when MaxAge is reached, there must be a mechanism to
periodically validate the LSA and reset its timer before MaxAge is reached. A link state refresh time
(LSRefreshTime)[14] is established; when this time expires, a router floods a new LSA to all its
neighbors, who will reset the age of the sending router's records to the new received age. OSPF
defines a MaxAge of 1 hour and an LSRefreshTime of 30 minutes.

[14] LSRefreshTime, MaxAge, and MaxAgeDiff are OSPF architectural constants.

Link State Database

In addition to flooding LSAs and discovering neighbors, a third major task of the link state routing
protocol is establishing the link state database. The link state or topological database stores the LSAs
as a series of records. Although a sequence number and age and possibly other information are
included in the LSA, these variables exist mainly to manage the flooding process. The important
information for the shortest path determination process is the advertising router's ID, its attached
networks and neighboring routers, and the cost associated with those networks or neighbors. As the
previous sentence implies, LSAs might include two types of generic information:[15]

[15] Actually, there can be more than two types of information and multiple types of link state
packets. They are covered in the chapters on specific link state protocols.

Router link information  advertises a router's adjacent neighbors with a triple of (Router ID,
Neighbor ID, Cost), where cost is the cost of the link to the neighbor.

Stub network information advertises a router's directly connected stub subnets (subnets with no
neighbors) with a triple of (Router ID, Network ID, Cost).

The shortest path first (SPF) algorithm is run once for the router link information to establish shortest
paths to each router, and then stub network information is used to add these networks to the routers.
Figure 4-11 shows a network of routers and the links between them; stub networks are not shown for
the sake of simplicity. Notice that several links have different costs associated with them at each end. A
cost is associated with the outgoing direction of an interface. For instance, the link from RB to RC has
a cost of 1, but the same link has a cost of 5 in the RC to RB direction.

Figure 4-11. Link costs are calculated for the outgoing direction from an interface and do not
necessarily have to be the same at all interfaces on a link.



Table 4-2 shows a generic link state database for the network of Figure 4-11, a copy of which is stored
in every router. As you read through this database, you will see that it completely describes the
network. Now it is possible to compute a tree that describes the shortest path to each router by running
the SPF algorithm.

Table 4-2. Topological database for the network in
Figure 4-11.

Router ID Neighbor Cost

RA RB 2

RA RD 4

RA RE 4

RB RA 2

RB RC 1

RB RE 10

RC RB 5

RC RF 2

RD RA 4

RD RE 3

RD RG 5

RE RA 5

RE RB 2

RE RD 3

RE RF 2

RE RG 1

RE RH 8

RF RC 2

RF RE 2

RF RH 4



RF RH 4

RG RD 5

RG RE 1

RH RE 8

RH RF 6

SPF Algorithm

It is unfortunate that Dijkstra's algorithm is so commonly referred to in the routing world as the shortest
path first algorithm. After all, the objective of every routing protocol is to calculate shortest paths. It is
also unfortunate that Dijkstra's algorithm is often made to appear more esoteric than it really is; many
writers just can't resist putting it in set theory notation. The clearest description of the algorithm comes
from E. W. Dijkstra's original paper. Here it is in his own words, followed by a "translation" for the link
state routing protocol:

Construct [a] tree of minimum total length between the n nodes. (The tree is a graph with one and only
one path between every two nodes.)

In the course of the construction that we present here, the branches are divided into three sets:

I. the branches definitely assigned to the tree under construction (they will be in a subtree);

II. the branches from which the next branch to be added to set I, will be selected;

III. the remaining branches (rejected or not considered).

The nodes are divided into two sets:

A. the nodes connected by the branches of set I,

B. the remaining nodes (one and only one branch of set II will lead to each of these nodes).

We start the construction by choosing an arbitrary node as the only member of set A, and by placing all
branches that end in this node in set II. To start with, set I is empty. From then onwards we perform the
following two steps repeatedly.

Step 1. The shortest branch of set II is removed from this set and added to set I. As a result, one
node is transferred from set B to set A.

Step 2. Consider the branches leading from the node, which has just been transferred to set A, to the
nodes that are still in set B. If the branch under construction is longer than the corresponding
branch in set II, it is rejected; if it is shorter, it replaces the corresponding branch in set II, and
the latter is rejected.

We then return to step 1 and repeat the process until sets II and B are empty. The branches in set I
form the tree required.[16]

[16] E. W. Dijkstra. "A Note on Two Problems in Connexion with Graphs." Numerische
Mathematik, Vol. 1, 1959, pp. 269271.

Adapting the algorithm for routers, first note that Dijkstra describes three sets of branches: I, II, and III.
In the router, three databases represent the three sets:

The Tree Database This database represents set I. Links (branches) are added to the shortest



path tree by adding them here. When the algorithm is finished, this database will describe the
shortest path tree.

The Candidate Database This database corresponds to set II. Links are copied from the link state
database to this list in a prescribed order, where they become candidates to be added to the tree.

The Link State Database The repository of all links, as has been previously described. This
topological database corresponds to set III.

Dijkstra also specifies two sets of nodes, set A and set B. Here the nodes are routers. Specifically, they
are the routers represented by Neighbor ID in the Router Links triples (Router ID, Neighbor ID, Cost).
Set A comprises the routers connected by the links in the Tree database. Set B is all other routers.
Since the whole point is to find a shortest path to every router, set B should be empty when the
algorithm is finished.

Here's a version of Dijkstra's algorithm adapted for routers:

1. A router initializes the Tree database by adding itself as the root. This entry shows the router as
its own neighbor, with a cost of 0.

2. All triples in the link state database describing links to the root router's neighbors are added to the
Candidate database.

3. The cost from the root to each link in the Candidate database is calculated. The link in the
Candidate database with the lowest cost is moved to the Tree database. If two or more links are
an equally low cost from the root, choose one.

4. The Neighbor ID of the link just added to the Tree database is examined. With the exception of
any triple whose Neighbor ID is already in the Tree database, triples in the link state database
describing that router's neighbors are added to the Candidate database.

5. If entries remain in the Candidate database, return to step 3. If the Candidate database is empty,
terminate the algorithm. At termination, a single Neighbor ID entry in the Tree database should
represent every router, and the shortest path tree is complete.

Table 4-3 summarizes the process and results of applying Dijkstra's algorithm to build a shortest path
tree for the network in Figure 4-11. Router RA from Figure 4-11 is running the algorithm, using the link
state database of Table 4-2. Figure 4-12 shows the shortest path tree constructed for Router RA by this
algorithm. After each router calculates its own tree, it can examine the other routers' network link
information and add the stub networks to the tree fairly easily. From this information, entries might be
made into the routing table.

Table 4-3. Dijkstra's Algorithm Applied to the Database of Table
4-2

Candidate Cost to
Root

Tree Description

  RA,RA,0 Router A adds itself to the
tree as root.

RA,RB,2

RA,RD,4

RA,RE,4

2

4

4

RA,RA,0 The links to all of RA's
neighbors are added to the
candidate list.

RA,RD,4

RA,RE,4

RB,RC,1

4

4

3

RA,RA,0
RA,RB,2

(RA,RB,2) is the lowest-cost
link on the candidate list, so it
is added to the tree. All of
RB's neighbors except those
already in the tree are added



RB,RE,10 12 to the candidate list.
(RA,RE,4) is a lower-cost link
to RE than (RB,RE,10), so
the latter is dropped from the
candidate list.

RA,RD,4

RA,RE,4

RC,RF,2

4

4

5

RA,RA,0
RA,RB,2
RB,RC,1

(RB,RC,1) is the lowest-cost
link on the candidate list, so it
is added to the tree. All of
RC's neighbors except those
already on the tree become
candidates.

RA,RE,4

RC,RF,2

RD,RE,3

RD,RG,5

4

5

7

9

RA,RA,0
RA,RB,2
RB,RC,1
RA,RD,4

(RA,RD,4) and (RA,RE,4) are
both a cost of 4 from RA;
(RC,RF,2) is a cost of 5.
(RA,RD,4) is added to the
tree and its neighbors
become candidates. Two
paths to RE are on the
candidate list; (RD,RE,3)is a
higher cost from RA and is
dropped.

RC,RF,2

RD,RG,5

RE,RF,2

RE,RG,1

RE,RH,8

5

9

6

5

12

RA,RA,0
RA,RB,2
RB,RC,1
RA,RD,4
RA,RE,4

(RF,RE,1) is added to the
tree. All of RE's neighbors not
already on the tree are added
to the candidate list. The
higher-cost link to RG is
dropped.

RE,RF,2

RE,RG,1

RE,RH,8

RF,RH,4

6

5

12

9

RA,RA,0

RA,RB,2

RB,RC,1

RA,RD,4

RA,RE,4

RC,RF,2

(RC,RF,2) is added to the
tree, and its neighbors are
added to the candidate list.
(RE,RG,1) could have been
selected instead because it
has the same cost (5) from
RA. The higher-cost path to
RH is dropped.

RF,RH,4 9 RA,RA,0
RA,RB,2
RB,RC,1
RA,RD,4
RA,RE,4
RC,RF,2
RE,RG,1

(RE,RG,1) is added to the
tree. RG has no neighbors
that are not already on the
tree, so nothing is added to
the candidate list.

  RA,RA,0
RA,RB,2
RB,RC,1
RA,RD,4
RA,RE,4
RC,RF,2
RE,RG,1
RF,RH,4

(RF,RH,4) is the lowest-cost
link on the candidate list, so it
is added to the tree. No
candidates remain on the list,
so the algorithm is terminated.
The shortest path tree is
complete.



Figure 4-12. Shortest path tree derived by the algorithm in Table 4-3.

Areas

An area is a subset of the routers that make up a network. Dividing a network into areas is a response
to three concerns commonly expressed about link state protocols:

The necessary databases require more memory than a distance vector protocol requires.

The complex algorithm requires more CPU time than a distance vector protocol requires.

The flooding of link state packets adversely affects available bandwidth, particularly in unstable
networks.

Modern link state protocols and the routers that run them are designed to reduce these effects, but
cannot eliminate them. The last section examined what the link state database might look like, and how
an SPF algorithm might work, for a small eight-router network. Remember that the stub networks that
would be connected to those eight routers and that would form the leaves of the SPF tree were not
taken into consideration. Now, imagine an 8000-router network, and you can understand the concern
about the impact on memory, CPU, and bandwidth.

This impact can be greatly reduced by the use of areas, as in Figure 4-13. When a network is
subdivided into areas, the routers within an area need to flood LSAs only within that area and therefore
need to maintain a link state database only for that area. The smaller database means less required
memory in each router and fewer CPU cycles to run the SPF algorithm on that database. If frequent
topology changes occur, the resulting flooding will be confined to the area of the instability.

Figure 4-13. Use of areas reduces link state's demand for system resources.



The routers connecting two areas (Area Border Routers , in OSPF terminology) belong to both areas
and must maintain separate topological databases for each. Just as a host on one network that wants
to send a packet to another network only needs to know how to find its local router, a router in one
area that wants to send a packet to another area only needs to know how to find its local Area Border
Router. In other words, the intra-area router/inter-area router relationship is the same as the host/router
relationship but at a higher hierarchical level.

Distance vector protocols, such as RIP and IGRP, do not use areas. Given that these protocols have no
recourse but to see a large network as a single entity, must calculate a route to every network, and
must broadcast the resulting huge route table every 30 or 90 seconds, it becomes clear that link state
protocols utilizing areas can conserve system resources.



Interior and Exterior Gateway Protocols

Areas introduce a hierarchy to the network architecture. Another layer is added to this hierarchical
structure by grouping areas into larger areas. These higher-level areas are called autonomous systems
in the IP world and routing domains in the ISO world.

An autonomous system was once defined as a group of routers under a common administrative domain
running a common routing protocol. Given the fluidity of modern networking life, the latter part of the
definition is no longer very accurate. Departments, divisions, and even entire companies frequently
merge, and networks that were designed with different routing protocols merge along with them. The
result is that many networks nowadays combine multiple routing protocols with multiple degrees of
inelegance, all under common administrations. So a contemporary definition of an autonomous system
is a network under a common administration.

The routing protocols that run within an autonomous system are referred to as Interior Gateway
Protocols (IGP). All the protocols given in this chapter as examples of distance vector or link state
protocols are IGPs.

Routing protocols that route between autonomous systems or routing domains are referred to as
Exterior Gateway Protocols  (EGP). Whereas IGPs discover paths between networks, EGPs discover
paths between autonomous systems. Examples of EGPs include the following:

Border Gateway Protocol (BGP) for IP

Exterior Gateway Protocol (EGP) for IP (yes, an EGP named EGP)

The ISO's InterDomain Routing Protocol (IDRP)

Novell also incorporates an EGP functionality, called Level 3 Routing, into NLSP.

Having given these definitions, it must be said that the common usage of the term autonomous system
is not so absolute. Various standards documents, literature, and people tend to give various meanings
to the term. As a result, it is important to understand the context in which one is reading or hearing the
term.

This book uses autonomous system in one of two contexts:

Autonomous system might refer to a routing domain, as defined at the beginning of this section. In
this context, an autonomous system is a system of one or more IGPs that is autonomous from
other systems of IGPs. An EGP is used to route between these autonomous systems.

Autonomous system might also refer to a process domain, or a single IGP process that is
autonomous from other IGP processes. For example, a system of OSPF-speaking routers might
be referred to as an OSPF autonomous system. EIGRP also uses autonomous system in this
context. Redistribution is used to route between these autonomous systems.

The context will indicate which form of autonomous system is under discussion at different points
throughout this book.



Static or Dynamic Routing?

When reading (or being lectured about) all the glorious details of dynamic routing protocols, it's hard
not to come away with the impression that dynamic routing is always better than static routing. It's
important to keep in mind that the primary duty of a dynamic routing protocol is to automatically detect
and adapt to topological changes in the network. The price of this "automation" is paid in bandwidth
and maybe queue space, in memory, and in processing time.

Another price of dynamic routing is a reduced control of routing choices. The routing protocol decides
what the best path is to a given destination, you don't. If precise control of path selection is important,
particularly when the path you want is different from the path a routing protocol would choose, static
routing is a better choice.

A frequent objection to static routing is that it is hard to administer. This criticism might be true of
medium to large topologies with many alternative routes, but it is certainly not true of small networks
with few or no alternative routes.

The network in Figure 4-14 has a hub-and-spoke topology popular in smaller networks. If a spoke to
any router breaks, is there another route for a dynamic routing protocol to choose? This network is an
ideal candidate for static routing. Configure one static route in the hub router for each spoke router and
a single default route in each spoke router pointing to the hub, and the network is ready to go. (Default
routes are covered in Chapter 12, "Default Routes and On-Demand Routing.")

Figure 4-14. This hub-and-spoke network is ideal for static routing.

When designing a network, the simplest solution is almost always the best solution. It is good practice
to choose a dynamic routing protocol only after determining that static routing is not a practical solution
for the design at hand.



Looking Ahead

Now that the basics of dynamic routing protocols have been examined, it is time to examine specific
routing protocols. The following chapter looks at RIP, the oldest and simplest of the dynamic routing
protocols.
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Review Questions

1 What is a routing protocol?

2 What basic procedures should a routing algorithm perform?

3 Why do routing protocols use metrics?

4 What is convergence time?

5 What is load balancing? Name four different types of load balancing.

6 What is a distance vector routing protocol?

7 Name several problems associated with distance vector protocols.

8 What are neighbors?

9 What is the purpose of route invalidation timers?

10 Explain the difference between simple split horizon and split horizon with poisoned reverse.

11 What is the counting-to-infinity problem, and how can it be controlled?

12 What are holddown timers, and how do they work?

13 What are the differences between distance vector and link state routing protocols?

14 What is the purpose of a topological database?

15 Explain the basic steps involved in converging a link state network.

16 Why are sequence numbers important in link state protocols?

17 What purpose does aging serve in a link state protocol?

18 Explain how an SPF algorithm works.

19 How do areas benefit a link state network?

20 What is an autonomous system?

21 What is the difference between an IGP and an EGP?
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Chapter 5. Routing Information Protocol (RIP)
This chapter covers the following subjects:

Operation of RIP

Configuring RIP

Troubleshooting RIP

The oldest of the distance vector IP routing protocols still in widespread use, RIP currently exists in two
versions. This chapter deals with version 1 of RIP. Chapter 6, "RIPv2, RIPng, and Classless Routing,"
covers Version 2, which adds several enhancements to RIPv1. Most notably, RIPv1 is a classful routing
protocol, whereas RIPv2 is classless. This chapter introduces classful routing, and Chapter 6
introduces classless routing. Chapter 6 also introduces RIPng, which is an adaptation of RIPv2 for
support of IPv6.

Distance vector protocols, based on the algorithms developed by Bellman,[1] Ford, and Fulkerson,[2]
were implemented beginning in 1969 in networks such as ARPANET and CYCLADES. In the mid-1970s
Xerox developed a protocol called PARC[3] Universal Protocol, or PUP, to run on its 3-Mbps
experimental predecessor to modern Ethernet. PUP was routed by the Gateway Information Protocol
(GWINFO). PUP evolved into the Xerox Network Systems (XNS) protocol suite; concurrently, the
Gateway Information Protocol became the XNS Routing Information Protocol. In turn, XNS RIP has
become the precursor of such common routing protocols as Novell's IPX RIP, AppleTalk's Routing Table
Maintenance Protocol (RTMP), and, of course, IP RIP.

[1] R. E. Bellman. Dynamic Programming. Princeton, New Jersey: Princeton University
Press; 1957.

[2] L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton, New Jersey: Princeton
University Press; 1962.

[3] Palo Alto Research Center.

The 4.2 Berkeley Software Distribution of UNIX, released in 1982, implemented RIP in a daemon called
routed; many more recent versions of UNIX are based on the popular 4.2BSD and implement RIP in
either routed or gated.[4] Oddly enough, a standard for RIP was not released until 1988, after the
protocol was in extensive deployment. That was RFC 1058, written by Charles Hedrick, and it remains
the only formal standard of RIPv1.

[4] Pronounced "route-dee" and "gate-dee."

Depending on the literature you reads, RIP is either unjustly maligned or undeservedly popular.
Although it lacks the capabilities of many of its successors, its simplicity and widespread use mean that
compatibility problems between implementations are rare. RIP was designed for smaller networks in
which the data links are fairly homogeneous. Within these constraints, and especially within many UNIX
environments, RIP continues to be a popular routing protocol.



Operation of RIP

The RIP process operates from UDP port 520; all RIP messages are encapsulated in a UDP (User Datagram
Protocol) segment with both the Source and Destination Port fields set to that value. RIP defines two
message types: Request messages and Response messages. A Request message is used to ask
neighboring routers to send an update. A Response message carries the update. The metric used by RIP is
hop count, with 1 signifying a directly connected network of the advertising router and 16 signifying an
unreachable network.

On startup, RIP broadcasts a packet carrying a Request message out each RIP-enabled interface. The RIP
process then enters a loop, listening for RIP Request or Response messages from other routers. Neighbors
receiving the Request send a Response containing their route table.

When the requesting router receives the Response messages, it processes the enclosed information. If a
particular route entry included in the update is new, it is entered into the route table along with the address of
the advertising router, which is read from the source address field of the update packet. If the route is for a
network that RIP has already entered in the table, the existing entry will be replaced only if the new route has
a lower hop count. If the advertised hop count is higher than the recorded hop count and the update was
originated by the recorded next-hop router, the route will be marked as unreachable for a specified holddown
period. If at the end of that time the same neighbor is still advertising the higher hop count, the new metric will
be accepted.[5]

[5] Holddowns are used by Cisco IOS, but are not part of the stability features specified in RFC
1058.

RIP Timers and Stability Features

After startup, the router gratuitously sends a Response message out every RIP-enabled interface every 30
seconds, on average. The Response message, or update, contains the router's full route table with the
exception of entries suppressed by the split horizon rule. The update timer initiating this periodic update
includes a random variable to prevent table synchronization.[6] As a result, the time between individual
updates from a typical RIP process might be from 25 to 35 seconds. The specific random variable used by
Cisco IOS, RIP_JITTER, subtracts up to 15 percent (4.5 seconds) from the update time. Therefore, updates
from Cisco routers vary between 25.5 and 30 seconds (Figure 5-1). The destination address of the update is
the all-hosts broadcast 255.255.255.255.[7]

[6] Synchronization of route tables is discussed in Chapter 4, "Dynamic Routing Protocols."

[7] Some implementations of RIP might broadcast only on broadcast media and send updates to
the directly connected neighbor on point-to-point links. The Cisco RIP will broadcast on any link
type unless configured to do otherwise.

Figure 5-1. RIP adds a small random variable to the update timer at each reset to help avoid route
table synchronization. The RIP updates from Cisco routers vary from 25.5 to 30 seconds, as shown

in the delta times of these updates.

[View full size image]



Several other timers are employed by RIP. Recall from Chapter 4 the invalidation timer, which distance vector
protocols use to limit the amount of time a route can stay in a route table without being updated. RIP calls this
timer the expiration timer, or timeout. The Cisco IOS calls it the invalid timer . The expiration timer is
initialized to 180 seconds whenever a new route is established and is reset to the initial value whenever an
update is heard for that route. If an update for a route is not heard within that 180 seconds (six update
periods), the hop count for the route is changed to 16, marking the route as unreachable.

Another timer, the garbage collection or flush timer, is set to 240 seconds60 seconds longer than the
expiration time.[8] The route will be advertised with the unreachable metric until the garbage collection timer
expires, at which time the route will be removed from the route table. Example 5-1 shows a route table in
which a route has been marked as unreachable but has not yet been flushed.

[8] Cisco routers use a 60-second garbage collection timer, although RFC 1058 prescribes 120
seconds.

Example 5-1. This router has not heard an update for subnet 10.3.0.0 for more than six update
periods. The route has been marked unreachable but has not yet been flushed from the route table.

Mayberry#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
     10.0.0.0 255.255.0.0 is subnetted, 4 subnets
C     10.2.0.0 is directly connected, Serial0
R     10.3.0.0 255.255.0.0 is possibly down,
        routing via 10.1.1.1, Ethernet0
C     10.1.0.0 is directly connected, Ethernet0
R     10.4.0.0 [120/1] via 10.2.2.2, 00:00:00, Serial0
Mayberry#

The third timer is the holddown timer, although RFC 1058 does not call for the use of holddowns. The Cisco
implementation of RIP does use them. An update with a hop count higher than the metric recorded in the



implementation of RIP does use them. An update with a hop count higher than the metric recorded in the
route table will cause the route to go into holddown for 180 seconds (again, six update periods).

These four timers can be manipulated with the command:

timers basic update invalid holddown flush

This command applies to the entire RIP process. If the timing of one router is changed, the timing of all the
routers in the RIP domain must be changed. Therefore, these timers should not be changed from their default
values without a specific, carefully considered reason.

RIP employs split horizon with poison reverse and triggered updates. A triggered update occurs whenever the
metric for a route is changed and, unlike regularly scheduled updates, might include only the entry or entries
that changed. Also unlike regular updates, a triggered update does not cause the receiving router to reset its
update timer; if it did, a topology change could cause many routers to reset at the same time and thus cause
the periodic updates to become synchronized. To avoid a "storm" of triggered updates after a topology
change, another timer is employed. When a triggered update is transmitted, this timer is randomly set
between one and five seconds; subsequent triggered updates cannot be sent until the timer expires.

Some hosts might employ RIP in a "silent" mode. These so-called silent hosts do not generate RIP updates,
but listen for them and update their internal route tables accordingly. As an example, using routed with the -q
option enables RIP in silent mode on a UNIX host.

RIP Message Format

The RIP message format is shown in Figure 5-2. Each message contains a command and a version number
and can contain entries for up to 25 routes. Each route entry includes an address family identifier, the IP
address reachable by the route, and the hop count for the route. If a router must send an update with more
than 25 entries, multiple RIP messages must be produced. Note that the initial portion of the message is 4
octets, and each route entry is 20 octets. Therefore, the maximum message size is 4 + (25 x 20) = 504 octets.
Including an eight-byte UDP header will make the maximum RIP datagram size (not including the IP header)
512 octets.

Figure 5-2. The RIP message format.

Command will always be set to either one, signifying a Request message, or two, signifying a Response
message. There are other commands, but they are all either obsolete or reserved for private use.

Version will be set to one for RIPv1.

Address Family Identifier  is set to two for IP. The only exception to this is a request for a router's (or host's)
full route table, as discussed in the following section.



IP Address  is the address of the destination of the route. This entry might be a major network address, a
subnet, or a host route. The section titled "Classful Routing" examines how RIP distinguishes among these
three types of entries.

Metric is, as previously mentioned, a hop count between 1 and 16.

An analyzer decode of a RIP message is shown in Figure 5-3.

Figure 5-3. An Ethereal decode of a RIPv1 message shows the values in the message fields of this
specific Response message.

[View full size image]

Several historical influences contributed to the inelegant format of the RIP message in which far more bit
spaces are unused than are used. These influences range from RIP's original development as an XNS
protocol, and the developer's intentions for it to adapt to a large set of address families, to the influence of
BSD, and its use of socket addresses, to the need for fields to fall on 32-bit word boundaries. Whatever the
original motivations, you will see in Chapter 6 that these unused fields have since been put to good use.

Request Message Types

A RIP Request message might request either a full route table or information on specific routes only. In the
former case, the Request message will have a single route entry in which the address family identifier is set
to zero, the address is all zeros (0.0.0.0), and the metric is 16. A device receiving such a request responds by
unicasting its full route table to the requesting address, honoring such rules as split horizon and boundary
summarization (discussed in "Classful Routing: Summarization at Boundary Routers," later in this chapter).

Some diagnostic processes might need to know information about a specific route or routes. In this case, a
Request message might be sent with entries specifying the addresses in question. A device receiving this
request will process the entries one by one, building a Response message from the Request message. If the
device has an entry in its route table corresponding to an address in the request, it will enter the metric of its
own route entry into the metric field. If not, the metric field will be set to 16. The response will tell exactly what
the router "knows," with no consideration given to split horizon or boundary summarization.

As noted previously, hosts might run RIP in silent mode. This approach allows them to keep their route tables



up to date by listening to RIP updates from routers without having to send RIP Response messages uselessly
on the network. However, diagnostic processes might need to examine the route table of these silent hosts.
Therefore, RFC 1058 specifies that if a silent host receives a request from a UDP port other than the
standard RIP port of 520, the host must send a response.

Classful Routing

The route table in Example 5-2 contains RIP-derived routes, which are recognized from the key to the left of
each entry. Of significance in these entries are the bracketed tuples; as discussed in Chapter 3, "Static
Routing," the first number is the administrative distance, and the second number is the metric. It is readily
seen that RIP has an administrative distance of 120, and as already stated, the metric for RIP is hop count.
Therefore, network 10.8.0.0 is two hops away, via either E0 or S1. If more than one route exists to the same
destination with equal hop counts, equal-cost load balancing will be performed. The route table of Example 5-
2 contains several multiple, equal-cost routes.

Example 5-2. This route table contains subnets of networks 10.0.0.0 and 172.25.0.0. All networks not
directly connected were derived by RIP.

MtPilate#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
    10.0.0.0 255.255.0.0 is subnetted, 9 subnets
R    10.10.0.0 [120/3] via 10.5.5.1, 00:00:20, Serial1
               [120/3] via 10.1.1.1, 00:00:21, Ethernet0
R    10.11.0.0 [120/3] via 10.5.5.1, 00:00:21, Serial1
               [120/3] via 10.1.1.1, 00:00:21, Ethernet0
R    10.8.0.0 [120/2] via 10.1.1.1, 00:00:21, Ethernet0
              [120/2] via 10.5.5.1, 00:00:21, Serial1
R    10.9.0.0 [120/2] via 10.5.5.1, 00:00:21, Serial1
              [120/2] via 10.1.1.1, 00:00:21, Ethernet0
R    10.3.0.0 [120/1] via 10.1.1.1, 00:00:21, Ethernet0
              [120/1] via 10.5.5.1, 00:00:21, Serial1
C    10.1.0.0 is directly connected, Ethernet0
R    10.6.0.0 [120/1] via 10.1.1.1, 00:00:21, Ethernet0
              [120/1] via 10.5.5.1, 00:00:22, Serial1
R    10.7.0.0 [120/2] via 10.1.1.1, 00:00:22, Ethernet0
              [120/2] via 10.5.5.1, 00:00:22, Serial1
C    10.5.0.0 is directly connected, Serial1
   172.25.0.0 255.255.255.0 is subnetted, 3 subnets
R    172.25.153.0 [120/1] via 172.25.15.2, 00:00:03, Serial0
R    172.25.131.0 [120/1] via 172.25.15.2, 00:00:03, Serial0
C    172.25.15.0 is directly connected, Serial0

When a packet enters a RIP-speaking router and a route table lookup is performed, the various choices in the
table are pruned until a single path remains. First, the network portion of the destination address is read and
the route table is consulted for a match. It is this first step of reading the major class A, B, or C network
number that defines a classful route table lookup. If there is no match for the major network, the packet is
dropped and an ICMP Destination Unreachable message is sent to the packet's source. If there is a match for
the network portion, the subnets listed for that network are examined. If a match can be found, the packet is
routed. If a match cannot be made, the packet is dropped and a Destination Unreachable message is sent.

Classful Routing: Directly Connected Subnets

Classful route lookups can be illustrated with three examples (referring to Example 5-2):

1. If a packet with a destination address of 192.168.35.3 enters this router, no match for network



192.168.35.0 is found in the route table, and the packet is dropped.

2. If a packet with a destination address of 172.25.33.89 enters the router, a match is made to class B
network 172.25.0.0/24. The subnets listed for this network are then examined; no match can be made
for subnet 172.25.33.0, so that packet, too, is dropped.

3. Finally, a packet destined for 172.25.153.220 enters the router. This time 172.25.0.0/24 is matched, then
subnet 172.25.153.0 is matched, and the packet is forwarded to next-hop address 172.25.15.2.

Another look at Figure 5-2 reveals that there is no provision for RIP to advertise a subnet mask along with
each route entry. And accordingly, no masks are associated with the individual subnets in the route table.
Therefore, if the router whose forwarding database is depicted in Example 5-2 receives a packet with a
destination address of 172.25.131.23, there is no positive way to determine where the subnet bits end and
the host bits begin, or even if the address is subnetted at all.

The router's only recourse is to assume that the mask configured on one of its interfaces attached to
172.25.0.0 is used consistently throughout the network. It will use its own mask for 172.25.0.0 to derive the
subnet of the destination address. As the route tables throughout this chapter illustrate, a router that is
directly connected to a network will list the network in a heading along with the subnet mask of the
connecting interface and will then list all the known subnets of the network. If the network is not directly
connected, there is a listing only for the major-class network and no associated mask.

Because the destination addresses of packets being routed by a classful routing protocol are interpreted
according to the subnet masks locally configured on the router's interfaces, all subnet masks within a major,
class-level network must be consistent.

Classful Routing: Summarization at Boundary Routers

A question arises from the preceding discussion: How does a RIP process interpret the subnet of a major
network if it has no interfaces attached to that network? Without an interface on the class A, B, or C network
of the destination, the router has no way of recognizing the correct subnet mask to use and therefore no way
of correctly identifying the subnet.

The solution is simple: If a router has no direct attachments to the network, it needs only a single route entry
pointing toward a router that is directly attached.

Figure 5-4 shows a router that is attached at the boundary of two major networks, the class A network
10.0.0.0 and the class C network 192.168.115.0. This boundary router  does not send details of the subnets
of one major network into the other major network. As the illustration shows, it automatically performs
summarization, or subnet hiding . It advertises only the address 10.0.0.0 into network 192.168.115.0 and
advertises only the address.

Figure 5-4. This router, at the boundary of two major networks, does not advertise the subnets of
one network to routers within the other network.



In this way, the route tables for routers within network 192.168.115.0 have only a single entry that directs
packets for 10.0.0.0 toward the boundary router. The boundary router has an interface directly on network
10.0.0.0 and, therefore, has a subnet mask with which to derive the subnet for routing a packet within that
network's "cloud." Example 5-3 shows what the route table of a router within 192.168.115.0 would look like
with a single, subnetless entry for 10.0.0.0.

Example 5-3. This router has a single entry pointing toward network 10.0.0.0. The next-hop address
is the boundary router, because the network is recorded as being one hop away.

Raleigh#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
R    10.0.0.0 [120/1] via 192.168.115.40, 00:00:10, Ethernet1
     192.168.115.0 255.255.255.240 is subnetted, 6 subnets
C       192.168.115.32 is directly connected, Ethernet1
R       192.168.115.64 [120/1] via 192.168.115.99, 00:00:13, Ethernet0
C       192.168.115.96 is directly connected, Ethernet0
C       192.168.115.128 is directly connected, Serial0
R       192.168.115.192 [120/1] via 192.168.115.99, 00:00:13, Ethernet0
R       192.168.115.224 [120/1] via 192.168.115.130, 00:00:25, Serial0
Raleigh#

Chapter 3's brief discussion of discontiguous subnetssubnets of a major network address separated by a
different major networknotes that they present a problem for classful routing protocols such as RIP and IGRP.
The problem occurs when discontiguous subnets are automatically summarized at network boundaries. A
case study in the configuration section of this chapter demonstrates the problem and a solution.

Classful Routing: Summary

The defining characteristic of a classful routing protocol is that it does not advertise an address mask along
with the advertised destination address. Therefore, a classful routing protocol must first match the major class
A, B, or C network portion of a destination address. For every packet passing through the router

1. If the destination address is a member of a directly connected major network, the subnet mask
configured on the interface attached to that network will be used to determine the subnet of the
destination address. Therefore, the same subnet mask must be used consistently throughout that major
network.

2. If the destination address is not a member of a directly connected major network, the router will try to
match only the major class A, B, or C portion of the destination address.



Configuring RIP

In keeping with the simple nature of RIP, configuration is an easy task. There is one command to enable the RIP process
and one command for each network on which RIP is to run. Beyond that, RIP has few configuration options.

Case Study: A Basic RIP Configuration

Only two steps are necessary to configure RIP:

1. Enable RIP with the command router rip.

2. Specify each major network on which to run RIP with the network command. Figure 5-5 shows a four-router
network, with four major network numbers. Router Goober is attached to two subnets of network 172.17.0.0.

Figure 5-5. Both Andy and Barney are border routers between class-level networks.

[View full size image]

The commands necessary to enable RIP are displayed in Example 5-4.

Example 5-4. The RIP configuration of Goober.

router rip
 network 172.17.0.0

Similarly, Opie has two subnets of the same network and will configure with the commands in Example 5-5.

Example 5-5. Opie's RIP configuration.

router rip
 network 172.17.0.0

Executing any router command puts the router into config-router mode, indicated in the prompt. The classful nature of
RIP and the subnet hiding at network boundaries mean that no subnets can be specified with the network
commandonly major class A, B, or C network addresses. RIP can run on any interface configured with any address
belonging to the network specified with the network command.

Barney is attached to two networks10.0.0.0 and 192.168.83.0. Therefore, both networks must be specified as in
Example 5-6.

Example 5-6. Barney's RIP configuration.



router rip
 network 10.0.0.0
 network 192.168.83.0

Andy has one attachment to network 192.168.83.0, attachments to two subnets of 192.168.12.0, and attachments to two
subnets of 172.17.0.0. Example 5-7 shows its configuration.

Example 5-7. Andy's RIP configuration.

router rip
 network 172.17.0.0
 network 192.168.12.0
 network 192.168.83.0

In Example 5-8, the command debug ip rip has been turned on in Andy. Of particular interest here is the subnet hiding
that the router is performing. The subnets 192.168.12.64 and 192.168.12.192 are advertised between interfaces E0 and
E2, which are both attached to network 192.168.12.0, but the network is summarized out E1, S0, and S1, which are all
attached to different networks. Likewise, networks 192.168.83.0 and 172.17.0.0 are being summarized across classful
boundaries. Notice also that Andy is receiving a summary route for network 10.0.0.0 from Barney. Finally, split horizon
can be observed here. For example, the advertisement to Barney out E1 contains no entries for 10.0.0.0 or
192.168.83.0.

Example 5-8. These debug messages show the RIP updates received and sent by Router Andy. The results of
both network summarization and split horizon can be observed in the update entries.

Andy#debug ip rip
RIP protocol debugging is on
Andy#
RIP: sending v1 update to 255.255.255.255 via Ethernet0 (192.168.12.65)
RIP: build update entries
     subnet 192.168.12.192, metric 1
     network 10.0.0.0, metric 2
     network 192.168.83.0, metric 1
     network 172.17.0.0, metric 1
RIP: sending v1 update to 255.255.255.255 via Ethernet1 (192.168.83.1)
RIP: build update entries
     network 192.168.12.0, metric 1
     network 172.17.0.0, metric 1
RIP: sending v1 update to 255.255.255.255 via Ethernet2 (192.168.12.195)
RIP: build update entries
     subnet 192.168.12.64, metric 1
     network 10.0.0.0, metric 2
     network 192.168.83.0, metric 1
     network 172.17.0.0, metric 1
RIP: sending v1 update to 255.255.255.255 via Serial0 (172.17.1.1)
RIP: build update entries
     subnet 172.17.4.0, metric 2
     subnet 172.17.2.0, metric 1
     network 10.0.0.0, metric 2
     network 192.168.83.0, metric 1
     network 192.168.12.0, metric 1
RIP: sending v1 update to 255.255.255.255 via Serial1 (172.17.2.1)
RIP: build update entries
     subnet 172.17.1.0, metric 1
     subnet 172.17.3.0, metric 2
     network 10.0.0.0, metric 2
     network 192.168.83.0, metric 1
     network 192.168.12.0, metric 1
RIP: received v1 update from 172.17.1.2 on Serial0
     172.17.3.0 in 1 hops
RIP: received v1 update from 192.168.83.244 on Ethernet1
     10.0.0.0 in 1 hops
RIP: received v1 update from 172.17.2.2 on Serial1
     172.17.4.0 in 1 hops



Case Study: Passive Interfaces

The Router Floyd has been added to the network (Figure 5-6).

Figure 5-6. Network policy calls for no RIP exchanges between Andy and Floyd.

It is desired that no RIP advertisements be exchanged between Floyd and Andy. This is easy enough at Floyd, as
displayed in Example 5-9.

Example 5-9. Floyd's RIP configuration

router rip
 network 192.168.100.0

By not including a network statement for 192.168.12.0, Floyd will not advertise on interface 192.168.12.66. Andy,
however, has two interfaces attached to 192.168.12.0; the network must be included under RIP. To block RIP broadcasts
on an interface connected to a subnet of a RIP-enabled network, add the passive-interface command to the RIP
process. Andy's RIP configuration is displayed in Example 5-10.

Example 5-10. Andy's RIP configuration with a passive interface.

router rip
 passive-interface Ethernet0
 network 172.17.0.0
 network 192.168.12.0
 network 192.168.83.0

passive-interface is not a RIP-specific command; it might be configured under any IP routing protocol. Using the
passive-interface command essentially makes a router a silent host on the data link specified. Like other silent hosts, it
still listens to RIP broadcasts on the link and updates its route table accordingly. If the desired result is to prevent the
router from learning routes on the link, it must be achieved by more intricate control of routing updates, namely by
filtering out updates. (Route filters are discussed in Chapter 13, "Route Filtering.") Unlike a silent host, the router does
not respond to a RIP Request received on a passive interface.

Case Study: Configuring Unicast Updates

Next, Router Bea is added to the Ethernet link that Andy and Floyd share (Figure 5-7). The no-RIP policy between Andy
and Floyd remains in place, but now Bea and Andy, like Bea and Floyd, must exchange RIP advertisements.

Figure 5-7. No RIP updates should be exchanged between Andy and Floyd, but both should exchange
updates with Bea.



[View full size image]

The configuration of Bea is straightforward (see Example 5-11).

Example 5-11. Bea's RIP configuration.

router rip
 network 192.168.12.0
 network 192.168.200.0

The addition of a neighbor command under the RIP processes of Andy enables RIP to send a unicast advertisement to
Bea's interface while the passive-interface command continues to prevent broadcast updates on the link.[9]

[9] Another use of neighbor is to enable unicast updates on nonbroadcast media such as Frame Relay.

Andy's configuration is displayed in Example 5-12.

Example 5-12. Andy's RIP configuration includes a passive interface with a neighbor statement to enable
unicast updates.

router rip
 passive-interface Ethernet0
 network 172.17.0.0
 network 192.168.12.0
 network 192.168.83.0
 neighbor 192.168.12.67

Because Floyd must now send advertisements to Bea, a network command for 192.168.12.0 must be added. passive-
interface is also added to prevent broadcast updates, and a neighbor command is added to enable unicast updates to
Bea (see Example 5-13).

Example 5-13. Floyd's RIP configuration with unicast updates to neighbor 192.168.12.67.

router rip
passive-interface Ethernet0
network 192.168.12.0
network 192.168.100.0
neighbor 192.168.12.67

By enabling debug ip rip events at Andy, the results of the new configuration can be verified ( Example 5-14). Andy is
receiving updates from Bea, but not from Floyd, and is sending updates directly to Bea's interface but is not
broadcasting on its E0.



Example 5-14. The only updates Andy is sending out interface E0 are unicasts to Bea. Updates are being
received from Bea but not from Floyd.

Andy#debug ip rip events
RIP event debugging is on
Andy#
RIP: received v1 update from 192.168.12.67 on Ethernet0
RIP: Update contains 1 routes
RIP: sending v1 update to 255.255.255.255 via Ethernet1 (192.168.83.1)
RIP: Update contains 4 routes
RIP: Update queued
RIP: Update sent via Ethernet1
RIP: sending v1 update to 255.255.255.255 via Ethernet2 (192.168.12.195)
RIP: Update contains 6 routes
RIP: Update queued
RIP: Update sent via Ethernet2
RIP: sending v1 update to 255.255.255.255 via Serial0 (172.17.1.1)
RIP: Update contains 7 routes
RIP: Update queued
RIP: Update sent via Serial0
RIP: sending v1 update to 255.255.255.255 via Serial1 (172.17.2.1)
RIP: Update contains 7 routes
RIP: Update queued
RIP: Update sent via Serial1
RIP: sending v1 update to 192.168.12.67 via Ethernet0 (192.168.12.65)
RIP: Update contains 4 routes
RIP: Update queued
RIP: Update sent via Ethernet0
RIP: received v1 update from 172.17.1.2 on Serial0
RIP: Update contains 1 routes
RIP: received v1 update from 172.17.2.2 on Serial1
RIP: Update contains 1 routes
RIP: received v1 update from 192.168.12.67 on Ethernet0
RIP: Update contains 1 routes

Although Bea has learned routes from both Andy and from Floyd, and is broadcasting updates on the shared Ethernet,
the policy still works because split horizon prevents Bea from advertising the routes learned from those two routers back
onto the Ethernet.

Case Study: Discontiguous Subnets

In Figure 5-8, another router has been added to the network with a subnet 10.33.32.0/20 on its E1 interface. The
problem is that the other subnet of network 10.0.0.0, 10.33.0.0/20, is connected to Barney, and the only route between
the subnets is via 192.168.83.0 and 192.168.12.0two entirely different networks. As a result, network 10.0.0.0 is
discontiguous.

Figure 5-8. Classful protocols such as RIP and IGRP cannot route a topology in which the subnets of network
10.0.0.0 are separated by different networks.



Barney will consider itself a border router between network 10.0.0.0 and network 192.168.83.0; likewise, Ernest_T will
consider itself a border router between 10.0.0.0 and 192.168.12.0. Both will advertise a summary route of 10.0.0.0, and
as a result Andy will be "fooled into thinking" that it has two equal-cost paths to the same network. Andy will load share
on the links to Barney and Ernest_T, and there is now only a 50-50 chance that packets to network 10.0.0.0 will reach
the correct subnet.

The solution is to configure subnets of network 10.0.0.0 on the same links on which 192.168.83.0/24 and
192.168.12.192/27 reside. This is accomplished with secondary IP addresses, as displayed in Example 5-15, Example 5-
16, and Example 5-17.

Example 5-15. Barney is configured with secondary IP addresses.

interface e0
 ip address 10.33.55.1 255.255.240.0 secondary

Example 5-16. Andy is configured with secondary IP addresses, and a new network is added to RIP.

interface e1
 ip address 10.33.55.2 255.255.240.0 secondary
interface e2
 ip address 10.33.75.1 255.255.240.0 secondary
router rip
 network 10.0.0.0

Example 5-17. Ernest_T is configured with secondary IP addresses.

interface e0
 ip address 10.33.75.2 255.255.240.0 secondary

Because Andy did not previously have an interface on network 10.0.0.0, a network statement is added to the RIP
process. The result of the configuration is shown in Figure 5-9. The existing logical network structure remains in place,
and a contiguous network 10.0.0.0 is "overlaid" onto it.

Figure 5-9. Secondary addresses are used to connect the subnets of network 10.0.0.0 across the same links
on which other network addresses exist.

[View full size image]

Example 5-18 shows Ernest_T's route table. Of interest here are the dual, equal-cost routes associated with next-hop
addresses 10.33.75.1 and 192.168.12.195.

Example 5-18. The routing process in this router sees the subnets 192.168.12.192/27 and 10.33.64.0/20 as
separate links, although they reside on the same physical interface.



Ernest_T#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
    10.0.0.0 255.255.240.0 is subnetted, 4 subnets
C     10.33.32.0 is directly connected, Ethernet1
R     10.33.48.0 [120/1] via 10.33.75.1, 00:00:05, Ethernet0
R     10.33.0.0 [120/2] via 10.33.75.1, 00:00:05, Ethernet0
C     10.33.64.0 is directly connected, Ethernet0
R     192.168.83.0 [120/1] via 192.168.12.195, 00:00:05, Ethernet0
                   [120/1] via 10.33.75.1, 00:00:05, Ethernet0
      192.168.12.0 255.255.255.224 is subnetted, 2 subnets
R     192.168.12.64 [120/1] via 192.168.12.195, 00:00:05, Ethernet0
C     192.168.12.192 is directly connected, Ethernet0
R     192.168.200.0 [120/2] via 192.168.12.195, 00:00:05, Ethernet0
                    [120/2] via 10.33.75.1, 00:00:05, Ethernet0
R     172.17.0.0 [120/1] via 192.168.12.195, 00:00:06, Ethernet0
                 [120/1] via 10.33.75.1, 00:00:06, Ethernet0
Ernest_T#

Because the routing process sees secondary addresses as separate data links, caution should be used when planning
them on RIP or IGRP networks. A separate RIP update will be broadcast on each subnet; if the updates are large and
the bandwidth of the physical link is limited (such as on serial links), the multiple updates can cause congestion. Multiple
updates on a link configured with secondary addresses can be observed in Example 5-21, later in this chapter.

Type cautiously when entering secondary addresses. If you omit the keyword secondary, the router will assume that
the primary address is to be replaced with the new address. Making this mistake on an in-service interface will have
serious consequences.

Case Study: Manipulating RIP Metrics

A serial link, to be used as a backup, has been added between Ernest_T and Barney (Figure 5-10). This link should be
used only if the route via Andy fails. The problem is that the path between Barney's 10.33.0.0 subnet and Ernest_T's
10.33.32.0 subnet is one hop via the serial link and two hops via the preferred Ethernet links. Under normal
circumstances, RIP will choose the serial link.

Figure 5-10. RIP metrics must be manipulated so that the two-hop Ethernet route between Barney and
Ernest_T will be preferred over the one-hop serial route.

[View full size image]

The route metrics can be manipulated with the offset-list command. The command specifies a number to add to the
metric of a route entry and references an access list[10] to determine which route entries to modify. The syntax of the
command is as follows:

[10] See Appendix B for a tutorial on access lists.

offset-list {access-list-number | name} { in | out} offset [type number]



The configuration of Ernest_T is in Example 5-19.

Example 5-19. Ernest_T's RIP configuration with an inbound offset list.

access-list 1 permit 10.33.0.0 0.0.0.0
router rip
 network 192.168.12.0
 network 10.0.0.0
 offset-list 1 in 2 Serial0

An access list is written that identifies the route to subnet 10.33.0.0. The syntax of the offset list says, "Examine RIP
advertisements incoming from interface S0. For route entries matching the addresses specified in access list 1, add 2
hops to the metric."

After Barney is configured, it will have the entries in Example 5-20 in its configuration file.

Example 5-20. Barney's RIP configuration with an inbound offset list.

router rip
 offset-list 5 in 2 Serial0
 network 10.0.0.0
 network 192.168.83.0
!
access-list 5 permit 10.33.32.0 0.0.0.0

Example 5-21 shows the results of the configuration at Ernest_T.

Example 5-21. The addition of the hops specified in the offset list changes the hop count to subnet
10.33.0.0/20 via S0 from one to three. Now the two-hop route via E0 is used.

Ernest_T#debug ip rip
RIP protocol debugging is on
Ernest_T#
RIP: received v1 update from 192.168.12.195 on Ethernet0
     192.168.12.64 in 1 hops
     10.0.0.0 in 1 hops
     192.168.83.0 in 1 hops
     192.168.200.0 in 2 hops
     172.17.0.0 in 1 hops
RIP: received v1 update from 10.33.75.1 on Ethernet0
     10.33.48.0 in 1 hops
     10.33.0.0 in 2 hops
     192.168.83.0 in 1 hops
     192.168.12.0 in 1 hops
     192.168.200.0 in 2 hops
     172.17.0.0 in 1 hops
RIP: received v1 update from 10.33.25.1 on Serial0
     10.33.32.0 in 3 hops
     10.33.48.0 in 1 hops
     10.33.0.0 in 3 hops
     192.168.83.0 in 1 hops
     192.168.200.0 in 3 hops
     172.17.0.0 in 2 hops
RIP: sending v1 update to 255.255.255.255 via Ethernet0 (192.168.12.196)
RIP: build update entries
     network 10.0.0.0, metric 1
RIP: sending v1 update to 255.255.255.255 via Ethernet0 (10.33.75.2)
RIP: build update entries
     subnet 10.33.32.0, metric 1
     subnet 10.33.16.0, metric 1
RIP: sending v1 update to 255.255.255.255 via Ethernet1 (10.33.35.1)



RIP: build update entries
     subnet 10.33.48.0, metric 2
     subnet 10.33.0.0, metric 3
     subnet 10.33.16.0, metric 1
     subnet 10.33.64.0, metric 1
     network 192.168.83.0, metric 2
     network 192.168.12.0, metric 1
     network 192.168.200.0, metric 3
     network 172.17.0.0, metric 2
RIP: sending v1 update to 255.255.255.255 via Serial0 (10.33.25.2)
RIP: build update entries
     subnet 10.33.32.0, metric 3
     subnet 10.33.0.0, metric 3
     subnet 10.33.64.0, metric 1
     network 192.168.12.0, metric 1
     network 192.168.200.0, metric 3
     network 172.17.0.0, metric 2

Alternatively, instead of having the two routers modify incoming routes, the routers can be configured to modify their
outgoing routes. The configurations in Example 5-22 and Example 5-23 will have the same effects as the previous
configurations.

Example 5-22. Ernest_T's RIP configuration uses outbound offset lists.

router rip
 offset-list 3 out 2 Serial0
 network 192.168.12.0
 network 10.0.0.0
!
access-list 3 permit 10.33.32.0 0.0.0.0

Example 5-23. Barney's RIP configuration uses outbound offset lists.

router rip
 offset-list 7 out 2 Serial0
 network 10.0.0.0
 network 192.168.83.0
!
access-list 7 permit 10.33.0.0 0.0.0.0

Several other options are available for configuring offset lists. If no interface is identified, the list will modify all incoming
or outgoing updates specified by the access list on any interface. If no access list is called (by using a zero as the
access list number), the offset list will modify all incoming or outgoing updates.

Caution should be applied when choosing whether to use offset lists on incoming or outgoing advertisements. If more
than two routers are attached to a broadcast network, consideration must be given to whether a single router should
broadcast a modified advertisement to all its neighbors or whether a single router should modify a received
advertisement.

Care must also be exercised when implementing offset lists on routes that are in use. When an offset list causes a next-
hop router to advertise a higher metric than it had been advertising, the route will be marked unreachable until the
holddown timer expires.

Case Study: Minimizing the Impact of Updates

There are times when you will want to minimize network traffic caused by routing updates. Regular RIP updates, by
default, occur every 30 seconds and include the full route table, in addition to the flash updates that are transmitted
when there is a change in the metric of route entries. In a network with many subnets, routing updates can affect traffic,
especially on low bandwidth links. You also might want to minimize routing updates if you are paying for traffic traversing
a link.

Suppose utilization on the new serial link from Barney to Ernest_T, in Figure 5-10, is high. The RIP routing traffic can be



reduced in two ways to minimize the traffic caused by the routing protocol: The timers can be adjusted so the updates
don't occur as frequently, but this will cause longer convergence time when the primary link fails. Or triggered extensions
can be configured to eliminate periodic RIP updates.

The interface command ip rip triggered enables the triggered extensions of RIP.[11] After two routers on a serial link
determine both are configured for triggered RIP, route table updates are minimized to include only the initial exchange of
route tables and updates when changes to the route tables occur. This command is only available on serial links and
must be configured on both ends of the link before taking affect.

[11] Triggered Extensions are defined in RFC 2091 and were first introduced into IOS in release 12.0(1)T.

The triggered extensions are configured on Barney's serial link to Ernest_T with the configuration in Example 5-24.

Example 5-24. Barney is configured with triggered, rather then periodic, updates.

interface serial 0
 ip rip triggered

Debugging on Barney shows that Barney attempts to establish a triggered relationship with the router on the other end
of the link. Barney sends polls and waits for acknowledgments. When it doesn't receive any acknowledgments, Barney
begins sending regular RIPv1 updates. Output from debug ip rip and debug ip rip trigger is shown in Example 5-25.

Example 5-25. When a router is initially configured with triggered RIP, it polls to determine if its neighbor is
also configured for triggered RIP.

Barney#debug ip rip
RIP protocol debugging is
Barney#debug ip rip trigger
RIP trigger debugging is on

Barney(config)#interface serial 0
Barney(config-if)#ip rip triggered
* 13:22:10.223: RIP: sending triggered request on Serial0 to 255.255.255.255
* 13:22:10.223: RIP: Start poll timer from 10.33.25.1 on Serial0
* 13:22:15.223: RIP-TIMER: polling timer on Serial0(10.33.25.1) expired
* 13:22:15.223: RIP: sending triggered request on Serial0 to 255.255.255.255
* 13:22:15.223: RIP: Start poll timer from source 10.33.25.1 on Serial0
* 13:22:16.733: RIP: received v1 update from 10.33.25.2 on Serial0
* 13:22:16.733:      172.17.8.0 in 1 hops
* 13:22:16.733:      172.17.9.0 in 1 hops
* 13:22:16.737:      172.17.10.0 in 1 hops
* 13:22:16.737:      172.17.11.0 in 1 hops
* 13:22:19.466: RIP-TIMER: sending timer on Serial0 expired
* 13:22:20.223: RIP-TIMER: polling timer on Serial0(10.33.25.1) expired
* 13:22:20.223: RIP: sending triggered request on Serial0 to 255.255.255.255
* 13:22:20.223: RIP: Start poll timer from source 10.33.25.1 on Serial0
* 13:22:25.223: RIP-TIMER: polling timer on Serial0(10.33.25.1) expired
* 13:22:25.223: RIP: sending triggered request on Serial0 to 255.255.255.255
* 13:22:25.223: RIP: Start poll timer from source 10.33.25.1 on Serial0
* 13:22:30.224: RIP-TIMER: polling timer on Serial0(10.33.25.1) expired
* 13:22:30.224: RIP: sending triggered request on Serial0 to 255.255.255.255
* 13:22:30.224: RIP: Start poll timer from source 10.33.25.1 on Serial0
* 13:22:35.224: RIP-TIMER: polling timer on Serial0(10.33.25.1) expired
* 13:22:35.224: RIP: sending triggered request on Serial0 to 255.255.255.255
* 13:22:35.224: RIP: Start poll timer from source 10.33.25.1 on Serial0
* 13:22:40.224: RIP-TIMER: polling timer on Serial0(10.33.25.1) expired
* 13:22:40.224: RIP: Poll 6 times on Serial0 thru 10.33.25.1 without any ack
* 13:22:46.126: RIP: received v1 update from 10.33.25.2 on Serial0
* 13:22:46.126:      172.17.8.0 in 1 hops
* 13:22:46.126:      172.17.9.0 in 1 hops
* 13:22:46.130:      172.17.10.0 in 1 hops
* 13:22:46.130:      172.17.11.0 in 1 hops
* 13:22:49.054: RIP-TIMER: sending timer on Serial0 expired
* 13:22:49.054: RIP: sending v1 update to 255.255.255.255 via Serial0(10.33.25.1)
* 13:22:49.054: RIP: build update entries
* 13:22:49.054:   network 10.0.0.0 metric 2
* 13:22:49.054:   subnet 172.17.0.0 metric 2



* 13:22:49.054:   subnet 172.17.0.0 metric 2
* 13:22:49.054:   subnet 172.17.2.0 metric 1
* 13:22:49.058:   subnet 172.17.4.0 metric 2
* 13:22:49.058:   network 192.168.12.0 metric 1
* 13:22:49.058:   network 192.168.83.0 metric 1
* 13:23:13.070: RIP: received v1 update from 10.33.25.2 on Serial0
* 13:23:13.070:      172.17.8.0 in 1 hops
* 13:23:13.074:      172.17.9.0 in 1 hops
* 13:23:13.074:      172.17.10.0 in 1 hops
* 13:23:13.074:      172.17.11.0 in 1 hops
* 13:23:17.385: RIP-TIMER: sending timer on Serial0 expired
* 13:23:17.385: RIP: sending v1 update to 255.255.255.255 via Serial0(10.33.25.1)
* 13:23:17.385: RIP: build update entries
* 13:23:17.385:   network 10.0.0.0 metric 2
* 13:23:17.385:   subnet 172.17.0.0 metric 2
* 13:23:17.385:   subnet 172.17.2.0 metric 1
* 13:23:17.389:   subnet 172.17.4.0 metric 2
* 13:23:17.389:   network 192.168.12.0 metric 1
* 13:23:17.389:   network 192.168.83.0 metric 1

The debug output shows that the configured router sends six triggered requests. For each one, the router sets a poll
timer, which expires in five seconds. If no acknowledgment is received within the five seconds, another triggered request
is sent. If no acknowledgment is received after six triggered requests have been sent and the polls have expired, the
router waits for the next regular update time and broadcasts a RIP update. While Barney is sending triggered requests,
Ernest_T continues to broadcast its own RIP updates, which Barney processes.

Now, Ernest_T's serial link to Barney is configured with triggered RIP. Through debugging on Ernest_T, Example 5-26
shows the initialization process between Barney and Ernest_T.

Example 5-26. Debug output shows two routers establishing a triggered RIP relationship.

* 13:35:04.612: RIP: received v1 triggered request from 172.17.1.2 on Serial0
* 13:35:04.616: RIP: Trigger rip running on network 172.17.0.0 thru Serial0
* 13:35:04.616: RIP: 172.17.1.2 change state from DOWN to INIT
* 13:35:04.616: RIP: 172.17.1.2 change state from INIT to LOADING
* 13:35:04.616: RIP: send v1 triggered flush update to 172.17.1.2 on Serial0
* 13:35:04.616: RIP: assigned sequence number 25 on Serial0
* 13:35:04.616: RIP: build update entries
* 13:35:04.620:   route 202: network 192.168.12.0 metric 1
* 13:35:04.620:   route 206: subnet 172.17.2.0 metric 1
* 13:35:04.620:   route 208: network 192.168.83.0 metric 1
* 13:35:04.620:   route 210: network 10.0.0.0 metric 2
* 13:35:04.620:   route 215: subnet 172.17.4.0 metric 2
* 13:35:04.620:   route 217: subnet 172.17.0.0 metric 2
* 13:35:04.624: RIP: Update contains 6 routes, start 202, end 226
* 13:35:04.624: RIP: start retransmit timer of 172.17.1.2
* 13:35:04.680: RIP: received v1 triggered ack from 172.17.1.2 on Serial0 flush seq# 25
* 13:35:04.684: RIP: 172.17.1.2 change state from LOADING to FULL
* 13:35:04.688: RIP: received v1 triggered update from 172.17.1.2 on Serial0
* 13:35:04.688: RIP: sending v1 ack to 172.17.1.2 via Serial0 (172.17.1.1), flush,
seq# 14
* 13:35:04.736: RIP: received v1 triggered update from 172.17.1.2 on Serial0
* 13:35:04.740: RIP: sending v1 ack to 172.17.1.2 via Serial0 (172.17.1.1), seq# 15
* 13:35:04.740:      172.17.9.0 in 1 hops
* 13:35:04.740:      172.17.8.0 in 1 hops
* 13:35:04.740:      172.17.11.0 in 1 hops
* 13:35:04.744:      172.17.10.0 in 1 hops
* 13:35:52.879: RIP-TIMER: sending timer on Serial0 expired
* 13:36:21.907: RIP-TIMER: sending timer on Serial0 expired
* 13:36:47.421: RIP-TIMER: sending timer on Serial0 expired

The triggered state goes from DOWN, through INIT and LOADING, to FULL. Route information is exchanged and
updates are acknowledged. At the end of the output, you can see that the RIP update timers are expiring, but no new
updates are sent, nor are updates received.



Troubleshooting RIP

Troubleshooting RIP is relatively simple. Most difficulties with classful protocols such as RIP involve
either misconfigured subnet masks or discontiguous subnets. If a route table contains inaccurate or
missing routes, check all subnets for contiguity and all subnet masks for consistency.

A final command can be useful when a high-speed router is sending multiple RIP messages to a low-
speed router. In such a case, the low-speed router might not be able to process updates as quickly as
they are received, and routing information might be lost. output-delay delay can be used under the
RIP command to set an interpacket gap of between 8 and 50 milliseconds. (The default is 0
milliseconds.)



Looking Ahead

The simplicity, maturity, and widespread acceptance of RIP ensure that it will be in service for many
years to come. However, you saw in this chapter the limitations of its classful nature. The next chapter
continues to examine RIP, and you see both how the protocol has been extended to support classless
routing and also how it has been extended to support IPv6.



Summary Table: Chapter 5 Command Review

Command Description
debug ip rip
[events]

Summarizes RIP traffic to and from the
router

ip address ip-
address mask
secondary

Configures an interface with the indicated
IP address as a secondary address

ip rip triggered Configures triggered extensions to RIP on
an interface

neighbor ip-
address

Establishes the link indicated by the IP
address as a neighbor of the interface

network
network-number

Specifies the indicated network as one
that will run RIP

offset-list
{access-list-
number  | name}
{in | out} offset
[type number ]

Stipulates that a route entry belonging to
the indicated access list will have the
indicated offset number added to its metric

output-delay
delay

Sets an interpacket gap of the indicated
delay length to accommodate processing
delays between high-speed and low-speed
routers

passive-
interface type
number

Blocks RIP broadcasts on the interface
indicated by type and number

router rip Enables RIP
timers basic
update invalid
holddown flush

Manipulates the value of the indicated
timer
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Review Questions

1 What port does RIP use?

2 What metric does RIP use? How is the metric used to indicate an unreachable network?

3 What is the update period for RIP?

4 How many updates must be missed before a route entry will be marked as unreachable?

5 What is the purpose of the garbage collection timer?

6 Why is a random timer associated with triggered updates? What is the range of this timer?

7 What is the difference between a RIP Request message and a RIP Response message?

8 Which two types of Request messages does RIP use?

9 Under what circumstances will a RIP response be sent?

10 Why does RIP hide subnets at major network boundaries?



Configuration Exercises

1 Write configurations for the six routers in Figure 5-11 to route to all subnets via RIP.

Figure 5-11. Network for Configuration Exercises 1 through 4.

[View full size image]

2 Change the configurations of Configuration Exercise 1 so that RIP updates are unicast
between RTC and RTD, instead of broadcast.

3 The bandwidth of the serial link between RTC and RTD in Figure 5-11 is very limited.
Configure RIP to send updates across this link every two minutes. Carefully consider what
timers must be changed and on what routers the timers must be changed.

4 A policy has been established that dictates that network 192.168.4.0 should be
unreachable from RTA and that network 192.168.5.0 should be unreachable from RTB.
Use one or more offset lists to implement this policy.

5 According to the section, "Classful Routing: Directly Connected Subnets," subnet masks
within a major, class-level network must be consistent. The section does not, however, say
that subnet masks within a major, class-level network must be identical. The RIP
configuration for both routers in Figure 5-12 follows:

              router rip
              network 192.168.20.0

Figure 5-12. Network for Configuration Exercise 5.



Will packets be routed correctly in this small network? Explain why or why not.



Troubleshooting Exercises

1 In the first offset list example, the access list in Barney is changed from

access-list 5 permit 10.33.32.0 0.0.0.0

to

access-list 5 deny 10.33.32.0 0.0.0.0
access-list 5 permit any

What is the result?

2 Figure 5-13 shows a network in which the IP address masks on one router have been misconfigured. Example
5-27 through Example 5-29 show the route tables of RTA, RTB, and RTC, respectively. Based on what you
know about the way RIP advertises and receives updates, explain each entry in RTB's route table. Explain why
RTB's entry for subnet 172.16.26.0 indicates a 32-bit mask. If any entries are missing in any of the route
tables, explain why.

Figure 5-13. Network for Troubleshooting Exercises 2 and 3.

Example 5-27. Route table of RTA in Figure 5-13.

RTA#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route
Gateway of last resort is not set
     172.16.0.0/16 is subnetted, 4 subnets
R       172.16.24.0 [120/1] via 172.16.18.3, 00:00:01, Ethernet0
R       172.16.26.0 [120/2] via 172.16.18.3, 00:00:01, Ethernet0
C       172.16.20.0 is directly connected, Ethernet1
C       172.16.18.0 is directly connected, Ethernet0
RTA#

Example 5-28. Route table of RTB in Figure 5-13.

RTB#show ip route



Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route, o - ODR
Gateway of last resort is not set
     172.16.0.0/16 is variably subnetted, 4 subnets, 2 masks
R       172.16.24.0/22 [120/1] via 172.16.18.3, 00:00:20, Ethernet0
R       172.16.26.0/32 [120/2] via 172.16.18.3, 00:00:20, Ethernet0
C       172.16.20.0/22 is directly connected, Ethernet1
C       172.16.16.0/22 is directly connected, Ethernet0
RTB#

Example 5-29. Route table of RTC in Figure 5-13.

RTC#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route, o - ODR
Gateway of last resort is not set
     172.16.0.0/23 is subnetted, 4 subnets
C       172.16.24.0 is directly connected, Serial0
R       172.16.26.0 [120/1] via 172.16.24.2, 00:00:09, Serial0
R       172.16.20.0 [120/1] via 172.16.18.5, 00:00:25, Ethernet0
C       172.16.18.0 is directly connected, Ethernet0
RTC#

3 Users on subnet 172.16.18.0/23 in Figure 5-13 are complaining that connectivity to subnet 172.16.26.0/23 is
intermittentsometimes it can be reached, sometimes it can't. (The bad subnet masks of RTB have been
corrected.) A first examination of the route tables of RTC and RTD (Example 5-30) seems to show no
problems. All subnets are in both tables. Yet a minute or so later, RTC shows subnet 172.16.26.0/23 to be
unreachable (Example 5-31), whereas RTD still shows all subnets. A few minutes after that, the subnet is back
in RTC's route table (Example 5-32). In each of the three figures, the route table of RTD shows no change. A
careful examination of the route tables in Example 5-30 through Example 5-32 will reveal the problem. What is
it?

Example 5-30. Route tables of RTC and RTD in Figure 5-13.

RTC#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route, o - ODR
Gateway of last resort is not set
     172.16.0.0/23 is subnetted, 5 subnets
C       172.16.24.0 is directly connected, Serial0
R       172.16.26.0 [120/1] via 172.16.24.2, 00:02:42, Serial0
R       172.16.20.0 [120/1] via 172.16.18.5, 00:00:22, Ethernet0
R       172.16.22.0 [120/1] via 172.16.18.4, 00:00:05, Ethernet0
C       172.16.18.0 is directly connected, Ethernet0
________________________________________________________________________________
RTD#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route



Gateway of last resort is not set
     172.16.0.0/16 is subnetted, 5 subnets
C       172.16.24.0 is directly connected, Serial0
C       172.16.26.0 is directly connected, TokenRing0
R       172.16.20.0 [120/2] via 172.16.24.1, 00:00:00, Serial0
R       172.16.22.0 [120/2] via 172.16.24.1, 00:00:00, Serial0
R       172.16.18.0 [120/1] via 172.16.24.1, 00:00:00, Serial0

Example 5-31. Route tables of RTC and RTD, examined approximately 60 seconds after Example 5-30.

RTC#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route, o - ODR
Gateway of last resort is not set
     172.16.0.0/23 is subnetted, 5 subnets
C       172.16.24.0 is directly connected, Serial0
R       172.16.26.0/23 is possibly down,
           routing via 172.16.24.2, Serial0
R       172.16.20.0 [120/1] via 172.16.18.5, 00:00:19, Ethernet0
R       172.16.22.0 [120/1] via 172.16.18.4, 00:00:24, Ethernet0
C       172.16.18.0 is directly connected, Ethernet0
________________________________________________________________________________
RTD#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route
Gateway of last resort is not set
     172.16.0.0/16 is subnetted, 5 subnets
C       172.16.24.0 is directly connected, Serial0
C       172.16.26.0 is directly connected, TokenRing0
R       172.16.20.0 [120/2] via 172.16.24.1, 00:00:15, Serial0
R       172.16.22.0 [120/2] via 172.16.24.1, 00:00:15, Serial0
R       172.16.18.0 [120/1] via 172.16.24.1, 00:00:15, Serial0

Example 5-32. Route tables of RTC and RTD, examined approximately 120 seconds after Example 5-31.

RTC#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route, o - ODR
Gateway of last resort is not set
     172.16.0.0/23 is subnetted, 5 subnets
C       172.16.24.0 is directly connected, Serial0
R       172.16.26.0 [120/1] via 172.16.24.2, 00:00:09, Serial0
R       172.16.20.0 [120/1] via 172.16.18.5, 00:00:11, Ethernet0
R       172.16.22.0 [120/1] via 172.16.18.4, 00:00:18, Ethernet0
C       172.16.18.0 is directly connected, Ethernet0
________________________________________________________________________________
RTD#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route
Gateway of last resort is not set
     172.16.0.0/16 is subnetted, 5 subnets



C       172.16.24.0 is directly connected, Serial0
C       172.16.26.0 is directly connected, TokenRing0
R       172.16.20.0 [120/2] via 172.16.24.1, 00:00:19, Serial0
R       172.16.22.0 [120/2] via 172.16.24.1, 00:00:19, Serial0
R       172.16.18.0 [120/1] via 172.16.24.1, 00:00:19, Serial0



Chapter 6. RIPv2, RIPng, and Classless Routing
This chapter covers the following subjects:

Operation of RIPv2

Operation of RIPng

Configuring RIPv2

Configuring RIPng

Troubleshooting RIPv2 and RIPng

RIP Version 2 (RIPv2) is defined in RFC 1723[1] and is supported in IOS Versions 11.1 and later. RIPv2
is not a new protocol; rather, it is RIPv1 with some extensions to bring it more up to date with modern
routing environments. These extensions are

[1] Supplemental to this RFC are RFC 1721, "RIP Version 2 Protocol Analysis," and RFC
1722, "RIP Version 2 Protocol Applicability Statement."

Subnet masks carried with each route entry

Authentication of routing updates

Next-hop addresses carried with each route entry

External route tags

Multicast route updates

The most important of these extensions is the addition of a Subnet Mask field to the routing update
entries, enabling the use of variable-length subnet masks and qualifying RIPv2 as a classless routing
protocol.

RIPv2 is the first of the classless routing protocols discussed in this book. As such, this chapter serves
as an introduction to classless routing, and to RIPv2.

RIP next generation (RIPng), a modification of RIPv2 for routing IPv6, is also covered in this chapter.
Unlike IPv4, IPv6 is inherently classless; there are no class A, B, and C, or similar address groupings.
Therefore RIPng is also a classless routing protocol.



Operation of RIPv2

All of the operational procedures, timers, and stability functions of RIPv1 remain the same in Version 2,
with the exception of the broadcast updates. RIPv2 multicasts updates to other RIPv2-speaking routers,
using the reserved class D address 224.0.0.9. The advantage of multicasting is that devices on the
local network that are not concerned with RIP routing do not have to spend time "unwrapping"
broadcast packets from the router. The multicast updates are examined further in the section,
"Compatibility with RIPv1."

After a look at how the RIP message format accommodates the Version 2 extensions, this section
focuses on the operation and benefits of these additional features.

RIPv2 Message Format

The RIPv2 message format is shown in Figure 6-1; the basic structure is the same as for RIPv1. All the
extensions to the original protocol are carried within what were unused fields. Like Version 1, RIPv2
updates can contain entries for up to 25 routes. Also like Version 1, RIPv2 operates from UDP port 520
and has a maximum datagram size (with an eight-byte UDP header) of 512 octets.

Figure 6-1. RIPv2 takes advantage of the unused fields of the Version 1 message so that the
extensions do not change the basic format.

Command will always be set to either one, signifying a request message, or two, signifying a
response message.

Version will be set to two for RIPv2. If it is set to zero, or if it is set to one but the message is not a
valid RIPv1 format, the message will be discarded. RIPv2 will process valid RIPv1 messages.

Address Family Identifier is set to two for IPv4. The only exception is a request for a router's (or
host's) full routing table, in which case it will be set to zero.

Route Tag provides a field for tagging external routes or routes that have been redistributed into
the RIPv2 process. One suggested use of this 16-bit field is to carry the autonomous system
number of routes that have been imported from an external routing protocol. Although RIP itself
does not use this field, external routing protocols connected to a RIP domain in multiple locations
may use the route tag field to exchange information across the RIP domain. The field may also be
used to group certain external routes for easier control within the RIP domain. The use of route
tags is discussed further in Chapter 14, "Route Maps."



IP Address is the IPv4 address of the destination of the route. It may be a major network address,
a subnet, or a host route.

Subnet Mask is 32-bit mask that identifies the network and subnet portion of the IPv4 address.
The significance of this field is discussed in the section "Variable-Length Subnet Masking."

Next Hop identifies a better next-hop address, if one exists, than the address of the advertising
router. That is, it indicates a next-hop address, on the same subnet, that is metrically closer to the
destination than the advertising router is. If the field is set to all zeros (0.0.0.0), the address of the
advertising router is the best next-hop address. An example of where this field would be useful is
given at the end of this section.

Metric is a hop count between 1 and 16.

Figure 6-2 shows four routers connected to an Ethernet link.[2] Jicarilla, Mescalero, and Chiricahua are
all in autonomous system number 65501 and are speaking RIPv2. Chiricahua is a border router
between autonomous system 65501 and autonomous system 65502; in the second autonomous
system, it speaks BGP to Lipan.

[2] This figure is an adaptation of an example presented by Gary Malkin in RFC 1722.

Figure 6-2. Although they share a common data link, Jicarilla and Mescalero speak only RIPv2;
Lipan speaks only BGP. Chiricahua is responsible for informing the first two routers of any

routes learned from the latter.

Here, Chiricahua is advertising routes it learns from BGP to the RIP-speaking routers (Figure 6-3).[3] In
its RIPv2 advertisements, Chiricahua will use the Route Tag field to indicate that subnet 10.3.3.0, with a
mask of 255.255.255.0, is in autonomous system 65502 (0xFFDE). Chiricahua will also use the Next
Hop field to inform Jicarilla and Mescalero that the best next-hop address to 10.3.3.0 is Lipan's
interface, 10.1.1.3, rather than its own interface. Note that because Lipan does not run RIP, and
Jicarilla and Mescalero do not run BGP, Jicarilla and Mescalero have no way of knowing directly that
Lipan is the best next-hop router, even though it is reachable on the same subnet.

[3] Redistribution refers to the practice of advertising routes learned from one protocol to
another protocol; it is discussed in detail in Chapter 11, "Route Redistribution."

Figure 6-3. This protocol capture of a RIPv2 update from Chiricahua shows the Route Tag,
Subnet Mask, and Next Hop fields being used to advertise subnet 10.3.3.0.

[View full size image]



Compatibility with RIPv1

RIPv1 handles updates in a flexible manner. If the Version field indicates Version 1 but any bits of any
unused fields are set to one, the update is discarded. If the version is greater than one, the fields
defined as unused in Version 1 are ignored and the message is processed. As a result, newer editions
of the protocol, like RIPv2, can be backward-compatible with RIPv1.

RFC 1723 defines a "compatibility switch" with four settings, which allows Versions 1 and 2 to
interoperate:

1. RIP-1, in which only RIPv1 messages are transmitted

2. RIP-1 Compatibility, which causes RIPv2 to broadcast its messages instead of multicast them so
that RIPv1 may receive them

3. RIP-2, in which RIPv2 messages are multicast to destination address 224.0.0.9

4. None, in which no updates are sent

The RFC recommends that these switches be configurable on a per interface basis. The Cisco
commands for settings 1 through 3 are presented in the section "Configuring RIPv2"; setting 4 is
accomplished by using the passive-interface command.

Additionally, RFC 1723 defines a "receive control switch" to regulate the reception of updates. The four
recommended settings of this switch are

1. RIP-1 Only

2. RIP-2 Only

3. Both



3. Both

4. None

This switch should also be configurable on a per interface basis. The Cisco commands for settings 1
through 3 are also presented in the configuration section of this chapter. Setting 4 can be accomplished
by using an access list to filter UDP source port 520, by not including a network statement for the
interface,[4] or by configuring a route filter as discussed in Chapter 13, "Route Filtering."

[4] This method would work only if no other interface on the router on which RIP should run is
attached to the same major network.

Classless Route Lookups

Chapter 5, "Routing Information Protocol (RIP)," explains classful route lookups, in which a destination
address is first matched to its major network address in the routing table and is then matched to a
subnet of the major network. If no match is found at either of these steps, the packet is dropped.

Classful route lookup was the default IOS behavior until 11.3, when the default route lookup behavior
was changed to classless. For earlier IOS versions you can enable classless route lookup, even for
classful routing protocols such as RIPv1 and IGRP, by entering the global command ip classless.
When a router performs classless route lookups, it does not pay attention to the class of the destination
address. Instead, it performs a bit-by-bit best match between the destination address and all its known
routes. This capability can be very useful when working with default routes, as demonstrated in
Chapter 12, "Default Routes and On-Demand Routing." When coupled with the other features of
classless routing protocols, classless route lookups can be very powerful.

Classless Routing Protocols

The true defining characteristic of classless routing protocols is the capability to carry subnet masks in
their route advertisements. One benefit of having a mask associated with each route is that the all-
zeros and all-ones subnets are now available for use. Chapter 1, "TCP/IP Review," explained that
classful routing protocols cannot distinguish between an all-zeros subnet (172.16.0.0, for example) and
the major network number (172.16.0.0). Likewise, they cannot distinguish between a broadcast on the
all-ones subnet (172.16.255. 255) and an all-subnets broadcast (172.16.255.255).

If the subnet masks are included, this difficulty disappears. You can readily see that 172.16.0.0/16 is
the major network number and that 172.16.0.0/24 is an all-zeros subnet. 172.168.255.255/16 and
172.16.255.255/24 are just as distinguishable.

By default, the Cisco IOS rejects an attempt to configure an all-zeros subnet as an invalid
address/mask combination even if a classless routing protocol is running. To override this default
behavior, enter the global command ip subnet-zero.

A much greater benefit of having a subnet mask associated with each route is being able to use
variable-length subnet masking (VLSM) and to summarize a group of major network addresses with a
single aggregate address. Variable-length subnet masks are examined in the following section, and
address aggregation (or supernetting) is introduced in Chapter 7, "Enhanced Interior Gateway Routing
Protocol (EIGRP)."

Variable-Length Subnet Masking

If a subnet mask can be individually associated with each destination address advertised throughout a
network, there is no reason why all the masks must be of equal length. That fact is the basis for VLSM.

A simple application of VLSM is shown in Figure 6-4. Each data link of the network shown must have a
uniquely identifiable subnet address, and each subnet address must contain enough host addresses to
accommodate the devices attached to the data link.



Figure 6-4. Using VLSM, the class C address shown can be subnetted to accommodate this
network and the hosts on each of its data links.

Given the class C network address assigned to this network, subnetting cannot be accomplished at all
without VLSM. The token ring, with its need for 100 host addresses, requires a 25-bit mask (1 bit of
subnetting); a mask any longer would not leave enough host bits. But if all masks must be of equal
length, only one more subnet can be created from the class C address.[5] There would not be enough
subnets to go around.

[5] This statement assumes that the all-zeros and all-ones subnetsthe only subnets available
with a single bit of subnettingcan be routed.

With VLSM the widely varying host address requirements of the network of Figure 6-4 can be met
using a class C network address. Table 6-1 shows the subnets and the address ranges available within
each.

Table 6-1. The subnets of Figure 6-4.
Subnet/Mask Address Range Broadcast Address

192.168.50.0/25 192.168.50.1192.168.50.126 192.168.50.127

192.168.50.128/26 192.168.50.129192.168.50.190 192.168.50.191

192.168.50.192/27 192.168.50.193192.168.50.222 192.168.50.223

192.168.50.224/28 192.168.50.225192.168.50.238 192.168.50.239

192.168.50.240/30 192.168.50.241192.168.50.242 192.168.50.243

192.168.50.244/30 192.168.50.245192.168.50.246 192.168.50.247

Many people, including many who work with VLSM, make the technique more complicated than it is.
The complete key to VLSM is this: After a network address is subnetted in the standard fashion, those
subnets can themselves be subnetted. In fact, one will occasionally hear VLSM referred to as "sub-
subnetting."

A close examination of the addresses in Table 6-1 (in binary, as always) will reveal how VLSM
works.[6] First, a 25-bit mask is used to divide the network address into two subnets: 192.168.50.0/25
and 192.168.50.128/25. The first subnet provides 126 host addresses to meet the needs of the token
ring in Figure 6-4.



[6] The reader is strongly encouraged to work through this entire example in binary.

From Chapter 1, you know that subnetting involves expanding the default network mask so that some
host bits are interpreted as network bits. This same procedure is applied to the remaining subnet
192.168.50.128/25. One of the Ethernets requires 50 host addresses, so the mask of the remaining
subnet is expanded to 26 bits. This step provides two sub-subnets, 192.168.50.128/26 and
192.168.192/26, each with 62 available host addresses. The first sub-subnet is taken for the larger
Ethernet, leaving the second to again be subnetted for the other data links.

This procedure is repeated twice more to provide the necessary subnets of the necessary size for the
smaller Ethernet and the FDDI ring. A subnet of 192.168.50.240/28 remains, as do two serial links
requiring subnets. Any point-to-point link will, by its very nature, require only two host addressesone at
each end. Thirty-bit masks are used to create the two serial link subnets, each with just two available
host addresses.

Point-to-point links, requiring a subnet address but only two host addresses per subnet, are one
justification for using VLSM. For example, Figure 6-5 shows a typical WAN topology with remote routers
connected via Frame Relay PVCs to a hub router. Modern practice usually calls for each of these PVCs
to be configured on a point-to-point subinterface.[7] Without VLSM, equal-size subnets would be
necessary; the size would be dictated by the subnet with the largest number of host devices.

[7] Subinterfaces are logical interfaces configured on a physical interface. Many
subinterfaces can be configured on a single physical interface, and each subinterface can
have its own IP address; routing protocols treat them the same as physical interfaces.
Subinterfaces are particularly useful with Frame Relay, ATM, and VLANs. Readers who are
not already familiar with these useful tools are referred to the Cisco Configuration Guide.

Figure 6-5. VLSM allows each of these PVCs to be configured as a separate subnet without
wasting host addresses.

Suppose a class B address is used for the network in Figure 6-5 and each router is attached to several
LANs, each of which may have up to 175 attached devices. A 24-bit mask would be necessary for each
subnet, including each PVC. Consequently, for every PVC in the network, 252 addresses are wasted.
With VLSM, a single subnet can be selected and sub-subnetted with a 30-bit mask; enough subnets
will be created for up to 64 point-to-point links (Figure 6-6).

Figure 6-6. This class B address has been subnetted with a 24-bit mask. 172.17.11.0 has been
sub-subnetted with a 30-bit mask; the resulting 64 subnets can be assigned to point-to-point

links.



Examples of VLSM address designs appear in this and subsequent chapters. Chapter 7 introduces
another major justification for using VLSM, hierarchical addressing, and address aggregation.

Authentication

A security concern with any routing protocol is the possibility of a router accepting invalid routing
updates. The source of invalid updates may be an attacker trying to maliciously disrupt the network or
trying to capture packets by tricking the router into sending them to the wrong destination. A more
mundane source of invalid updates may be a malfunctioning router. RIPv2 includes the capability to
authenticate the source of a routing update by including a password.

Authentication is supported by modifying what would normally be the first route entry of the RIP
message, as shown in Figure 6-7. With authentication, the maximum number of entries a single update
can carry is reduced to 24. The presence of authentication is indicated by setting the Address Family
Identifier field to all ones (0xFFFF). The Authentication Type for simple password authentication is two
(0x0002), and the remaining 16 octets carry an alphanumeric password of up to 16 characters. The
password is left-justified in the field, and if the password is less than 16 octets, the unused bits of the
field are set to zero.

Figure 6-7. The RIPv2 authentication information, when configured, is carried in the first route
entry space.



Figure 6-8 shows an analyzer capture of a RIPv2 message with authentication. The figure also shows a
difficulty with the default RIP authentication: The password is transmitted in plain text. Anyone who can
capture a packet containing a RIPv2 update message can read the authentication password.

Figure 6-8. When simple password authentication is used, the password is carried in plain text
and can be read by anyone who can "sniff" the packet carrying the update.

[View full size image]

Although RFC 1723 describes only simple password authentication, foresight is shown by including the
Authentication Type field. Cisco IOS takes advantage of this feature and provides the option of using
MD5 authentication instead of simple password authentication.[8]

[8] MD5 is described in RFC 1321. A good discussion of MD5 can also be found in the
following book: Charlie Kaufman, Radia Perlman, and Mike Spencer, Network Security:
Private Communication in a Public World. Prentice Hall, 1995, pp. 120122.

Cisco uses the first and last route entry spaces for MD5 authentication purposes.

MD5 is a one-way message digest or secure hash function, produced by RSA Data Security, Inc. It is
also occasionally referred to as a cryptographic checksum because it works in somewhat the same
way as an arithmetic checksum. MD5 computes a 128-bit hash value from a plain text message of
arbitrary length (a RIPv2 update, for instance) and a password. This "fingerprint" is transmitted along
with the message. The receiver, knowing the same password, calculates its own hash value. If nothing
in the message has changed, the receiver's hash value should match the sender's value transmitted
with the message.

Figure 6-9 shows an update from the same router of Figure 6-8, but with MD5 authentication. The
authentication type is 3, and no password can be seen.



Figure 6-9. This update was originated from the same router as the update in Figure 6-8, but
MD5 authentication is being used.

[View full size image]



Operation of RIPng

RIPng for IPv6 is based on RIPv2, but it is not an extension of RIPv2; it is an entirely separate protocol.
RIPng does not support IPv4, so to use RIP to route both IPv4 and IPv6, you must run RIPv1 or v2 for
IPv4 and RIPng for IPv6.

RIPng uses the same timers, procedures, and message types as RIPv2. For example, like RIPv2 it uses
a 30-second update timer jittered to prevent message synchronization, a 180-second timeout period, a
120-second garbage-collection timer, and a 180-second holddown timer. It uses the same hop-count
metric, with 16 indicating an unreachable value. And, it uses Request and Response messages in the
same way that RIPv2 does. And, like RIPv2, Request and Response messages are multicast with the
same few unicast exceptions that RIPv1 and v2 use. The IPv6 multicast address used by RIPng is
FF02::9.

An exception to these parallel functions is authentication. RIPng does not have an authentication
mechanism of its own, but instead relies on the authentication features built into IPv6.

There is, of course, no need for the RIPv1 compatibility switches used by RIPv2, because there is no
backward support for IPv4.

Figure 6-10 shows the RIPng message format. Unlike RIPv1 and v2, which run at UDP port 520, RIPng
sends and receives its messages at UDP port 521. Also unlike RIPv1 and v2, there is no set message
size. The message size is dependent only on the MTU of the link on which it is being sent.

Figure 6-10. The RIPng message format.

Command is always set to 1, indicating a Request message, or to 2, indicating a Response
message.

Version is always set to 1, that is, the current version of RIPng in RIPngv1.

IPv6 Prefix is the 128-bit IPv6 destination prefix of the route entry.

Route Tag is used in the same way the 16-bit RIPv2 Route Tag field is used: for transporting
external route attributes across the RIP domain.

Prefix Length is an 8-bit field specifying, in bits, the significant part of the address in the IPv6



Prefix field. For example, if the advertised prefix is 3ffe:2100:1201::/48, the value in the Prefix
Length field is 48 (0x30). If the advertised route entry is a default route, the IPv6 prefix is
0:0:0:0:0:0:0:0 and the Prefix Length is 0.

Metric is the same hop count metric used by RIPv1 and v2. But as the maximum possible value is
16, the field is reduced to 8 bits from the unnecessarily large 16 bits of RIPv1 and v2.

RIPng specifies a next-hop address the same way that RIPv2 does. That is, a valid non-zero next-hop
address specifies a next-hop router other than the originator of the Response message and a next-hop
address of 0:0:0:0:0:0:0:0 specifies the originator of the Response message. But rather than associate
a next-hop address with each route entry as RIPv2 does, RIPng specifies the next-hop address in a
special route entry and then groups all route entries that use the next-hop address after it. That is, the
next-hop address specified in a next-hop route entry applies to all of the route entries following it, either
to the end of the Response message or until another special next-hop route entry is found.

Figure 6-11 shows the format of the next-hop route entry. The 128-bit address is either the IPv6
address of another router or, if it is ::, specifies the address of the originator. The Route Tag and Prefix
Length fields are set to all zeroes. Receiving routers recognize the next-hop route entry because its
Metric field is set to all ones (0xFF).

Figure 6-11. A metric value of all ones specifies that the route entry is a next-hop route entry.
All route entries following this one, until the end of the message or until another next-hop

route entry is encountered, use this next-hop address.



Configuring RIPv2

Because RIPv2 is merely an enhancement of RIPv1 and not a separate protocol, the commands
introduced in Chapter 5, "Routing Information Protocol (RIP)," for manipulating timers and metrics, and
for configuring unicast updates or no updates at all, are used in exactly the same way. After a brief look
at configuring a RIPv2 process, the rest of this section concentrates on configuring the new extensions.

Case Study: A Basic RIPv2 Configuration

By default, a RIP process configured on a Cisco router sends only RIPv1 messages but listens to both
RIPv1 and RIPv2. This default is changed with the version command, as in Example 6-1.

Example 6-1. The version 2 command causes RIP to send and listen to RIPv2 messages only.

router rip
 version 2
 network 172.25.0.0
 network 192.168.50.0

In this mode, the router sends and receives only RIPv2 messages. Likewise, the router can be
configured to send and receive only RIPv1 messages, as in Example 6-2.

Example 6-2. The version 1 command causes RIP to send and listen to RIPv1 messages only.

router rip
 version 1
 network 172.25.0.0
 network 192.168.50.0

The default behavior can be restored by entering the command no version in config-router mode.

Case Study: Compatibility with RIPv1

The interface-level "compatibility switches" recommended by RFC 2453 are implemented in Cisco IOS
with the commands ip rip send version and ip rip receive version.

The network in Figure 6-12 contains routers speaking both RIPv1 and RIPv2. Additionally, Pojoaque is
a Linux host running routed, which understands only RIPv1. The configuration of Taos is displayed in
Example 6-3.

Figure 6-12. Taos is running RIPv2 but must also speak Version 1 to some devices.



Example 6-3. Taos's configuration.

interface Ethernet0
 ip address 192.168.50.129 255.255.255.192
 ip rip send version 1
 ip rip receive version 1
!
interface Ethernet1
 ip address 172.25.150.193 255.255.255.240
 ip rip send version 1 2
!
interface Ethernet2
 ip address 172.25.150.225 255.255.255.240
!
router rip
 version 2
 network 172.25.0.0
 network 192.168.50.0

Because router Laguna is a RIPv1 speaker, E0 of Taos is configured to send and receive RIPv1
updates. E1 is configured to send both Version 1 and 2 updates, to accommodate the RIPv1 at
Pojoaque and the RIPv2 at Sandia. E2 has no special configuration; it sends and receives Version 2 by
default.

In Example 6-4, debug ip rip is used to observe the messages sent and received by Taos. There are
several points of interest here. First, notice the difference between the traps for RIPv1 and RIPv2
messages. The address mask and the Next Hop and Route Tag fields (both set to all zeros, in this
case) of the RIPv2 updates can be observed. Second, it can be observed that interface E1 is
broadcasting RIPv1 updates and multicasting RIPv2 updates. Third, because Taos has not been
configured to receive RIPv1, the updates from Pojoaque (172.25.150.206) are being ignored.
(Pojoaque has been misconfigured and is broadcasting its routing table.)[9]

[9] Intentionally misconfigured for this example actually, with the routed -s option.

Example 6-4. Using debugging, the RIP versions sent and received by Taos can be observed.

Taos#debug ip rip
RIP protocol debugging is on
Taos#
RIP: received v2 update from 172.25.150.194 on Ethernet1



     172.25.150.32/28 - 0.0.0.0 in 1 hops
RIP: ignored v1 packet from 172.25.150.206 (illegal version)
RIP: sending v1 update to 255.255.255.255 via Ethernet0 (192.168.50.129)
     network 172.25.0.0, metric 1
RIP: sending v1 update to 255.255.255.255 via Ethernet1 (172.25.150.193)
     subnet 172.25.150.224, metric 1
     network 192.168.50.0, metric 1
RIP: sending v2 update to 224.0.0.9 via Ethernet1 (172.25.150.193)
     172.25.150.224/28 - 0.0.0.0, metric 1, tag 0
     192.168.50.0/24 - 0.0.0.0, metric 1, tag 0
RIP: sending v2 update to 224.0.0.9 via Ethernet2 (172.25.150.225)
     172.25.150.32/28 - 0.0.0.0, metric 2, tag 0
     172.25.150.192/28 - 0.0.0.0, metric 1, tag 0
     192.168.50.0/24 - 0.0.0.0, metric 1, tag 0
RIP: received v1 update from 192.168.50.130 on Ethernet0
     192.168.50.64 in 1 hops
RIP: received v2 update from 172.25.150.194 on Ethernet1
     172.25.150.32/28 - 0.0.0.0 in 1 hops

Perhaps the most important observation to be made from Example 6-4 concerns the update being
broadcast to Pojoaque: It does not include subnet 172.25.150.32. Taos knows this subnet, having
learned it via multicast RIPv2 updates from Sandia. But Pojoaque cannot receive those multicasts
because it speaks only RIPv1. Moreover, although Taos knows the subnet, the split horizon rule
prevents Taos from advertising it out the same interface on which it was learned.

So, Pojoaque does not know about subnet 172.25.150.32. Two remedies are available: First, Sandia
could be configured to send both RIP versions. Second, split horizon can be turned off at Taos's E1
interface with the configuration in Example 6-5.

Example 6-5. Split horizon is turned off here, in Taos's configuration.

interface Ethernet1
 ip address 172.25.150.193 255.255.255.240
 ip rip send version 1 2
 no ip split-horizon

Example 6-6 shows the results. Taos is now including subnet 172.25.150.32 in its updates. Some
forethought must be given to the possible consequences of disabling split horizon; Taos is now not only
advertising 172.25.150.32 to Pojoaque but also advertising it back to Sandia.

Example 6-6. With split horizon disabled on E1, Taos now includes subnet 172.25.150.32 in its
updates to Pojoaque.

Taos#debug ip rip
RIP protocol debugging is on
Taos#
RIP: ignored v1 packet from 172.25.150.206 (illegal version)
RIP: received v2 update from 172.25.150.194 on Ethernet1
     172.25.150.32/28 -> 0.0.0.0 in 1 hops
RIP: sending v1 update to 255.255.255.255 via Ethernet0 (192.168.50.129)
     network 172.25.0.0, metric 1
RIP: sending v1 update to 255.255.255.255 via Ethernet1 (172.25.150.193)
     subnet 172.25.150.32, metric 2
     subnet 172.25.150.224, metric 1
     subnet 172.25.150.192, metric 1
     network 192.168.50.0, metric 1



RIP: sending v2 update to 224.0.0.9 via Ethernet1 (172.25.150.193)
     172.25.150.32/28 -> 172.25.150.194, metric 2, tag 0
     172.25.150.224/28 -> 0.0.0.0, metric 1, tag 0
     172.25.150.192/28 -> 0.0.0.0, metric 1, tag 0
     192.168.50.0/24 -> 0.0.0.0, metric 1, tag 0

Case Study: Using VLSM

Referring again to Figure 6-12, the subnet 172.25.150.0/24 has been assigned to the Internet shown.
That subnet has been further subnetted to fit the various data links by expanding the mask to 28 bits;
the available sub-subnets, in binary and dotted decimal, are shown in Table 6-2. Each of the
subnets[10] will have, according to the 2n 2 formula, 14 host addresses. Out of these, 172.25.150.32,
172.25.150.192, and 172.25.150.224 have been used.

[10] Now that the concept should be firmly in place, from here on the single term subnet will
be used for a subnet, a sub-subnet, a sub-sub-subnet, or whatever.

Table 6-2. VLSM is applied to subnet 172.25.150.0/24.
Binary Representation Dotted Decimal
11111111111111111111111111110000 255.255.255.240
10101100000110011001011000000000 172.25.150.0/28
10101100000110011001011000010000 172.25.150.16/28
10101100000110011001011000100000 172.25.150.32/28
10101100000110011001011000110000 172.25.150.48/28
10101100000110011001011001000000 172.25.150.64/28
10101100000110011001011001010000 172.25.150.80/28
10101100000110011001011001100000 172.25.150.96/28
10101100000110011001011001110000 172.25.150.112/28
10101100000110011001011010000000 172.25.150.128/28
10101100000110011001011010010000 172.25.150.144/28
10101100000110011001011010100000 172.25.150.160/28
10101100000110011001011010110000 172.25.150.176/28
10101100000110011001011011000000 172.25.150.192/28
10101100000110011001011011010000 172.25.150.208/28
10101100000110011001011011100000 172.25.150.224/28
10101100000110011001011011110000 172.25.150.240/28

In Figure 6-13, a new Ethernet segment, Ethernet 3, has been added to Taos, with 60 hosts. A subnet
with at least six host bits is required to accommodate this data link. A classful routing protocol would
require that five of the subnets from Table 6-2 be assigned to Ethernet 3 [5 x (24 2) = 70], using
secondary addresses. With classless protocols and VLSM, four of the subnets from Table 6-2 can be
combined into a single subnet with a 26-bit mask. This step will provide six host bits (62 host
addresses), and no secondary addressing is necessary. Four subnets, 172.25.150.64/28 to
172.25.150.112/28, are combined under one 26-bit mask: 172.25.150.64/26. Notice that the four
subnets are not selected at random; the first 26 masked bits are identical and are unique within the
group of 16 subnets.[11]



[11] The technique used here to combine several addresses into one address serves as an
introduction to address aggregation, covered in Chapter 7.

Figure 6-13. VLSM can be used to adapt addresses to the requirements of individual data
links.

[View full size image]

Also, in Figure 6-13, four serial links and four routers have been added to the network. Without VLSM,
four of the subnets from Table 6-2 would have to be used for the four serial links. With VLSM, a single
subnet from Table 6-2 can be used for all four serial links. 172.25.150.240 is selected, and a 30-bit
mask is used to create the subnets in Table 6-3. Each of the resulting four subnets contains two host
addresses.

Table 6-3. A 30-bit mask is applied to subnet
172.25.150.240.

Binary Representation Dotted Decimal
11111111111111111111111111111100 255.255.255.252
10101100000110011001011011110000 172.25.150.240/30
10101100000110011001011011110100 172.25.150.244/30
10101100000110011001011011111000 172.25.150.248/30
10101100000110011001011011111100 172.25.150.252/30

The fundamental objective of subnetting is always the same: A router must be able to identify every
data link with a unique address, distinct from any other address in the network. That is the common
goal in the preceding two examples. In the first example, multiple addresses were combined into a
single address by reducing the size of the mask until only the bits common to all of the addresses
remain. Note that this result also happens when subnets are summarized by the major network
address. In the second example, multiple subnets were created from a single subnet by expanding the
subnet mask.

Case Study: Discontiguous Subnets and Classless Routing

Figure 6-14 shows that two Ethernets are connected to each of the four new routers. At each site, one
Ethernet is a member of subnet 172.25.150.0/24 and will have no more than 12 hosts. This is easy



enough. Four unused subnets are chosen from Table 6-2 and assigned.

Figure 6-14. Cochiti, Isleta, Jemez, and Tesuque are each attached to two Ethernets. One
Ethernet at each router is a member of subnet 172.25.150.0/24, and the other is a member of

network 192.168.50.0/24.

[View full size image]

The other Ethernet at each site is a member of network 192.168.50.0 and will have no more than 25
hosts. Subnets 192.168.50.64/26 and 192.168.50.128/26 are being used, which leaves
192.168.50.0/26 and 192.168.50.192/26. By increasing the mask to 27 bits, these two subnets can be
divided into four, each with five host bitsenough for 30 host addresses per subnet. Table 6-4 shows the
four subnets in binary.

Table 6-4. Subnet 192.169.50.0/26 is further subnetted
with a 27-bit mask.

Binary Representation Dotted Decimal
11111111111111111111111111100000 255.255.255.224
11000000101010001100100000000000 192.169.50.0/27
11000000101010001100100000100000 192.168.50.32/27
11000000101010001100100011000000 192.168.50.192/27
11000000101010001100100011100000 192.168.50.224/27

Having assigned all subnet addresses, the next concern is the fact that the subnets of 192.168.50.0
are discontiguous. Chapter 5 presents a case study on discontiguous subnets and demonstrates how
to use secondary interfaces to connect them. Classless routing protocols have no such difficulties with
discontiguous subnets. Because each route update includes a mask, subnets of one major network can
be advertised into another major network.

The default behavior of RIPv2, however, is to summarize at network boundaries the same as RIPv1. To
turn off summarization and allow subnets to be advertised across network boundaries, use the
command no auto-summary with the RIP process. The configuration for Cochiti is displayed in
Example 6-7.

Example 6-7. Cochiti's configuration with no automatic summarization.



interface Ethernet0
 ip address 192.168.50.1 255.255.255.224
!
interface Ethernet1
 ip address 172.25.150.1 255.255.255.240
!
interface Serial0
 ip address 172.25.150.242 255.255.255.252
!
router rip
 version 2
 network 172.25.0.0
 network 192.168.50.0
 no auto-summary

Isleta, Jemez, and Tesuque will have similar configurations. Summarization must also be turned off at
Taos and at Acoma. Recall from Figure 6-12 that Laguna was running RIPv1. For this configuration to
work, it must be changed to Version 2.

Careful consideration should be given to what effect the variable masks will have on Pojoaque, where
RIPv1 continues to run. The debug messages in Example 6-8 show the Version 1 and Version 2
updates sent from Taos onto subnet 172.25.150.192/28. The Version 1 updates will include only those
subnets whose masks are 28 bits, the same as the subnet on which the updates are being broadcast.
Although Pojoaque will not receive advertisements for 172.25.150.64/26 or any of the serial link
subnets, an analysis of those subnet addresses shows that Pojoaque will, in this case, correctly
interpret the addresses as being different from its own subnet. Packets destined for these subnets will
be sent to Taos for routing.

Example 6-8. Although the RIPv2 update from Taos includes all subnets in the network, the
RIPv1 update includes only a summary route to network 192.168.50.0 and only those subnets
of 172.25.150.0 whose masks are the same as the interface on which the update is being sent.

Taos#debug ip rip
RIP protocol debugging is on
RIP: sending v1 update to 255.255.255.255 via Ethernet0 (172.25.150.193)
     subnet 172.25.150.0, metric 3
     subnet 172.25.150.16, metric 3
     subnet 172.25.150.32, metric 2
     subnet 172.25.150.48, metric 3
     subnet 172.25.150.128, metric 3
     subnet 172.25.150.192, metric 1
     subnet 172.25.150.224, metric 1
     network 192.168.50.0, metric 1
RIP: sending v2 update to 224.0.0.9 via Ethernet0 (172.25.150.193)
     172.25.150.0/28 -> 0.0.0.0, metric 3, tag 0
     172.25.150.16/28 -> 0.0.0.0, metric 3, tag 0
     172.25.150.32/28 -> 0.0.0.0, metric 2, tag 0
     172.25.150.48/28 -> 0.0.0.0, metric 3, tag 0
     172.25.150.64/26 -> 0.0.0.0, metric 1, tag 0
     172.25.150.128/28 -> 0.0.0.0, metric 3, tag 0
     172.25.150.192/28 -> 0.0.0.0, metric 1, tag 0
     172.25.150.224/28 -> 0.0.0.0, metric 1, tag 0
     172.25.150.240/30 -> 0.0.0.0, metric 2, tag 0
     172.25.150.244/30 -> 0.0.0.0, metric 2, tag 0
     172.25.150.248/30 -> 0.0.0.0, metric 2, tag 0
     172.25.150.252/30 -> 0.0.0.0, metric 2, tag 0



     192.168.50.0/27 -> 0.0.0.0, metric 3, tag 0
     192.168.50.32/27 -> 0.0.0.0, metric 3, tag 0
     192.168.50.64/26 -> 0.0.0.0, metric 2, tag 0
     192.168.50.128/26 -> 0.0.0.0, metric 1, tag 0
     192.168.50.192/27 -> 0.0.0.0, metric 3, tag 0
     192.168.50.224/27 -> 0.0.0.0, metric 3, tag 0

Case Study: Authentication

The Cisco implementation of RIPv2 message authentication includes the choice of simple password or
MD5 authentication, and the option of defining multiple keys, or passwords, on a "key chain." The
router may then be configured to use different keys at different times.

The steps for setting up RIPv2 authentication follow:

Step 1. Define a key chain with a name.

Step 2. Define the key or keys on the key chain.

Step 3. Enable authentication on an interface and specify the key chain to be used.

Step 4. Specify whether the interface will use clear text or MD5 authentication.

Step 5. Optionally configure key management.

In Example 6-9, a key chain named Tewa is configured at Taos. Key 1, the only key on the chain, has a
password of Kachina; interface E0 then uses the key, with MD5 authentication, to validate updates
from Laguna.

Example 6-9. Taos's authentication configuration.

key chain Tewa
 key 1
 key-string Kachina
interface Ethernet 0
 ip rip authentication key-chain Tewa
 ip rip authentication mode md5

A key chain must be configured, even if there is only one key on it. Although any routers that will
exchange authenticated updates must have the same password, the name of the key chain has
significance only on the local router. Laguna, for instance, might have a key chain named Keres, but
the key string must be Kachina to speak to Taos.

If the command ip rip authentication mode md5 is not added, the interface will use the default clear
text authentication. Although clear text authentication may be necessary to communicate with some
RIPv2 implementations, it is almost always wise to use the far more secure MD5 authentication
whenever possible.

Key management is used to migrate from one authentication key to another. In Example 6-10, Laguna is
configured to begin using the first key at 4:30 p.m. on July 1, 2004, for 12 hours (43200 seconds). The
second key becomes valid at 4:00 a.m. on July 2, 2004, and will be used until 1:00 p.m. on December
31, 2004. The third key becomes valid at 12:30 p.m. on December 31, 2004, and will remain valid
permanently after that.



Example 6-10. Laguna's authentication configuration.

key chain Keres
 key 1
  key-string Kachina
  accept-lifetime 16:30:00 Jul 1 2004 duration 43200
  send-lifetime 16:30:00 Jul 1 2004 duration 43200
 key 2
  key-string Kiva
  accept-lifetime 04:00:00 Jul 2 2004 13:00:00 Dec 31 2004
  send-lifetime 04:00:00 Jul 2 2004 13:00:00 Dec 31 2004
 key 3
  key-string Koshare
  accept-lifetime 12:30:00 Dec 31 2004 infinite
  send-lifetime 12:30:00 Dec 31 2004 infinite
!
interface Ethernet0
 ip address 198.168.50.130 255.255.255.192
 ip rip authentication key-chain Keres
 ip rip authentication mode md5

As the configuration shows, the password that is accepted from other routers and the password that is
used with transmitted messages are managed separately. Both the accept-lifetime and the send-
lifetime commands must have a specified start time and may have either a specified duration or end
time or the keyword infinite. The key numbers are examined from the lowest to the highest, and the
first valid key is used.

Although this configuration uses a 30-minute overlap to compensate for differences in system times, it
is highly recommended that a time synchronization protocol such as Network Time Protocol (NTP) be
used with key management.[12]

[12] NTP is outside the scope of this book. Refer to the Cisco Configuration Guide for more
information.



Configuring RIPng

The steps for configuring RIPng are the same as RIPv1 and v2: Create the routing process, enable the routing
protocol on interfaces, and perform any desired customization. The commands, however, are very different. In fact,
the creation of the routing process and enabling the routing protocol on the first interface is accomplished in one
step, using an interface command. The case studies for RIPng will be similar to those of RIPv1 and v2 to illustrate
the similarities in the processes and the differences in configuration.

Case Study: Basic RIPng Configuration

After IPv6 unicast routing is enabled on the router, only one command is required to enable RIPng for IPv6 routing.
It is an interface command: ipv6 rip process-name enable. This creates the RIPng process called process-name
and enables RIPng on the interface at the same time. The command is entered on each interface that will run
RIPng.

Figure 6-15 shows that IPv6, RIPng, and some new Ethernet interfaces have been added to a portion of the
network in Figure 6-14.

Figure 6-15. IPv6 addresses are configured on Laguna, Taos, and Sandia's interfaces that are to run
RIPng.

[View full size image]

Example 6-11 shows Taos's configuration.

Example 6-11. Taos's IPv6 and RIPng configuration.

ipv6 unicast-routing
interface Ethernet0
 ipv6 address 2001:db8:0:6::1/64
 ipv6 rip bigMountain enable
interface Ethernet1
 ipv6 address 2001:db8:0:4::1/64
 ipv6 rip bigMountain enable
interface Ethernet2
 ipv6 address 2001:db8:0:5::1/64
 ipv6 rip bigMountain enable

The RIPng process is created and activated on an interface with a single interface command. This is the difference
between configuring RIPv1 and v2, and configuring RIPng. Recall that the RIPv1 and v2 configuration requires a
global command (router rip) to create the process, and the network <address> statement to specify the
interfaces on which to run the RIP process. With RIPng, when the interface command ipv6 rip bigMountain
enable is configured on the first interface, the RIPng process called bigMountain is automatically created. In
addition, IOS automatically creates an entry in the configuration (ipv6 router rip bigMountain) for the routing
process.

The process name specified on Taos is bigMountain. Notice that the process name is specified on each interface.



This name is relevant only to the local router, and is used to distinguish between multiple RIPng processes that
might be running on the router. Different interfaces can each run a unique RIPng process, without exchanging
information between these interfaces, or multiple processes might be running on a single interface. Only a single
RIPv1 or RIPv2 process, on the other hand, can run on a router, and an interface either belongs to this process, or
it doesn't run RIP.[13]

[13] MPLS VPNs allow multiple RIP processes to run on a single provider edge router. A single RIP
process is configured for a given VPN. MPLS and VPNs are outside the scope of this book.

Example 6-12 shows Sandia's IPv6 route table. All the addresses in the network are listed because Taos is
configured with a single RIPng process on each of its IPv6 interfaces.

Example 6-12. Taos's IPv6 route table.

Sandia#show ipv6 route
IPv6 Routing Table - 16 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
C   2001:DB8:0:4::/64 [0/0]
     via ::, Ethernet0
L   2001:DB8:0:4::2/128 [0/0]
     via ::, Ethernet0
R   2001:DB8:0:5::/64 [120/2]
     via FE80::205:5EFF:FE6B:50A1, Ethernet0
R   2001:DB8:0:6::/64 [120/2]
     via FE80::205:5EFF:FE6B:50A1, Ethernet0
C   2001:DB8:0:10::/64 [0/0]
     via ::, Ethernet1
L   2001:DB8:0:10:2B0:64FF:FE30:1DE0/128 [0/0]
     via ::, Ethernet1
C   2001:DB8:0:11::/64 [0/0]
     via ::, Ethernet2
L   2001:DB8:0:11:2B0:64FF:FE30:1DE0/128 [0/0]
     via ::, Ethernet2
C   2001:DB8:0:12::/64 [0/0]
     via ::, Ethernet3
L   2001:DB8:0:12:2B0:64FF:FE30:1DE0/128 [0/0]
     via ::, Ethernet3
C   2001:DB8:0:13::/64 [0/0]
     via ::, Ethernet4
L   2001:DB8:0:13:2B0:64FF:FE30:1DE0/128 [0/0]
     via ::, Ethernet4
R   2001:DB8:0:18::/64 [120/3]
     via FE80::205:5EFF:FE6B:50A1, Ethernet0
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0

Two new Ethernet interfaces have been added to Acoma, as shown in Figure 6-16. New network policy states that
IPv6 traffic in the network of Figure 6-16 should be segmented according to the following policy: Hosts on the LANs
connected to Sandia access each other, and they also access devices on Ethernet1 connected to Acoma. Hosts
connected to the Laguna router access the devices on Ethernet2 of Acoma. Sandia and Laguna hosts do not need
to access each other. Acoma Ethernet1 and Ethernet 2 do not access each other.

Figure 6-16. Acoma has been added to the network, with two IPv6-enabled Ethernet user LAN segments.

[View full size image]



The configuration in Example 6-13 is loaded into Taos.

Example 6-13. Taos's configuration to support network policy to segment IPv6 network traffic by creating
multiple RIPng routing processes.

Interface Ethernet0
 ipv6 rip bigMountain enable
Interface Ethernet1
 no ipv6 rip bigMountain enable
 ipv6 rip smallMountain enable
interface Ethernet2
 ipv6 rip bigMountain enable
 ipv6 rip smallMountain enable
ipv6 router rip smallMountain
 port 527 multicast ff02::9

Interface Ethernet 0, the link to Laguna, still belongs to the bigMountain RIPng process. A new process,
smallMountain, is now enabled on Ethernet 1, the link to Sandia, and bigMountain has been disabled on the
interface. Both processes are enabled on Ethernet2, connecting to Acoma. No two RIPng routing processes can
use the same UDP port number if both processes are going to be active on a single interface. By changing the port
number on the smallMountain process, Taos sends updates for smallMountain to UDP port 527, and updates for
the bigMountain process to the default RIPng port, UDP 521. Receiving routers use the port number to distinguish
which routing process a received update belongs to. A RIPng router running a single routing process, receiving
updates from more then one RIPng process running on a router using identical UDP port numbers, will process
each update. If there is conflicting information about an address in both updates, such as a differing metric, the
receiving route table may be changing with each update. If a receiving router is running multiple RIPng processes
and the same UDP port number is used on both, the receiving router will not be able to distinguish which RIPng
process should receive the update. Changing the UDP port number on the second and subsequent RIPng process
eliminates these problems. All routers and hosts that need to participate in the RIPng process with the modified
UDP port number must use the same UDP port number. Because routers and other TCP/IP devices use port
numbers identify which UDP process the packets need to be forwarded to, and RIPng updates are multicast to all
RIPng routers, the new UDP port number must not be the same as any other process running on any RIPng router.
The smallMountain process is configured to use port 527 in this example. The port number must be changed on
the routers exchanging RIPng updates with the smallMountain RIPng process. Sandia and Acoma's configuration
changes follow in Example 6-14 and Example 6-15, respectively.

Example 6-14. Sandia's RIPng configuration with a modified UDP port number.

ipv6 router rip smallMountain
  port 527 multicast-group FF02::9

Example 6-15. Acoma's RIPng configuration with a modified UDP port number.

interface Ethernet0
 ipv6 address 2001:DB8:0:5::2/64
 ipv6 rip hill enable
 ipv6 rip summit enable



interface Ethernet1
 ipv6 address 2001:DB8:0:20::/64
 ipv6 rip hill enable
interface Ethernet2
 ipv6 address 2001:DB8:0:21::/64
 ipv6 rip summit enable
ipv6 router rip hill
  port 527 multicast-group FF02::9

Notice that the process names on Acoma are not the same as those on Taos. RIPng process names are relevant
only to the local router. They are not exchanged in route updates. Acoma's Ethernet0 is connected to Taos's
Ethernet2. It is running two routing processes: hill and summit. hill is also running on interface Ethernet1.
Ethernet1's IPv6 address is advertised to Taos using the modified UDP port number 527. This is associated with
the smallMountain RIPng process on Taos, and therefore, the IPv6 address gets advertised to Sandia, not Laguna.

Example 6-16 displays information about the RIPng routing processes running on Taos. The command show ipv6
rip displays each process individually. Notice that the default maximum number of parallel paths is 16, and the
timer values have not been modified from the default.

Example 6-16. show ipv6 rip  displays information about each RIPng process running on a router.

Taos#show ipv6 rip
RIP process "bigMountain", port 521, multicast-group FF02::9, pid 104
     Administrative distance is 120. Maximum paths is 16
     Updates every 30 seconds, expire after 180
     Holddown lasts 0 seconds, garbage collect after 120
     Split horizon is on; poison reverse is off
     Default routes are not generated
     Periodic updates 1078, trigger updates 5
  Interfaces:
    Ethernet2
    Ethernet0
  Redistribution:
    None
RIP process "smallMountain", port 527, multicast-group FF02::9, pid 117
     Administrative distance is 120. Maximum paths is 16
     Updates every 30 seconds, expire after 180
     Holddown lasts 0 seconds, garbage collect after 120
     Split horizon is on; poison reverse is off
     Default routes are not generated
     Periodic updates 1080, trigger updates 5
  Interfaces:
    Ethernet1
    Ethernet2
  Redistribution:
    None

The process bigMountain is running on interfaces Ethernet0 and Ethernet2. Interfaces Ethernet1 and Ethernet2
belong to the smallMountain process, using UDP port number 527.

The IPv6 route table shows that Taos has installed routes from both processes into its route table (Example 6-17).

Example 6-17. IPv6 route table displays all known routes from each active RIPng process.

Taos#show ipv6 route
IPv6 Routing Table - 15 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
C   2001:DB8:0:4::/64 [0/0]



     via ::, Ethernet1
L   2001:DB8:0:4::1/128 [0/0]
     via ::, Ethernet1
C   2001:DB8:0:5::/64 [0/0]
     via ::, Ethernet2
L   2001:DB8:0:5::1/128 [0/0]
     via ::, Ethernet2
C   2001:DB8:0:6::/64 [0/0]
     via ::, Ethernet0
L   2001:DB8:0:6::1/128 [0/0]
     via ::, Ethernet0
R   2001:DB8:0:10::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:11::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:12::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:13::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:18::/64 [120/2]
     via FE80::204:C1FF:FE50:F1C0, Ethernet0
R   2001:DB8:0:20::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Ethernet2
R   2001:DB8:0:21::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Ethernet2
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0

Taking a look at Laguna and Sandia's route tables in Example 6-18 and Example 6-19, you can see that each
router learns about the routes belonging to the appropriate RIPng process. Taos does not forward smallMountain
addresses into the bigMountain process, and vice versa.

Example 6-18. IPv6 route table displays Laguna's routes learned from the bigMountain RIPng process on
Taos.

Laguna#show ipv6 route rip
IPv6 Routing Table - 8 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R   2001:DB8:0:5::/64 [120/2]
     via FE80::205:5EFF:FE6B:50A0, Ethernet0
R   2001:DB8:0:21::/64 [120/3]
     via FE80::205:5EFF:FE6B:50A0, Ethernet0

Example 6-19. IPv6 route table displays Sandia's routes learned from the smallMountain RIPng process
on Taos.

Sandia#show ipv6 route rip
IPv6 Routing Table - 14 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R   2001:DB8:0:5::/64 [120/2]
     via FE80::205:5EFF:FE6B:50A1, Ethernet0
R   2001:DB8:0:20::/64 [120/3]
     via FE80::205:5EFF:FE6B:50A1, Ethernet0



Example 6-17 shows that Taos has learned four addresses from Sandia on Ethernet1, which belongs to the
smallMountain RIPng process: 2001:db8:0:10::/64, 2001:db8:0:11::/64, 2001:db8:0:12::/64, and
2001:db8:0:13::/64. 2001:db8:0:5::/64, connected to Ethernet2, is advertised into both the smallMountain and the
bigMountain processes. Laguna's route table in Example 6-18 shows that no smallMountain routes have been
installed.

Debugging RIPng on Taos (Example 6-20) shows the RIPng updates that are sent out and received into each
interface for each process.

Example 6-20. debug ipv6 rip displays the RIPng updates on each interface for each active process.

Taos#debug ipv6 rip
RIP Routing Protocol debugging is on
Taos#
RIPng: Sending multicast update on Ethernet2 for bigMountain
        src=FE80::205:5EFF:FE6B:50A0
        dst=FF02::9 (Ethernet2)
        sport=521, dport=521, length=72
        command=2, version=1, mbz=0, #rte=3
        tag=0, metric=1, prefix=2001:DB8:0:5::/64
        tag=0, metric=1, prefix=2001:DB8:0:6::/64
        tag=0, metric=2, prefix=2001:DB8:0:18::/64
RIPng: Sending multicast update on Ethernet0 for bigMountain
        src=FE80::205:5EFF:FE6B:50A0
        dst=FF02::9 (Ethernet0)
        sport=521, dport=521, length=72
        command=2, version=1, mbz=0, #rte=3
        tag=0, metric=1, prefix=2001:DB8:0:5::/64
        tag=0, metric=1, prefix=2001:DB8:0:6::/64
        tag=0, metric=2, prefix=2001:DB8:0:21::/64
RIPng: response received from FE80::2B0:64FF:FE30:1DE0 on Ethernet1 for
  smallMountain
        src=FE80::2B0:64FF:FE30:1DE0 (Ethernet1)
        dst=FF02::9
        sport=527, dport=527, length=112
        command=2, version=1, mbz=0, #rte=5
        tag=0, metric=1, prefix=2001:DB8:0:4::/64
        tag=0, metric=1, prefix=2001:DB8:0:10::/64
        tag=0, metric=1, prefix=2001:DB8:0:11::/64
        tag=0, metric=1, prefix=2001:DB8:0:12::/64
        tag=0, metric=1, prefix=2001:DB8:0:13::/64
RIPng: response received from FE80::204:C1FF:FE50:E700 on Ethernet2 for
  smallMountain
        src=FE80::204:C1FF:FE50:E700 (Ethernet2)
        dst=FF02::9
        sport=527, dport=527, length=52
        command=2, version=1, mbz=0, #rte=2
        tag=0, metric=1, prefix=2001:DB8:0:5::/64
        tag=0, metric=1, prefix=2001:DB8:0:20::/64
RIPng: response received from FE80::204:C1FF:FE50:F1C0 on Ethernet0 for bigMountain
        src=FE80::204:C1FF:FE50:F1C0 (Ethernet0)
        dst=FF02::9
        sport=521, dport=521, length=52
        command=2, version=1, mbz=0, #rte=2
        tag=0, metric=1, prefix=2001:DB8:0:6::/64
        tag=0, metric=1, prefix=2001:DB8:0:18::/64
RIPng: response received from FE80::204:C1FF:FE50:E700 on Ethernet2 for bigMountain
        src=FE80::204:C1FF:FE50:E700 (Ethernet2)
        dst=FF02::9
        sport=521, dport=521, length=52
        command=2, version=1, mbz=0, #rte=2
        tag=0, metric=1, prefix=2001:DB8:0:5::/64
        tag=0, metric=1, prefix=2001:DB8:0:21::/64
RIPng: Sending multicast update on Ethernet1 for smallMountain
        src=FE80::205:5EFF:FE6B:50A1



        dst=FF02::9 (Ethernet1)
        sport=527, dport=527, length=72
        command=2, version=1, mbz=0, #rte=3
        tag=0, metric=1, prefix=2001:DB8:0:4::/64
        tag=0, metric=1, prefix=2001:DB8:0:5::/64
        tag=0, metric=2, prefix=2001:DB8:0:20::/64
RIPng: Sending multicast update on Ethernet2 for smallMountain
        src=FE80::205:5EFF:FE6B:50A0
        dst=FF02::9 (Ethernet2)
        sport=527, dport=527, length=132
        command=2, version=1, mbz=0, #rte=6
        tag=0, metric=1, prefix=2001:DB8:0:4::/64
        tag=0, metric=1, prefix=2001:DB8:0:5::/64
        tag=0, metric=2, prefix=2001:DB8:0:10::/64
        tag=0, metric=2, prefix=2001:DB8:0:11::/64
        tag=0, metric=2, prefix=2001:DB8:0:12::/64
        tag=0, metric=2, prefix=2001:DB8:0:13::/64

smallMountain updates are sent out Ethernet1, to Sandia, and Ethernet2, to Acoma. bigMountain updates are sent
out Ethernet0, to Laguna, and Ethernet2, to Acoma. Two updates are received on Ethernet2 from Acoma. One
uses the default UDP port 521. The other uses UDP port 527, the UDP port associated with smallMountain. The
update that uses port 527 includes the prefix 2001:DB8:0:20::/64. This is the prefix assigned to Ethernet1 on
Acoma, the prefix which Sandia is permitted to access. The update received on Ethernet2 using UDP port 521
includes prefix 2001:DB8:0:21::/64. This prefix is assigned to Ethernet2 on Acoma and is distributed into the
bigMountain process on Taos, and sent to Laguna.

Case Study: RIPng Process Customization

Some customization to the routing process is achieved in a way similar to RIPv1 and v2. The global configuration
command ipv6 router rip process_name lets you configure global parameters to that RIPng process.

The administrative distance, the maximum number of paths the routing process will use for load sharing, and RIP
timers were discussed in Chapter 5. These parameters are used the same way for RIPng as they are for RIPv1
and v2. RIPng's default administrative distance is 120, the same as RIPv1 and v2. The default maximum number of
paths over which RIPng will load share is 16. RIPng can load share on up to 64 paths. The timer parameters,
although not all the values, are the same as for RIPv1 and v2: update every 30 seconds, expire after 180 seconds,
holddown is 0, garbage collection is 120 seconds.

A configuration for Taos that modifies the distance, maximum-paths, and timers is shown in Example 6-21.

Example 6-21. Taos's configuration modifies the administrative distance, the maximum number of paths
for load sharing, and the protocol times.

ipv6 router rip bigMountain
  timers 10 30 30 60
  maximum-paths 8
  distance 200

Example 6-22 shows the output of show ipv6 rip and displays the new parameter values.

Example 6-22. The show ipv6 rip  command on Taos shows the modified RIPng values.

Taos#show ipv6 rip
RIP process "bigMountain", port 521, multicast-group FF02::9, pid 104
     Administrative distance is 200. Maximum paths is 8
     Updates every 10 seconds, expire after 30
     Holddown lasts 30 seconds, garbage collect after 60
     Split horizon is on; poison reverse is off
     Default routes are not generated
     Periodic updates 2513, trigger updates 7
  Interfaces:



    Ethernet2
    Ethernet0
  Redistribution:
    None
RIP process "smallMountain", port 527, multicast-group FF02::9, pid 122
     Administrative distance is 120. Maximum paths is 16
     Updates every 30 seconds, expire after 180
     Holddown lasts 0 seconds, garbage collect after 120
     Split horizon is on; poison reverse is off
     Default routes are not generated
     Periodic updates 2511, trigger updates 0
  Interfaces:
    Ethernet2
    Ethernet1
  Redistribution:
    None
Taos#

Compare the values in the bigMountain process with those in the smallMountain process, which still has the default
values. Be careful modifying the timers and the administrative distance. All routers running the same RIPng process
must have the same timer values. The administrative distance is only relevant to the local router, but consider
carefully the consequence of changing the administrative distance if multiple routing protocols or routing processes
are running on the router and addresses are being learned from multiple routing processes. Changing the
administrative distance changes the degree of preference for the routing process. An address learned via a
process with a lower distance will get inserted into the routing table. If the same address is learned via a higher
administrative distance process, the address will get inserted into the routing table only if the first entry fails. The
configuration in Example 6-23 changes the values back to the defaults.

Example 6-23. Taos's RIPng parameters are changed back to the default values in this configuration.

ipv6 router rip bigMountain
 no timers 10 30 30 60
 no maximum-paths 8
 no distance 200

Case Study: Metric Manipulation

As with RIPv1 and v2, RIPng metrics are adjusted by adding an offset. RIPng does not, however, increment the
metrics of each entry in a list of prefixes. RIPng modifies the hop count that is associated with an interface. This
increments the metric of every prefix that is advertised to the router via this interface by the amount of the hop
count configured on the interface. By default, RIPng adds a single hop to the metric of prefixes advertised by a
neighboring router. Example 6-24 shows the RIPng route table on Taos and a RIPng update received from Sandia.
Notice that each of the metrics in the route table has a value of two. Each RIPng route in the table is directly
connected to a router that is one hop away, either Sandia or Laguna. Sandia and Laguna advertise their prefixes
with a metric of one. Taos adds a hop count of one to each of the received metrics. To change the value that Taos
adds to the received metric, use the metric-offset command, as in Example 6-25.

Example 6-24. RIPng route table and debug ipv6 rip showing a received update illustrates the metric
offset added to a received metric.

Taos#show ipv6 route rip
IPv6 Routing Table - 15 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R   2001:db8:0:18::/64[120/2]
     via FE80::204:C1FF:FE50:F1C0, Ethernet0
R   2001:db8:0:10::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1



R   2001:db8:0:11::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:db8:0:12::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:db8:0:13::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:20::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Ethernet2
R   2001:DB8:0:21::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Ethernet2
Taos#debug ipv6 rip
RIP Routing Protocol debugging is on
   RIPng: response received from FE80::2B0:64FF:FE30:1DE0 on Ethernet1 for
     smallMountain
        src=FE80::2B0:64FF:FE30:1DE0 (Ethernet1)
        dst=FF02::9
        sport=521, dport=521, length=112
        command=2, version=1, mbz=0, #rte=4
        tag=0, metric=1, prefix=2001:db8:0:10::/64
        tag=0, metric=1, prefix=2001:db8:0:11::/64
        tag=0, metric=1, prefix=2001:db8:0:12::/64
        tag=0, metric=1, prefix=2001:db8:0:13::/64

Example 6-25. The RIPng metric-offset is increased to three on Taos's Ethernet1 interface.

interface Ethernet1
 ipv6 rip smallMountain metric-offset 3

Example 6-26 shows the new route table on Taos. Taos has added a hop count of 3 to each of the prefixes the
router received on Ethernet1.

Example 6-26. RIPng route table after the metric offset has been modified on the receiving interface
shows a higher metric value for each prefix learned via the modified interface.

Taos#show ipv6 route rip
IPv6 Routing Table - 15 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R   2001:DB8:0:10::/64 [120/4]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:11::/64 [120/4]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:12::/64 [120/4]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:13::/64 [120/4]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:18::/64 [120/2]
     via FE80::204:C1FF:FE50:F1C0, Ethernet0
R   2001:DB8:0:20::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Ethernet2
R   2001:DB8:0:21::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Ethernet2

This command allows you to adjust the hop count associated with a given link. All addresses received by the
adjusted interface will have the adjusted metric. By contrast, RIPv1 and v2 allow you to add the offset to a subset
(or all) of the addresses received by the interface before they are added to the route table, or the offset can be
added to the addresses just before they are advertised out of the interface.



Case Study: Route Summarization

As with RIPv2, RIPng routes can be summarized before they are advertised to neighbors. Sandia advertises routes
for 2001:DB8:0:10::/64, 2001:DB8:0:11::/64, 2001:DB8:0:12::/64, and 2001:DB8:0:13::/64. The routes can be
summarized into a single entry: 2001:DB8: 0:10::/62. Sandia's configuration is in Example 6-27.

Example 6-27. Sandia is configured to summarize advertised RIPng addresses.

interface Ethernet0
 ipv6 address 2001:DB8:0:4::2/64
 ipv6 rip bigMountain enable
 ipv6 rip bigMountain summary-address 2001:DB8:0:10::/62

The more specific prefixes are automatically suppressed when an encompassing summary address is configured.
Example 6-28 shows Taos's new route table.

Example 6-28. Four consecutive prefixes with a length of 64 bits have been summarized into a single
entry with a length of 62 bits.

Taos#show ipv6 route rip
IPv6 Routing Table - 12 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R   2001:DB8:0:10::/62 [120/4]
     via FE80::2B0:64FF:FE30:1DE0, Ethernet1
R   2001:DB8:0:18::/64 [120/2]
     via FE80::204:C1FF:FE50:F1C0, Ethernet0
R   2001:DB8:0:20::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Ethernet2
R   2001:DB8:0:21::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Ethernet2



Troubleshooting RIPv2 and RIPng

Two configuration problems common to RIPv2 are mismatched versions and misconfigured authentication.
Both difficulties are easy to discover with debugging, as Example 6-29 shows.

Example 6-29. Debugging reveals mismatched versions and misconfigured authentication.

Jemez#debug ip rip events
RIP event debugging is on
Jemez#
RIP: ignored v1 packet from 172.25.150.249 (illegal version)
RIP: ignored v2 packet from 172.25.150.249 (invalid authentication)
Jemez#

A more likely source of trouble with RIPv2 or RIPng, or any classless routing protocol, is a misconfigured
variable-length subnet mask. VLSM is not difficult, but if a VLSM scheme is not designed and managed
carefully it can cause some unusual routing difficulties.

Case Study: Misconfigured VLSM

Host C in Figure 6-17 cannot communicate across the network, and it cannot even ping the other hosts or
routers on the local data link. Hosts A and B have no communication problems with each other or with any
other host across the network, but they cannot communicate with C. All hosts are configured to use
172.19.35.1 as the default gateway address.

Figure 6-17. Hosts A and B can communicate across the network, but host C cannot.

[View full size image]

When an attempt is made to ping host C from host A or B, the first ping is successful and subsequent pings fail
(Figure 6-18). Because at least one ICMP Echo Request packet reached C, and at least one Echo Reply
packet was returned, the problem probably is not related to the hardware or data link.

Figure 6-18. When host B pings host C, the first ping is successful and subsequent pings fail.

[View full size image]



The strange ping behavior leads to the hypothesis that after the first successful packet, subsequent
packetseither the Echo Requests from B or the Echo Replies from Care somehow being misdirected. Because
this behavior is happening on the local data link, the Address Resolution Protocol (ARP) caches should be
examined.

Example 6-30 and Figure 6-19 show the ARP caches for C and B, respectively. The suspicions about ARP are
confirmed here. C's cache contains the correct MAC address for B (00a0.2470.febd), but B's cache has a MAC
address of 0000.0c0a.2aa9 associated with C. A closer look at both caches shows that 0000.0c0a.2aa9 is the
MAC address of San_Felipe's locally attached interface. This information can be deduced because the same
MAC address is mapped to IPv4 address 172.19.35.2 and to the IPv4 addresses reachable via that router.

Figure 6-19. Host B's ARP cache shows that C's IPv4 address is mapped to the MAC address of
San_Felipe's interface 172.19.35.2.

[View full size image]

Example 6-30. Host C's ARP cache shows the correct MAC address associated with all addresses.

Linux 1.2.13 (Zuni.pueblo.com) (ttyp0)
Zuni login: root
Password:



Last login: Sat Nov 29 11:21:57 on tty1
Linux 1.2.13.
Zuni:~# arp -a
Address         HW type            HW address            Flags     Mask
172.19.35.112   10Mbps Ethernet    00:00:0C:0A:2A:A9     C         *
172.19.35.1     10Mbps Ethernet    00:00:0C:76:5B:7C     C         *
172.19.35.33    10Mbps Ethernet    00:A0:24:70:FE:BD     C         *
172.19.35.2     10Mbps Ethernet    00:00:0C:0A:2A:A9     C         *
172.19.35.3     10Mbps Ethernet    00:00:0C:0A:2C:51     C         *
172.19.35.9     10Mbps Ethernet    00:A0:24:A8:26:28     C         *
172.19.35.91    10Mbps Ethernet    00:00:0C:0A:2A:A9     C         *
Zuni:~#

The ping results begin to make sense. B broadcasts an ARP Request for 172.19.35.72. C sends an ARP
Reply, and B sends its first ping correctly. In the meantime, San_Felipe has received the ARP Request and
apparently believes that it has a route to 172.19.35.72. It responds with a proxy ARP (later than C because it
has to perform a route lookup first), which causes B to overwrite C's MAC address. Subsequent Echo Request
packets are sent to San_Felipe, where they are routed off the local data link and lost. A protocol analyzer
attached to the Ethernet proves the point (Figure 6-20).

Figure 6-20. A protocol analyzer, filtering for ARP packets, shows B's ARP request to C and replies
from both host C (00a0.24a8.a1a5) and router San_Felipe (0000.0c0a.2aa9).

[View full size image]

If you know that the trouble is a routing problem, it remains only to find the cause. First, the subnet addresses
for each data link should be determined (Figure 6-21). Next, C's IPv4 address should be compared with all the
subnets reachable via San_Felipe, in binary, to find any conflicts. Table 6-5 shows the addresses with the
subnet bits of the last octet in bold.

Figure 6-21. When analyzing any addressing scheme, and especially a VLSM design, the subnets for
every data link should be determined so that conflicts and overlaps may be discovered.



Table 6-5. C's IPv4 addresses with subnet bits of the last
octet highlighted.

Binary Representation Dotted Decimal
10101100000100110010001101001000 172.19.35.72/25
10101100000100110010001100000000 172.19.35.0/25
10101100000100110010001101000000 172.19.35.64/27
10101100000100110010001101100000 172.19.35.96/27
10101100000100110010001111001000 172.19.35.200/30
10101100000100110010001111001100 172.19.35.204/30

A comparison shows that the first three bits of 172.19.35.72/25 match subnet 172.19.35.64/27. San_Felipe has
routes to both 172.19.35.0/25 and to 172.19.35.64/27 (Example 6-31). When it receives a packet destined for
host C, it will be able to match one bit to subnet 172.19.35.0/25 but three bits to 172.19.35.64/27. As a result,
the router will choose the more specific subnet and route the packet off the local data link and into oblivion.

Example 6-31. San_Felipe has routes to both 172.19.35.0/25 and to 172.19.35.64/27; the second route
is a better match of host C's address than is the first route.

San_Felipe#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default,
       U - per-user static route
Gateway of last resort is 172.19.35.1 to network 0.0.0.0
     172.19.0.0/16 is variably subnetted, 10 subnets, 3 masks
R      172.19.35.128/27 [120/1] via 172.19.35.3, 00:00:07, Ethernet0
R      172.19.35.160/27 [120/1] via 172.19.35.3, 00:00:08, Ethernet0
R      172.19.35.212/30 [120/1] via 172.19.35.3, 00:00:08, Ethernet0
R      172.19.35.208/30 [120/1] via 172.19.35.3, 00:00:08, Ethernet0
C      172.19.35.204/30 is directly connected, Serial0
C      172.19.35.200/30 is directly connected, Serial1
R      172.19.35.196/30 [120/1] via 172.19.35.1, 00:00:17, Ethernet0
C      172.19.35.0/25 is directly connected, Ethernet0
R      172.19.35.64/27 [120/1] via 172.19.35.206, 00:00:11, Serial0
R      172.19.35.96/27 [120/1] via 172.19.35.202, 00:00:23, Serial1
R* 0.0.0.0/0 [120/1] via 172.19.35.1, 00:00:18, Ethernet0
San_Felipe#



The solution to this trouble is to readdress either host C or subnet 172.19.35.64. This step sounds easy on
paper. In real life, it may involve some difficult decisions, as it did for the client on whose network this case
study is based.

Table 6-6 shows all the subnets of 172.19.35.0, based on a 27-bit mask. The intention was to combine the first
four subnets into a single subnet with a 25-bit mask to accommodate up to 85 hosts on the "backbone"
Ethernet. This decision is valid because the grouping will use all the subnets whose first bit is zero; no other
address can cause a conflict. Next, 172.19.35.192/27 is subnetted with a 30-bit mask to be used on the serial
links. Again, this design decision is valid. Subnets 172.19.35.128/27 and 172.19.35.160 are used as is. The
error occurred when subnets 172.19.35.64/27 and 172.19.35.96/27 were selected to be used on two "remote"
networks. These subnets had already been spoken for.

Table 6-6. A 27-bit subnet mask is applied to subnet
172.19.35.0.

Binary Representation Dotted Decimal
11111111111111111111111111111111 255.255.255.224
10101100000100110010001100000000 172.19.35.0/27
10101100000100110010001100100000 172.19.35.32/27
10101100000100110010001101000000 172.19.35.64/27
10101100000100110010001101100000 172.19.35.96/27
10101100000100110010001110000000 172.19.35.128/27
10101100000100110010001110100000 172.19.35.160/27
10101100000100110010001111000000 172.19.35.192/27
10101100000100110010001111100000 172.19.35.224/27

The difficult decision is in deciding whether to re-address the backbone, giving up some address space there,
or to re-address the two remote subnets and give up address space on each of them. The second option was
chosen, using a 28-bit mask to divide 172.19.35.224/27 into two subnets for the remote sites.



Looking Ahead

Although RIPv2 presents some decided improvements over RIPv1, it is still limited to a maximum of 15
hops and, therefore, to small networks. Chapter 7, "Enhanced Interior Gateway Routing Protocol
(EIGRP)," Chapter 8, "OSPFv2," and Chapter 10, "Integrated IS-IS," examine three protocols that can
be used in much larger networks and with which design strategies such as VLSM become very
powerful tools for controlling them.



Summary Table: Chapter 6 Command Review

Command Description
accept-lifetime
start-time
{infinite | end-
time| duration
seconds}

Specifies the time period during which the
authentication key on a key chain is
received as valid

auto-summary Toggles the automatic summarization of
routes on network boundaries

debug ip rip
[events]

Enables the display of messages on RIP
transactions

debug ipv6 rip Enables the display of RIPng transactions
ip classless Enables the forwarding of packets on the

route for which the router can find the best
match without consideration of the class of
the destination address

ip rip
authentication
key-chain name-
of-chain

Enables RIPv2 authentication on an
interface and specifies the name of the
key chain to be used

ip rip
authentication
mode {text |
md5}

Specifies whether an interface will use
clear text or MD5 authentication

ip rip receive
version [1] [2]

Specifies the version or versions of RIP
messages that an interface will accept

ip rip send
version [1] [2]

Specifies the version or versions of RIP
messages that an interface will send

ip split-horizon Toggles the split horizon function on an
interface

ip subnet-zero Allows the use of all-zeros subnets for
interface addresses and routing updates

ipv6 rip process-
name enable

Enables the IPv6 RIPng process with the
given name on the interface on which this
command is issued

ipv6 rip process-
name metric-
offset value

Modifies the metric associated with an
inbound interface

ipv6 rip process-
name summary-
address prefix

Summarizes longer prefix length prefixes
into shorter prefixes

ipv6 router rip
process-name

Enables the IPv6, RIPng process on a
router, and enters the configuration mode
to change global RIPng parameters

port port-num
multicast

Changes the UDP port number and/or
multicast address for a RIPng process



multicast-value
key number Specifies a key on a key chain

key chain name-
of-chain

Specifies a group of keys

key-string text Specifies the authentication string, or
password, used by a key

network
network-number

Specifies the network address of one or
more directly connected interfaces on
which IGRP, EIGRP, or RIP processes
should be enabled

passive-
interface type
number

Disables the transmission of routing
updates on an interface

router rip Enables the RIP routing process on a
router

send-lifetime
start-time
{infinite | end-
time| duration
seconds}

Specifies the time period during which the
authentication key on a key chain may be
sent

show ip route
[address [mask]]
[protocol
[process-ID]]

Displays the current routing table as a
whole or by entry

show ipv6 rip Displays the RIPng protocol information
show ipv6 route
rip

Displays routes installed into the IPv6
route table from the RIPng process

version Specifies the version of the RIP routing
process



Recommended Reading

Malkin, G. "RIP Version 2." RFC 2453, November 1998.

Malkin, G., and R. Minnear. "RIPng for IPv6." RFC 2080, January 1997.



Review Questions

1 Which three fields are new to the RIPv2 message format?

2 Besides the extensions defined by the three fields of question 1, what are the other two
major changes from RIPv1?

3 What is the multicast address used by RIPv2? What is the advantage of multicasting
messages over broadcasting them?

4 What is the purpose of the Route Tag field in the RIPv2 message?

5 What is the purpose of the Next Hop field?

6 What is the UDP port number used by RIPv2?

7 What is the UDP port number used by RIPng?

8 Which one feature must a routing protocol have to be a classless routing protocol?

9 Which one feature must a routing protocol have to use VLSM?

10 Which two types of authentication are available with the Cisco RIPv2? Are they both
defined in RFC 2453?



Configuration Exercises

1 In the example of Figure 6-12, router Taos was configured to send both Version 1 and
Version 2 updates so that the routed process in the Linux host Pojoaque would understand
the updates from Taos. Is there another way to configure Taos besides using the ip rip
send version command?

2 A network has been assigned the address 192.168.100.0. Subnet this address to meet the
following requirements:

One subnet with 50 hosts

Five subnets with 10 hosts

One subnet with 25 hosts

Four subnets with 5 hosts

Ten serial links

3 Configure the four routers in Figure 6-22 to run RIP. RTC is running IOS 10.3 and for
corporate policy reasons cannot be upgraded, therefore can only run RIPv1.

Figure 6-22. The network for Configuration Exercises 3 through 6.

4 Configure RTB and RTD in Figure 6-22 to authenticate the RIP updates being exchanged
over the serial link.

5 Configure RTB and RTD in Figure 6-22 to change to a new authentication key three days
from the time the key in Configuration Exercise 4 went into effect. Have the new key stay in
effect for 10 hours and then have the routers change to yet another key.

6 Configure RTA and RTB in Figure 6-22 to run RIPng. The following IPv6 prefixes are to be
assigned to interfaces:

RTA:

2001:DB8:0:1::/64 



2001:DB8:0:2::/64

RTB:

2001:DB8:0:3::/64 
2001:DB8:0:2::/64



Troubleshooting Exercises

1 Example 6-32 through Example 6-34 show the configurations for the three routers in Figure
6-23. Which subnets are in the routing tables of each router? From each router, which
subnets are reachable and which subnets (if any) are unreachable?

Figure 6-23. The network for Troubleshooting Exercises 1 and 2.

Example 6-32. The configuration of RTA in Figure 6-23.

RTA#show running-config
Building configuration...
Current configuration:
!
version 11.2
no service udp-small-servers
no service tcp-small-servers
!
hostname RTA
!
!
!
interface Ethernet0
  ip address 192.168.13.86 255.255.255.248
!
interface Serial0
  no ip address
  shutdown
!
interface Serial1
  no ip address
  shutdown
!
interface TokenRing0
  ip address 192.168.13.34 255.255.255.224
  ring-speed 16
!
router rip
  version 2
  network 192.168.13.0
!
no ip classless
!
!
line con 0
line aux 0
line vty 0 4



  login
!
end
RTA#

Example 6-33. The configuration of RTB in Figure 6-23.

RTB#show running-config
Building configuration...
Current configuration:
!
version 11.2
no service udp-small-servers
no service tcp-small-servers
!
hostname RTB
!
!
!
interface Ethernet0
  ip address 192.168.13.90 255.255.255.240
!
interface Serial0
  no ip address
  shutdown
!
interface Serial1
  no ip address
  shutdown
!
interface TokenRing0
  ip address 192.168.13.35 255.255.255.224
  ring-speed 16
!
router rip
  version 2
  network 192.168.13.0
!
no ip classless
!
!
line con 0
line aux 0
line vty 0 4
  login
!
end
RTB#

Example 6-34. The configuration of RTC in Figure 6-23.

RTC#show running-config
Building configuration...
Current configuration:
!
version 11.1
service udp-small-servers



service tcp-small-servers
!
hostname RTC
!
!
!
interface Ethernet0
  ip address 192.168.13.75 255.255.255.224
!
interface Serial0
  no ip address
  shutdown
!
interface Serial1
  no ip address
  shutdown
!
interface TokenRing0
  ip address 192.168.13.33 255.255.255.224
  ring-speed 16
!
router rip
  network 192.168.13.0
!
no ip classless
!
line con 0
line 1 8
line aux 0
line vty 0 4
  login
!
end
RTC#

2 The configurations of RTA and RTB in Figure 6-23 are changed as follows:[14]

[14] The configuration shown is for RTB. RTA is identical, except for the IP
address, which is 192.168.13.34.

   interface Ethernet0
   ip address 192.168.13.35 255.255.255.224
   ip rip receive version 1 2

Will any subnets be added to any routing tables as a result of this change? Explain why or
why not.



Chapter 7. Enhanced Interior Gateway Routing Protocol
(EIGRP)
This chapter covers the following subjects:

The Roots of EIGRP: An Overview of IGRP

From IGRP to EIGRP

Operation of EIGRP

Configuring EIGRP

Troubleshooting EIGRP

First released in IOS 9.21, Enhanced Interior Gateway Routing protocol (EIGRP) is, as the name says,
an enhancement of the Cisco Interior Gateway Routing Protocol (IGRP). The name is apt because
unlike RIPv2, EIGRP is far more than the same protocol with some added extensions. Like IGRP,
EIGRP is a distance vector protocol and uses the same composite metrics as IGRP uses. Beyond that,
there are few similarities.

IGRP was discontinued as of IOS releases 12.2(13)T and 12.2(Rls4)S. Although innovative in its time,
modern network operators who desire more capability than RIP provides move to EIGRP or OSPF, not
the moderately more capable IGRP. However, to understand EIGRP, it is useful to first examine the
protocol from which it evolved.



The Roots of EIGRP: An Overview of IGRP

Cisco developed IGRP in the mid-1980s as an answer to the limitations of RIP, the most significant of
which are the hop count metric and the 15-hop network size. IGRP calculated a composite metric from
a variety of route variables and provided "knobs" for weighting the variables to reflect the specific
characteristics and needs of the network. Although hop count is not one of these variables, IGRP did
track hop count, and could be implemented on networks of up to 255 hops in diameter.

The other advantages that IGRP presented over RIP are

Unequal-cost load sharing

An update period three times longer than RIP's

A more efficient update packet format

The chief disadvantage of both IGRP and EIGRP is that they are proprietary to Cisco and therefore
limited to Cisco products, whereas RIP is a part of any IP routing process on any platform.

The Cisco objective when developing IGRP was to create a versatile, robust protocol capable of being
adapted to a variety of routed protocol suites. In addition to routing IP, IGRP could also route the ISO
Connectionless Network Protocol (CLNP). This multiprotocol capability was also adapted in EIGRP,
which can route not only IP but also IPX and AppleTalk.

From a high-altitude view, IGRP shares many operational characteristics with RIP. It is a classful
distance vector protocol that periodically broadcasts its entire routing tablewith the exception of routes
suppressed by split horizonto all its neighbors. Like RIP, IGRP broadcasts a request packet out all
IGRP-enabled interfaces upon startup and performs a sanity check on received updates to verify that
the source address of the packet belongs to the same subnet on which the update was received.[1]
New update entries with reachable metrics are placed in the routing table, and an entry replaces an
older entry to the same destination only if the metric is smaller. Split horizon with poisoned reverse,
triggered updates, and holddown timers are used for stability; IGRP summarizes addresses at network
boundaries.

[1] This sanity check can be disabled with the command no validate-update-source.

Unlike RIP, which is accessed via UDP, the IGRP process is accessed directly from the IP layer as
protocol 9.

Process Domains

IGRP also uses the concept of process domains. By defining and tracking multiple process domains,
you can isolate the communications within one domain from the communications within another domain.
Traffic between the domains can then be closely regulated by redistribution (Chapter 11, "Route
Redistribution") and route filtering (Chapter 13, "Route Filtering").

Figure 7-1 illustrates the contrast between process domains and routing domains. Here two
autonomous systems (AS) are defined: AS 10 and AS 40. These systems are routing domainsa set of
routers running one or more IGPs under a common administration. They communicate via an Exterior
Gateway Protocol (in this case, Border Gateway Protocol, or BGP).

Figure 7-1. An autonomous system number may specify a routing domain, which is a group of
routers running one or more IGP processes under a single administrative domain. Under

IGRP, an autonomous system number may also specify a process domain, which is a group of
routers sharing routing information by means of a single routing process.



[View full size image]

Within AS 10 are two IGRP process domains: IGRP 20 and IGRP 30. Under IGRP, the 20 and 30 are
defined as autonomous system numbers. In this context, the numbers serve to distinguish two routing
processes within the same routing domain. IGRP 20 and IGRP 30 communicate via the single router
connected to both domains. This router runs both IGRP processes and automatically redistributes
between them.

Within its updates, IGRP classifies route entries into one of three categories: interior routes, system
routes, and exterior routes.

An interior  route is a path to a subnet of the network address of the data link on which the update is
being broadcast. In other words, a subnet advertised as an interior route is "local" to the major network
to which the advertising router and the receiving router are commonly connected.

A system route is a path to a network address, which has been summarized by a network boundary
router.

An exterior  route is a path to a network that has been flagged as a default network. A default network
is an address to which a router will send any packet that cannot be matched to a more specific
destination.[2] Default networks and their configuration are covered in Chapter 12, "Default Routes and
On-Demand Routing."

[2] Classifying a default network as an external route is unique to IGRP and EIGRP. Open
protocols such as RIP and OSPF advertise default networks with the address 0.0.0.0.

Figure 7-2 shows how IGRP uses these three categories. The routers LeHand and Tully are connected
to subnet 192.168.2.64/26, so major network 192.168.2.0 is considered the "local" network shared by
those two routers. LeHand is also attached to 192.168.2.192/26, which is another subnet of the
network connecting the two routers. Therefore, LeHand advertises that subnet to Tully as an internal
route.

Figure 7-2. LeHand advertises subnet 192.168.2.192/26 to Tully as an internal route. Network
192.168.3.0 is advertised to Tully as a system route, and 192.168.1.0 is advertised as an

external route.



However, the local network for LeHand and Thompson is 192.168.3.0. LeHand is the boundary router
between major networks 192.168.2.0 and 192.168.3.0, so 192.168.2.0 will be advertised to Thompson
as a system route. Likewise, 192.168.3.0 is advertised to Tully as a system route.

192.168.1.0 is a network in another autonomous system, and LeHand has been configured to advertise
that network address as a default route. 192.168.1.0 will therefore be advertised to both Thompson and
Tully as an external route.

IGRP Timers and Stability Features

The IGRP update period is 90 seconds. A random jitter variable of up to 20 percent is subtracted from
each update time to prevent update timer synchronization, so the time elapsed between individual
updates will vary from 72 to 90 seconds.

When a route is first learned, the invalid timer for that route is set for 270 seconds, or three times the
update period. The flush timer is set for 630 secondsseven times the update period. Each time an
update is received for the route, these timers are reinitialized. If the invalid timer expires before an
update is heard, the route is marked as unreachable. It will be held in the routing table and advertised
as unreachable until the flush timer expires, at which time the route will be deleted from the table.

The 90-second timer used by IGRP, in comparison to the 30-second timer used by RIP, means that
compared to RIP, IGRP uses less bandwidth for periodic updates. However, the trade-off is that in
some cases IGRP might be slower to converge than RIP. For example, if a router goes offline, IGRP
takes three times as long as RIP to detect the dead neighbor.

If a destination becomes unreachable or if the next-hop router increases the metric of a destination
enough to cause a triggered update, the route will be placed in holddown for 280 seconds (three
update periods plus 10 seconds). Until the holddown timer expires, no new information will be accepted
about this destination. IGRP holddown may be disabled with the command no metric holddown. In
loop-free topologies, where holddown has no real benefit, disabling the function can reduce
reconvergence time.

The default timers can be changed with the following command:

timers basic update invalid holddown flush [sleeptime]

This command is also used to manipulate RIP timers with the exception of the sleeptime option.
Sleeptime is a timer used to specify a period, in milliseconds, to delay a regular routing update after
receiving a triggered update.



IGRP Metrics

One of the most significant changes from RIP that IGRP introduces, and which carries over into EIGRP,
is the use of multiple metric parameters, based on link characteristics. It is useful to study how IGRP
handles these metrics to understand how EIGRP handles its metrics.

The link characteristics from which IGRP calculates its composite metric are bandwidth, delay, load,
and reliability. By default, IGRP chooses a route based on bandwidth and delay. If a data link is thought
of as a pipe, then bandwidth is the width of the pipe and delay is the length of the pipe. In other words,
bandwidth is a measure of the carrying capacity, and delay is a measure of the end-to-end travel time.
Load and reliability are taken into consideration only if the router is configured to do so. IGRP also
tracks the smallest Maximum Transmission Unit (MTU) along each route, although the MTU is not used
in the composite metric calculation. The quantities associated with IGRP's composite metric on a
specific interface can be observed with the show interfaces command (Example 7-1).

Example 7-1. The output of every show interface command includes metric statistics for the
interface. This Ethernet interface shows MTU = 1500 bytes, bandwidth = 10 megabits per
second, delay = 1000 microseconds, reliability = 100 percent, and load = 39 percent (minimum
load).

Newfoundland#show interfaces ethernet 0
Ethernet0 is up, line protocol is up
  Hardware is Lance, address is 0000.0c76.5b7c (bia 0000.0c76.5b7c)
  Internet address is 10.2.1.2/24
  MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:07, output 00:00:01, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/40, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     601753 packets input, 113607697 bytes, 0 no buffer
     Received 601753 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 input packets with dribble condition detected
     693494 packets output, 557731861 bytes, 0 underruns
     0 output errors, 5 collisions, 13 interface resets
     0 babbles, 0 late collision, 48 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
Newfoundland#

Bandwidth is expressed in units of kilobits per second. It is a static number used for metric calculation
only and does not necessarily reflect the actual bandwidth of the linkthat is, bandwidth is not measured
dynamically. For example, the default bandwidth of a serial interface is 1544, whether the interface is
attached to a T1 or a 56K line. This bandwidth number may be changed from the default with the
bandwidth command.

IGRP updates use a three-octet number, referred to in this book as BWIGRP, which is the inverse of

the bandwidth scaled by a factor of 107. So if the bandwidth of an interface is 1544, then

BWIGRP = 107/1544 = 6476, or 0x00194C.



Delay, like bandwidth, is a static figure and is not measured dynamically. It is displayed by the show
interface command as DLY, in units of microseconds. The default delay of an interface may be
changed with the delay command, which specifies the delay in tens of microseconds. Example 7-2
shows the bandwidth and delay commands used to change the defaults of the interface of Example
7-1.

Example 7-2. The bandwidth and delay commands are used to change the metric defaults of
the e0 interface. The new quantities can be seen in the output of the show interfaces
command.

Newfoundland(config)#interface e0
Newfoundland(config-if)#bandwidth 75000
Newfoundland(config-if)#delay 5
Newfoundland(config-if)#^Z
Newfoundland#
%SYS-5-CONFIG_I: Configured from console by console
Newfoundland#show interfaces ethernet0
Ethernet0 is up, line protocol is up
  Hardware is Lance, address is 0000.0c76.5b7c (bia 0000.0c76.5b7c)
  Internet address is 10.2.1.2/24
  MTU 1500 bytes, BW 75000 Kbit, DLY 50 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:02, output 00:00:02, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/40, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     601888 packets input, 113637882 bytes, 0 no buffer
     Received 601888 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 input packets with dribble condition detected
     693646 packets output, 557884632 bytes, 0 underruns
     0 output errors, 5 collisions, 13 interface resets
     0 babbles, 0 late collision, 48 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
Newfoundland#

When carried in an IGRP update, delay is a three-octet number expressed in the same 10-microsecond
units as specified by the delay command. To avoid confusion, this number will be referred to as
DLYIGRP, to differentiate it from DLY, in microseconds, observed with show interface. For example, if
DLY is 50, then

DLYIGRP = DLY/10 = 50/10 = 5, or 0x000005.

IGRP also uses delay to indicate an unreachable route by setting DLYIGRP = 0xFFFFFF. This number
translates to approximately 167.8 seconds, so the maximum end-to-end delay of an IGRP route is 167
seconds.

Because IGRP uses bandwidth and delay as its default metrics, these quantities must be configured
correctly and consistently on all interfaces of all IGRP routers.

Changing the bandwidth or delay of an interface should be done only for good reasons and only with a



full understanding of the results of those changes. In most cases, it is best to leave the default values
unchanged. A notable exception is serial interfaces. As noted earlier in this section, serial interfaces on
Cisco routers have a default bandwidth of 1544 no matter what the bandwidth is of the connected link.
The bandwidth command should be used to set the interface to the actual bandwidth of the serial link.

It is important to note that OSPF also uses the bandwidth statement to calculate its metric. Therefore, if
IGRP (or EIGRP) metrics are to be manipulated in a network where OSPF is also running, use the
delay to influence IGRP. Changing the bandwidth will affect both IGRP and OSPF.

Table 7-1 lists the bandwidths and delays for a few common interfaces. (The default bandwidth of a
serial interface is always 1544; Table 7-1 shows the figures that would result from using the bandwidth
command to reflect the actual connected bandwidth.)

Table 7-1. Common BWIGRP and DLYIGRP quantities.
Media Bandwidth BWIGRP Delay DLYIGRP

100M ATM 100000K 100 100mS 10

Fast Ethernet 100000K 100 100mS 10

FDDI 100000K 100 100mS 10

HSSI 45045K 222 20000mS 2000

16M Token
Ring

16000K 625 630mS 63

Ethernet 10000K 1000 1000mS 100

T1 1544K 6476 20000mS 2000

DS0 64K 156250 20000mS 2000

56K 56K 178571 20000mS 2000

Tunnel 9K 1111111 500000mS 50000

Reliability is measured dynamically and is expressed as an eight-bit number, where 255 is a 100
percent reliable link and 1 is a minimally reliable link. In the output of show interface, reliability is
shown as a fraction of 255, for example, 234/255 (see Example 7-3).

Example 7-3. This interface shows a reliability of 234/255, or 91.8 percent.

Casablanca#show interface ethernet0
Ethernet0 is up, line protocol is up
  Hardware is Lance, address is 0000.0c76.5b7c (bia 0000.0c76.5b7c)
  Internet address is 172.20.1.1 255.255.255.0
  MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 234/255, load 1/255
  Encapsulation ARPA, loopback not set, keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 4:00:00
  Last input 0:00:28, output 0:00:06, output hang never
  Last clearing of "show interface" counters 0:06:05
  Output queue 0/40, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     22 packets input, 3758 bytes, 0 no buffer
     Received 21 broadcasts, 0 runts, 0 giants
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 input packets with dribble condition detected
     125 packets output, 11254 bytes, 0 underruns
     39 output errors, 694 collisions, 0 interface resets, 0 restarts
     0 output buffer failures, 0 output buffers swapped out



Casablanca#

Load, in an IGRP update, is an eight-bit number. Load is represented in the output of show interface
as a fraction of 255, such as 40/255 (Example 7-4); 1 is a minimally loaded link, and 255 is a 100
percent loaded link.

Example 7-4. This interface shows a load of 40/255, or 15.7 percent.

Yalta#show interface serial 1
Serial1 is up, line protocol is up
  Hardware is HD64570
  Internet address is 172.20.20.2 255.255.255.0
  MTU 1500 bytes, BW 56 Kbit, DLY 20000 usec, rely 255/255, load 40/255
  Encapsulation HDLC, loopback not set, keepalive set (10 sec)
  Last input 0:00:08, output 0:00:00, output hang never
  Last clearing of "show interface" counters 0:05:05
  Output queue 0/40, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 10000 bits/sec, 1 packets/sec
  5 minute output rate 9000 bits/sec, 1 packets/sec
     456 packets input, 397463 bytes, 0 no buffer
     Received 70 broadcasts, 0 runts, 0 giants
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     428 packets output, 395862 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets, 0 restarts
     0 output buffer failures, 0 output buffers swapped out
     0 carrier transitions
     DCD=up DSR=up DTR=up RTS=up CTS=up

If reliability or load is to be used as a metric or as part of a composite metric, the algorithm for
calculating the metric must not allow sudden changes in the error rate or channel occupancy to
destabilize the network. As an example, if a "raw," or instantaneous, measure of load is used, a burst of
heavy traffic could cause a route to go into holddown and an abrupt drop in traffic could trigger an
update. To prevent frequent metric changes, reliability and load are calculated based on an
exponentially weighted average with a five-minute time constant, which is updated every five seconds.

The composite metric for each IGRP route is calculated as

     metric = [k1*BWIGRP(min) + (k2* BWIGRP(min))/(256-LOAD) + k3*DLYIGRP(sum)]
     x [k5/(RELIABILITY + k4)],

where BWIGRP(min) is the minimum BWIGRP of all the outgoing interfaces along the route to the
destination and DLYIGRP(sum) is the total DLYIGRP of the route.

The values k1 through k5 are configurable weights; their default values are k1=k3=1 and k2=k4=k5=0.
These defaults can be changed with the command:[3]

[3] tos is a relic of the Cisco original intention to have IGRP do type of service routing; this
plan was never adopted, and tos in this command is always set to zero.

metric weights tos k1 k2 k3 k4 k53

If k5 is set to zero, the [k5/(RELIABILITY+k4)] term is not used.



Given the default values for k1 through k5, the composite metric calculation used by IGRP reduces to
the default metric:

metric = BWIGRP(min) + DLYIGRP(sum)

The network example in Figure 7-3 shows the bandwidths and delays configured on each interface and
a forwarding database from one of the routers with the derived IGRP metrics.[4]

[4] Also notice the administrative distance, which is 100 for IGRP.

Figure 7-3. By default, the total delay is added to the minimum bandwidth to derive the IGRP
metric.

[View full size image]

The routing table itself shows only the derived metric, but the actual variables recorded by IGRP for
each route can be seen by using the command show ip route address, as in Example 7-5. Here the
minimum bandwidth on the route from Casablanca to subnet 172.20.40.0/24 is 512K, at Quebec. The
total delay of the route is (1000 + 20000 + 20000 + 5000) = 46000 microseconds:

BWIGRP(min) = 107/512 = 19531

DLYIGRP(sum) = 46000/10 = 4600

metric = BWIGRP(min) + DLYIGRP(sum) = 19531 + 4600 = 24131

Example 7-5. The metric for the route from Casablanca to subnet 172.20.40.0 is calculated
from the minimum bandwidth of 512K and the total delay of 46000 microseconds.

Casablanca#show ip route 172.20.40.0
Routing entry for 172.20.40.0 255.255.255.0
  Known via "igrp 1", distance 100, metric 24131
  Redistributing via igrp 1
  Advertised by igrp 1 (self originated)
  Last update from 172.20.1.2 on Ethernet0, 00:00:54 ago
  Routing Descriptor Blocks:
  * 172.20.1.2, from 172.20.1.2, 00:00:54 ago, via Ethernet0
      Route metric is 24131, traffic share count is 1
      Total delay is 46000 microseconds, minimum bandwidth is 512 Kbit
      Reliability 255/255, minimum MTU 1500 bytes



      Loading 1/255, Hops 2

Example 7-5 shows that IGRP also records the smallest MTU along the route in addition to the hop
count. MTU is not used in the metric calculation. Hop count is the hop count reported by the next-hop
router and is used only to limit the diameter of the network. By default, the maximum hop count is 100
and can be configured from 1 to 255 with the command metric maximum-hops. If the maximum hop
count is exceeded, the route will be marked unreachable by setting the delay to 0xFFFFFF.

Note that all metrics are calculated from the outgoing interfaces along the route. For example, the
metric for the route from Yalta to subnet 172.20.4.0/24 is different from the metric for the route from
Casablanca to subnet 172.20.40.0/24. This is due to the differences in the configured bandwidth on the
link between Yalta and Quebec and to the differences in the delay on the outgoing interfaces to the two
destination subnets.



From IGRP to EIGRP

The original motivation for developing EIGRP was simply to make IGRP classless. But early in the
development the engineers working on the project recalled some academic proposals for a new kind of
convergence algorithm and decided to use that algorithm in their extension of IGRP. The result was a
protocol that, while retaining some concepts introduced with IGRP such as multiple metrics, protocol
domains, and unequal-cost load balancing, is distinctly different from IGRP.

EIGRP is occasionally described as a distance vector protocol that acts like a link-state protocol. To
recap the extensive discussion in Chapter 4, "Dynamic Routing Protocols," a distance vector protocol
shares everything it knows, but only with directly connected neighbors. Link-state protocols announce
information only about their directly connected links, but they share the information with all routers in
their routing domain or area.

All the distance vector protocols discussed so far run some variant of the Bellman-Ford (or Ford-
Fulkerson) algorithm. These protocols are prone to routing loops and counting to infinity. As a result,
they must implement loop-avoidance measures such as split horizon, route poisoning, and hold-down
timers. Because each router must run the routing algorithm on received routes before passing those
routes along to its neighbors, larger networks might be slow to converge. More important, distance
vector protocols advertise routes; the change of a critical link might mean the advertisement of many
changed routes.

Compared to distance vector protocols, link-state protocols are far less susceptible to routing loops and
bad routing information. The forwarding of link-state packets is not dependent on performing the route
calculations first, so large networks might converge faster. And only links or prefixes and their states are
advertised, not routes, which means the change of a link will not cause the advertisement of all routes
using that link.

Regardless of whether other routing protocols perform route calculations before sending distance
vector updates to neighbors or after building a topological database, their common denominator is that
they perform the calculations individually. In contrast to the Bellman-Ford algorithms used by most other
distance vector protocols, EIGRP uses a system of diffusing computationsroute calculations that are
performed in a coordinated fashion among multiple routersto attain fast convergence while remaining
loop-free at every instant.

Although EIGRP updates are still vectors of distances transmitted to directly connected neighbors, they
are nonperiodic, partial, and bounded. Nonperiodic means that updates are not sent at regular
intervals; rather, updates are sent only when a metric or topology change occurs. Partial  means that
the updates will include only routes that have changed, not every entry in the route table. Bounded
means that the updates are sent only to affected routers. These characteristics mean that EIGRP uses
much less bandwidth than typical distance vector protocols use. This feature can be especially
important on low-bandwidth, high-cost Wide Area Network (WAN) links.

Another concern when routing over low-bandwidth WAN links is the maximum amount of bandwidth
used during periods of convergence, when routing traffic is high. By default, EIGRP uses no more than
50 percent of the bandwidth of a link. Later IOS releases allow this percentage to be changed with the
command ip bandwidth-percent eigrp.

EIGRP is a classless protocol (that is, each route entry in an update includes a subnet mask). Variable-
length subnet masks may be used with EIGRP not only for sub-subnetting as described in Chapter 6,
"RIPv2, RIPng, and Classless Routing," but also for address aggregationthe summarization of a group
of major network addresses.

EIGRP packets can be authenticated using an MD5 cryptographic checksum. The basics of
authentication and MD5 are covered in Chapter 6; an example of configuring EIGRP authentication is
included in this chapter.



Finally, a major feature of EIGRP is that it can route not only IP but also IPX and AppleTalk.



Operation of EIGRP

EIGRP uses the same formula that IGRP uses to calculate its composite metric. However, EIGRP scales the
metric components by 256 to achieve a finer metric granularity. So if the minimum configured bandwidth on the
path to a destination is 512K and the total configured delay is 46000 microseconds, IGRP would calculate a
composite metric of 24131. EIGRP, however, will multiply the bandwidth and delay components by 256 for a
metric of 256 x 24131 = 6177536.

EIGRP has four components (Figure 7-4):

Protocol-Dependent Modules

Reliable Transport Protocol (RTP)

Neighbor Discovery/Recovery

Diffusing Update Algorithm (DUAL)

Figure 7-4. The four major components of EIGRP. RTP and neighbor discovery are lower-level
protocols that enable the correct operation of DUAL. DUAL can perform route computations for

multiple routed protocols.

This section examines each EIGRP component, with particular emphasis on DUAL, and ends with a discussion
of address aggregation.

Protocol-Dependent Modules

EIGRP implements modules for IP, IPX, and AppleTalk, which are responsible for the protocol-specific routing
tasks. For example, the IPX EIGRP module is responsible for exchanging route information about IPX networks
with other IPX EIGRP processes and for passing the information to the DUAL. Additionally, the IPX module will
send and receive SAP information.

As Figure 7-4 shows, the traffic for the individual modules is encapsulated within their respective network layer
protocols. EIGRP for IPX, for example, is carried in IPX packets.

EIGRP automatically redistributes with other protocols in many cases:

IPX EIGRP automatically redistributes with IPX RIP and NLSP.

AppleTalk EIGRP automatically redistributes with AppleTalk RTMP.

IP EIGRP automatically redistributes routes with IGRP if the IGRP process is in the same autonomous
system.

Redistribution with other IP routing protocols is the subject of Chapter 11.



Configuration of EIGRP for IPX and AppleTalk is outside the scope of this book. Refer to the Cisco
Configuration Guide for more information.

Reliable Transport Protocol

The Reliable Transport Protocol (RTP) manages the delivery and reception of EIGRP packets. Reliable
delivery means that delivery is guaranteed and that packets will be delivered in order.

Guaranteed delivery is accomplished by means of a Cisco-proprietary algorithm known as reliable multicast,
using the reserved class D address 224.0.0.10. Each neighbor receiving a reliably multicast packet unicasts an
acknowledgment.

Ordered delivery is ensured by including two sequence numbers in the packet. Each packet includes a
sequence number assigned by the sending router. This sequence number is incremented by one each time the
router sends a new packet. In addition, the sending router places in the packet the sequence number of the
last packet received from the destination router.

In some cases, RTP may use unreliable delivery. No acknowledgment is required, and no sequence number
will be included for unreliably delivered EIGRP packets.

EIGRP uses multiple packet types, all of which are identified by protocol number 88 in the IP header:

Hellos are used by the neighbor discovery and recovery process. Hello packets are multicast and use
unreliable delivery.

Acknowledgments (ACKs) are Hello packets with no data in them. ACKs are always unicast and use
unreliable delivery.

Updates convey route information. Unlike RIP and IGRP updates, these packets are transmitted only
when necessary, contain only necessary information, and are sent only to routers that require the
information. When updates are required by a specific router, they are unicast. When updates are required
by multiple routers, such as upon a metric or topology change, they are multicast. Updates always use
reliable delivery.

Queries and Replies are used by the DUAL finite state machine to manage its diffusing computations.
Queries can be multicast or unicast, and replies are always unicast. Both queries and replies use reliable
delivery.

Requests were a type of packet originally intended for use in route servers. This application was never
implemented, and request packets are noted here only because they are mentioned in some older EIGRP
documentation.

If any packet is reliably multicast and an ACK is not received from a neighbor, the packet will be retransmitted
as a unicast to that unresponding neighbor. If an ACK is not received after 16 of these unicast retransmissions,
the neighbor will be declared dead.

The time to wait for an ACK before switching from multicast to unicast is specified by the multicast flow timer .
The time between the subsequent unicasts is specified by the retransmission timeout (RTO). Both the
multicast flow timer and the RTO are calculated for each neighbor from the smooth round-trip time (SRTT).
The SRTT is the average elapsed time, measured in milliseconds, between the transmission of a packet to the
neighbor and the receipt of an acknowledgment. The formulas for calculating the exact values of the SRTT,
the RTO, and the multicast flow timer are proprietary.

The following two subsections discuss the EIGRP components that use the various packet types.

Neighbor Discovery/Recovery

Because EIGRP updates are nonperiodic, it is especially important to have a process whereby
neighborsEIGRP-speaking routers on directly connected networksare discovered and tracked. On most
networks, Hellos are multicast every five seconds, minus a small random time to prevent synchronization. On
multipoint X.25, Frame Relay, and ATM interfaces, with access link speeds of T1 or slower, Hellos are unicast
every 60 seconds.[5] This longer Hello interval is also the default for ATM SVCs and for ISDN PRI interfaces.



In all cases, the Hellos are unacknowledged. The default Hello interval can be changed on a per interface
basis with the command ip hello-interval eigrp.

[5] Point-to-point subinterfaces send Hellos every 5 seconds.

When a router receives a Hello packet from a neighbor, the packet will include a hold time. The hold time tells
the router the maximum time it should wait to receive subsequent Hellos. If the hold timer expires before a
Hello is received, the neighbor is declared unreachable and DUAL is informed of the loss of a neighbor. By
default, the hold time is three times the Hello interval180 seconds for low-speed nonbroadcast multiaccess
(NBMA) networks and 15 seconds for all other networks. The default can be changed on a per interface basis
with the command ip hold-time eigrp. The capability to detect a lost neighbor within 15 seconds, as opposed
to 180 seconds for RIP and 270 seconds for IGRP, is one factor contributing to EIGRP's fast reconvergence.

Information about each neighbor is recorded in a neighbor table. As Example 7-6 shows, the neighbor table
records the IP address of the neighbor and the interface on which the neighbor's Hellos are received. The hold
time advertised by the neighbor is recorded, as is the SRTT and the uptimethe time since the neighbor was
added to the table. The RTO is the time, in milliseconds, that the router will wait for an acknowledgment of a
unicast packet sent after a multicast has failed. If an EIGRP update, query, or reply is sent, a copy of the
packet will be queued. If the RTO expires before an ACK is received, another copy of the queued packet is
sent. The Q Count indicates the number of enqueued packets. The sequence number of the last update,
query, or reply packet received from the neighbor is also recorded in the neighbor table. The RTP tracks these
sequence numbers to ensure that packets from the neighbor are not received out of order. Finally, the H
column records the order in which the neighbors were learned.

Example 7-6. The command show ip eigrp neighbors  is used to observe the IP EIGRP neighbor table.

Wright#show ip eigrp neighbors
IP-EIGRP neighbors for process 1
H   Address   Interface   Hold  Uptime   SRTT   RTO   Q   Seq
                          (sec)          (ms)        Cnt  Num
3   10.1.1.2  Et0           10  09:01:27   12   200   0   5
2   10.1.4.2  Se1           13  09:02:11   23   200   0   11
1   10.1.2.2  Et1           14  09:02:12    8   200   0   15
0   10.1.3.2  Se0           12  09:02:12   21   200   0   13
Wright#

Diffusing Update Algorithm

DUAL is a convergence algorithm that replaces the Bellman-Ford or Ford-Fulkerson algorithms used by other
distance vector protocols. The design philosophy behind DUAL is that even temporary routing loops are
detrimental to the performance of a network. DUAL uses diffusing computations, first proposed by E. W.
Dijkstra and C. S. Scholten,[6] to perform distributed shortest-path routing while maintaining freedom from
loops at every instant. Although many researchers have contributed to the development of DUAL, the most
prominent work is that of J. J. Garcia-Luna-Aceves.[7]

[6] Edsger W. Dijkstra and C. S. Scholten. "Termination Detection for Diffusing Computations."
Information Processing Letters, Vol. 11, No. 1, pp. 14: 29 August 1980.

[7] J. J. Garcia-Luna-Aceves. "A Unified Approach for Loop-Free Routing Using Link States or
Distance Vectors," ACM SIGCOMM Computer Communications Review, Vol. 19, No. 4, pp. 212223:
September 1989.

J. J. Garcia-Luna-Aceves. "Loop-Free Routing Using Diffusing Computations," IEEE/ACM
Transactions on Networking, Vol. 1, No. 1, February 1993.

DUAL: Preliminary Concepts



For DUAL to operate correctly, a lower-level protocol must ensure that the following conditions are met:[8]

[8] J. J. Garcia-Luna-Aceves. "Area-Based, Loop-Free Internet Routing." Proceedings of IEEE
INFOCOMM 94. Toronto, Ontario, Canada, June 1994.

A node detects within a finite time the existence of a few neighbor or the loss of connectivity with a
neighbor.

All messages transmitted over an operational link are received correctly and in the proper sequence
within a finite time.

All messages, changes in the cost of a link, link failures, and new-neighbor notifications are processed
one at a time within a finite time and in the order in which they are detected.

The Cisco EIGRP uses Neighbor Discovery/Recovery and RTP to establish these preconditions.

Before the operation of DUAL can be examined, a few terms and concepts must be described.

Upon startup, a router uses Hellos to discover neighbors and to identify itself to neighbors. When a neighbor is
discovered, EIGRP will attempt to form an adjacency with that neighbor. An adjacency is a logical association
between two neighbors over which route information is exchanged. When adjacencies have been established,
the router will receive updates from its neighbors. The updates will contain all routes known by the sending
routers and the metrics of those routes. For each route, the router will calculate a distance based on the
distance advertised by the neighbor and the cost of the link to that neighbor.

The lowest calculated metric to each destination will become the feasible distance (FD) of that destination. For
example, a router may be informed of three different routes to subnet 172.16.5.0 and may calculate metrics of
380672, 12381440, and 660868 for the three routes. 380672 will become the FD because it is the lowest
calculated distance.

The feasibility condition (FC) is a condition that is met if a neighbor's advertised distance to a destination is
lower than the router's FD to that same destination.

If a neighbor's advertised distance to a destination meets the FC, the neighbor becomes a feasible
successor [9] for that destination. For example, if the FD to subnet 172.16.5.0 is 380672 and a neighbor
advertises a route to that subnet with a distance of 355072, the neighbor will become a feasible successor; if
the neighbor advertises a distance of 380928, it will not satisfy the FC and will not become a feasible
successor.

[9] Successor simply means a router that is one hop closer to a destinationin other words, a next-hop
router.

The concepts of feasible successors and the FC are central to loop avoidance. Because feasible successors
are always "downstream," (that is, a shorter metric distance to the destination than the FD) a router will never
choose a path that will lead back through itself, creating a loop. Such a path would have a distance larger than
the FD.

Every destination for which one or more feasible successors exist will be recorded in a topological table, along
with the following items:

The destination's FD

All feasible successors

Each feasible successor's advertised distance to the destination

The locally calculated distance to the destination via each feasible successor, based on the feasible
successor's advertised distance and the cost of the link to that successor

The interface connected to the network on which each feasible successor is found[10]

[10] Actually, the interface is not explicitly recorded in the route table. Rather, it is an attribute of



the neighbor itself. This convention implies that the same router, seen across multiple parallel
links, will be viewed by EIGRP as multiple neighbors.

For every destination listed in the topological table, the route with the lowest metric is chosen and placed into
the route table. The neighbor advertising that route becomes the successor , or the next-hop router to which
packets for that destination are sent.

An example will help clarify these terms, but first a brief discussion of the network used in the examples in this
section is necessary. Figure 7-5 shows the EIGRP-based network that is used throughout this and the next
three subsections.[11] The command metric weights 0 0 0 1 0 0 has been added to the EIGRP process so
that only delay is used in the metric calculations. The delay command has been used with the numbers shown
at each link; for example, the interfaces of routers Wright and Langley, connected to subnet 10.1.3.0, have
been configured with a delay of 2. These steps have been taken to simplify the examples that follow.

[11] Several of the illustrations in this and the following section, and in the network example used
throughout, are adapted from Dr. Garcia-Luna-Aceves's "Loop-Free Routing Using Diffusing
Computations," with his permission.

Figure 7-5. The examples and illustrations of this and the next two subsections are based on this
EIGRP network.

It should be pointed out that although the delay parameters used here sacrifice realism for simplicity, the way
the metrics are manipulated is realistic. Many parameters are calculated from an interface's bandwidth
specification; some, such as the ip bandwidth-percent eigrp, apply directly to EIGRP. Others, such as OSPF
cost, do not. As a result, changes of the configured bandwidth should be avoided except to set serial links to
their actual bandwidth. If interface metrics need to be manipulated to influence EIGRP (or IGRP) routing, use
delay. Many unexpected headaches can be avoided.

In Example 7-7, the command show ip eigrp topology is used to observe the topology table of router
Langley. Each of the seven subnets shown in Figure 7-5 is listed, along with the feasible successors for the
subnets. For example, the feasible successors for subnet 10.1.6.0 are 10.1.3.1 (Wright) and 10.1.5.2
(Chanute), via interfaces S0 and S1, respectively.

Example 7-7. Topology table of router Langley.

Langley#show ip eigrp topology
IP-EIGRP Topology Table for process 1

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status



P 10.1.3.0/24, 1 successors, FD is 512
         via Connected, Serial0
P 10.1.2.0/24, 1 successors, FD is 768
         via 10.1.3.1 (768/256), Serial0
         via 10.1.5.2 (1280/256), Serial1
P 10.1.1.0/24, 1 successors, FD is 768
         via 10.1.3.1 (768/256), Serial0
         via 10.1.5.2 (1536/512), Serial1
P 10.1.7.0/24, 1 successors, FD is 256
         via Connected, Ethernet0
P 10.1.6.0/24, 1 successors, FD is 1024
         via 10.1.3.1 (1024/512), Serial0
         via 10.1.5.2 (1792/768), Serial1
P 10.1.5.0/24, 1 successors, FD is 1024
         via Connected, Serial1
P 10.1.4.0/24, 1 successors, FD is 5632
         via 10.1.3.1 (5632/5120), Serial0
         via 10.1.5.2 (6400/5376), Serial1
Langley#

Two metrics in parentheses are also associated with each feasible successor. The first number is the locally
calculated metric from Langley to the destination. The second number is the metric advertised by the neighbor.
For example, in Figure 7-5 the metric from Langley to subnet 10.1.6.0 via Wright is 256 x (2 + 1 + 1) = 1024,
and the metric advertised by Wright for that destination is 256 x (1 + 1) = 512. The two metrics for the same
destination via Chanute are 256 x (4 + 1 + 1 + 1) = 1792 and 256 x (1 + 1 + 1) = 768.

The lowest metric from Langley to subnet 10.1.6.0 is 1024, so that is the FD. Example 7-8 shows Langley's
route table, with the chosen successors.

Example 7-8. Langley's route table shows that a single successor has been chosen for each known
destination, based on the lowest metric distance.

Langley#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
     10.0.0.0/8 is subnetted, 7 subnets
C       10.1.3.0 is directly connected, Serial0
D       10.1.2.0 [90/768] via 10.1.3.1, 00:32:06, Serial0
D       10.1.1.0 [90/768] via 10.1.3.1, 00:32:07, Serial0
C       10.1.7.0 is directly connected, Ethernet0
D       10.1.6.0 [90/1024] via 10.1.3.1, 00:32:07, Serial0
C       10.1.5.0 is directly connected, Serial1
D       10.1.4.0 [90/5632] via 10.1.3.1, 00:32:07, Serial0
Langley#

Langley has only one successor for every route. The topology table of Cayley (Example 7-9) shows that there
are two successors for 10.1.4.0 because the locally calculated metric for both routes matches the FD. Both
routes are entered into the route table (Example 7-10), and Cayley will perform equal-cost load balancing.

Example 7-9. Topology table of Cayley, showing two successors to subnet 10.1.4.0.

Cayley#show ip eigrp topology
IP-EIGRP Topology Table for process 1
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status
P 10.1.3.0/24, 1 successors, FD is 768



         via 10.1.1.1 (768/512), Ethernet0
P 10.1.2.0/24, 1 successors, FD is 512
         via 10.1.1.1 (512/256), Ethernet0
P 10.1.1.0/24, 1 successors, FD is 256
         via Connected, Ethernet0
P 10.1.7.0/24, 1 successors, FD is 1024
         via 10.1.1.1 (1024/768), Ethernet0
P 10.1.6.0/24, 1 successors, FD is 256
         via Connected, Serial0
P 10.1.5.0/24, 1 successors, FD is 1536
         via 10.1.1.1 (1536/1280), Ethernet0
P 10.1.4.0/24, 2 successors, FD is 5376
         via 10.1.6.1 (5376/5120), Serial0
         via 10.1.1.1 (5376/5120), Ethernet0
Cayley#

Example 7-10. Equal-cost load sharing will be performed between the two successors to 10.1.4.

Cayley#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
     10.0.0.0/24 is subnetted, 7 subnets
D       10.1.3.0 [90/768] via 10.1.1.1, 00:01:19, Ethernet0
D       10.1.2.0 [90/512] via 10.1.1.1, 00:01:19, Ethernet0
C       10.1.1.0 is directly connected, Ethernet0
D       10.1.7.0 [90/1024] via 10.1.1.1, 00:01:19, Ethernet0
C       10.1.6.0 is directly connected, Serial0
D       10.1.5.0 [90/1536] via 10.1.1.1, 00:01:19, Ethernet0
D       10.1.4.0 [90/5376] via 10.1.1.1, 00:01:19, Ethernet0
                 [90/5376] via 10.1.6.1, 00:01:19, Serial0
Cayley#

The topology table of Chanute (Example 7-11) shows several routes for which there is only one feasible
successor. For example, the route to 10.1.6.0 has an FD of 768, and Wright (10.1.2.1) is the only feasible
successor. Langley has a route to 10.1.6.0, but its metric is 256 x (2 + 1 + 1) = 1024, which is greater than the
FD. Therefore, Langley's route to 10.1.6.0 does not satisfy the FC, and Langley does not qualify as a feasible
successor.

Example 7-11. Several of the subnets reachable from Chanute have only one feasible successor.

Chanute#show ip eigrp topology
IP-EIGRP Topology Table for process 1
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status
P 10.1.3.0/24, 1 successors, FD is 768
         via 10.1.2.1 (768/512), Ethernet0
         via 10.1.5.1 (1536/512), Serial0
P 10.1.2.0/24, 1 successors, FD is 256
         via Connected, Ethernet0
P 10.1.1.0/24, 1 successors, FD is 512
         via 10.1.2.1 (512/256), Ethernet0
P 10.1.7.0/24, 1 successors, FD is 1024
         via 10.1.2.1 (1024/768), Ethernet0
         via 10.1.5.1 (1280/256), Serial0
P 10.1.6.0/24, 1 successors, FD is 768



         via 10.1.2.1 (768/512), Ethernet0
P 10.1.5.0/24, 1 successors, FD is 1024
         via Connected, Serial0
P 10.1.4.0/24, 1 successors, FD is 5376
         via 10.1.2.1 (5376/5120), Ethernet0
Chanute#

If a feasible successor advertises a route for which the locally calculated metric is lower than the metric via the
present successor, the feasible successor will become the successor. The following conditions can cause this
situation to occur:

A newly discovered route

The cost of a successor's route increasing beyond that of a feasible successor

The cost of a feasible successor's route decreasing to below the cost of the successor's route

For example, Example 7-12 shows that Lilienthal's successor to subnet 10.1.3.0 is Cayley (10.1.6.2). Suppose
the cost of the link between Lilienthal and Wright is decreased to one. Wright (10.1.4.1) is advertising a
distance of 512 to subnet 10.1.3.0; with the new cost of the link to Wright, Lilienthal's locally calculated metric
to the subnet via that router is now 768. Wright will replace Cayley as the successor to subnet 10.1.3.0.

Example 7-12. Topology table for Lilienthal.

Lilienthal#show ip eigrp topology
IP-EIGRP Topology Table for process 1
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status
P 10.1.3.0/24, 1 successors, FD is 1024
         via 10.1.6.2 (1024/768), Serial0
         via 10.1.4.1 (5632/512), Serial1
P 10.1.2.0/24, 1 successors, FD is 768
         via 10.1.6.2 (768/512), Serial0
         via 10.1.4.1 (5376/256), Serial1
P 10.1.1.0/24, 1 successors, FD is 512
         via 10.1.6.2 (512/256), Serial0
         via 10.1.4.1 (5376/256), Serial1
P 10.1.7.0/24, 1 successors, FD is 1280
         via 10.1.6.2 (1280/1024), Serial0
         via 10.1.4.1 (5888/768), Serial1
P 10.1.6.0/24, 1 successors, FD is 256
         via Connected, Serial0
P 10.1.5.0/24, 1 successors, FD is 1792
         via 10.1.6.2 (1792/1536), Serial0
         via 10.1.4.1 (6400/1280), Serial1
P 10.1.4.0/24, 1 successors, FD is 5120
         via Connected, Serial1
Lilienthal#

Next, suppose Lilienthal discovers a new neighbor that is advertising a distance of 256 to subnet 10.1.3.0.
This distance is lower than the FD, so the new neighbor will become a feasible successor. Suppose further
that the cost of the link to the new neighbor is 256. Lilienthal's locally calculated metric to 10.1.3.0 via the new
neighbor will be 512. This metric is lower than the distance via Wright, so the new neighbor will become the
successor to 10.1.3.0.

Feasible successors are important because they reduce the number of diffusing computations and therefore
increase performance. Feasible successors also contribute to lower reconvergence times. If a link to a
successor fails, or if the cost of the link increases beyond the FD, the router will first look into its topology table
for a feasible successor. If one is found, it will become the successor; this selection normally occurs in the sub-
second range. The router will begin a diffusing computation only if a feasible successor cannot be found. The



key to successful EIGRP design, then, is ensuring that a feasible successor always exists for all destinations.

The following section gives a more formal set of rules for when and how a router will search for feasible
successors. This set of rules is called the DUAL finite state machine.

DUAL Finite State Machine

When an EIGRP router is performing no diffusing computations, each route is in the passive state. Referring to
any of the topology tables in the previous section, a key to the left of each route indicates a passive state.

A router will reassess its list of feasible successors for a route, as described in the last section, any time an
input event  occurs. An input event can be the following:

A change in the cost of a directly connected link

A change in the state (up or down) of a directly connected link

The reception of an update packet

The reception of a query packet

The reception of a reply packet

The first step in its reassessment is a local computation in which the distance to the destination is recalculated
for all feasible successors. The possible results are

If the feasible successor with the lowest distance is different from the existing successor, the feasible
successor will become the successor.

If the new distance is lower than the FD, the FD will be updated.

If the new distance is different from the existing distance, updates will be sent to all neighbors.

While the router is performing a local computation, the route remains in the passive state. If a feasible
successor is found, an update is sent to all neighbors and no state change occurs.

If a feasible successor cannot be found in the topology table, the router will begin a diffusing computation and
the route will change to the active state. Until the diffusing computation is completed and the route transitions
back to the passive state, the router cannot

Change the route's successor

Change the distance it is advertising for the route

Change the route's FD

Begin another diffusing computation for the route

A router begins a diffusing computation by sending queries to all of its neighbors (Figure 7-6). The query will
contain the new locally calculated distance to the destination. Each neighbor, upon receipt of the query, will
perform its own local computation:

If the neighbor has one or more feasible successors for the destination, it will send a reply to the
originating router. The reply will contain that neighbor's minimum locally calculated distance to the
destination.

If the neighbor does not have a feasible successor, it too will change the route to the active state and will
begin a diffusing computation.

Figure 7-6. A diffusing computation grows as queries are sent and shrinks as replies are received.

[View full size image]



For each neighbor to which a query is sent, the router will set a reply status flag  (r) to keep track of all
outstanding queries. The diffusing computation is complete when the router has received a reply to every
query sent to every neighbor.

In some cases, a router does not receive a reply to every query sent. For example, this might happen in large
networks with many low-bandwidth or low-quality links. At the beginning of the diffusing computation, an Active
timer is set for three minutes. If all expected replies are not received before the Active time expires, the route is
declared stuck-in-active (SIA). The neighbor or neighbors that did not reply will be removed from the neighbor
table, and the diffusing computation will consider the neighbor to have responded with an infinite metric.

The default three-minute Active time can be changed or disabled with the command timers active-time. The
deletion of a neighbor because of a lost query obviously can have disruptive results, and SIAs should never
occur in a stable, well-designed network. The troubleshooting section of this chapter discusses SIAs in more
detail. That same section describes a recent enhancement to the SIA procedures, using two new EIGRP
messagesSIA Query and SIA Replythat both reduce the chance of occurrences of SIAs and, when they do
occur, make them easier to troubleshoot.

At the completion of the diffusing computation, the originating router will set FD to infinity to ensure that any
neighbor replying with a finite distance to the destination will meet the FC and become a feasible successor.
For each of these replies, a metric is calculated based on the distance advertised in the reply plus the cost of
the link to the neighbor who sent the reply. A successor is selected based on the lowest metric, and FD is set
to this metric. Any feasible successors that do not satisfy the FC for this new FD will be removed from the
topology table. Note that a successor is not chosen until all replies have been received.

Because there are multiple types of input events that can cause a route to change state, some of which might
occur while a route is active, DUAL defines multiple active states. A query origin flag  (O) is used to indicate
the current state. Figure 7-7 and Table 7-2 show the complete DUAL finite state machine.

Figure 7-7. The DUAL finite state machine. The query origin flag (O) marks the current state of the
diffusing calculation. See Table 7-2 for a description of each input event (IE).
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Table 7-2. Input events for the DUAL finite state machine.
Input
Event

Description

IE1 Any input event for which FC is satisfied or the
destination is unreachable

IE2 Query received from the successor; FC not
satisfied

IE3 Input event other than a query from the
successor; FC not satisfied

IE4 Input event other than last reply or a query from
the successor

IE5 Input event other than last reply, a query from the
successor, or an increase in distance to
destination

IE6 Input event other than last reply

IE7 Input event other than last reply or increase in
distance to destination

IE8 Increase in distance to destination

IE9 Last reply received; FC not met with current FD

IE10 Query received from the successor

IE11 Last reply received; FC met with current FD

IE12 Last reply received; set FD to infinity

Two examples can help clarify the DUAL process. Figure 7-8 shows the example network, focusing only on
each router's path to subnet 10.1.7.0; refer to Figure 7-5 for specific addresses. On the data links, an arrow
indicates the successor each router is using to reach 10.1.7.0. In parentheses are each router's locally
calculated distance to the subnet, the router's FD, the reply status flag (r), and the query origin flag (O),
respectively. Active routers are indicated with a circle in subsequent figures and examples using this network.

Figure 7-8. All routes to subnet 10.1.7.0 are in the passive state, indicated by r = 0 and O = 1.
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Diffusing Computation: Example 1

This example focuses only on Cayley and its route to subnet 10.1.7.0. In Figure 7-9, the link between Cayley
and Wright (10.1.1.1) has failed. EIGRP interprets the failure as a link with an infinite distance.[12] Cayley
checks its topology table for a feasible successor to 10.1.7.0 and finds none (refer to Example 7-9).

[12] An infinite distance is indicated by a delay of 0xFFFFFFFF, or 4294967295.

Figure 7-9. The link between Wright and Cayley has failed, and Cayley does not have a feasible
successor to subnet 10.1.7.0.

[View full size image]

Cayley's route becomes active (Figure 7-10). The distance and the FD of the route are changed to
unreachable, and a query containing the new distance is sent to Cayley's neighbor, Lilienthal. Cayley's reply
status flag for Lilienthal is set to one, indicating that a reply is expected. Because the input event was not the
reception of a query (IE3), O=1.

Figure 7-10. Cayley's route to 10.1.7.0 transitions to active, and Lilienthal is queried for a feasible
successor.

[View full size image]



Upon receipt of the query, Lilienthal performs a local computation (Figure 7-11). Because Lilienthal has a
feasible successor for 10.1.7.0 (refer to Example 7-12), the route does not become active. Wright becomes the
new successor, and a reply is sent with Lilienthal's distance to 10.1.7.0 via Wright. Because the distance to
10.1.7.0 has increased and the route did not become active, the FD is unchanged at Lilienthal.

Figure 7-11. Lilienthal has a feasible successor to 10.1.7.0. A local computation is performed, a reply
is sent to Cayley with the distance via Wright, and an update is sent to Wright.

[View full size image]

Upon receipt of the reply from Lilienthal, Cayley sets r=0 and the route becomes passive (Figure 7-12).
Lilienthal becomes the new successor, and the FD is set to the new distance. Finally, an update is sent to
Lilienthal with Cayley's locally calculated metric. Lilienthal will also send an update advertising its new metric.

Figure 7-12. Cayley's route to 10.1.7.0 becomes passive, and an update is sent to Lilienthal.



EIGRP packet activity can be observed with the debug command debug eigrp packets. By default, all EIGRP
packets are displayed. Because Hellos and ACKs can make the debug output hard to follow, the command
allows the use of optional keywords so that only specified packet types are displayed. In Example 7-13, debug
eigrp packets query reply update is used to observe the packet activity at Cayley for the events described
in this example.

Example 7-13. The EIGRP packet events described in this example can be observed in these debug
messages.

Cayley#debug eigrp packet update query reply
EIGRP Packets debugging is on
    (UPDATE, QUERY, REPLY)
B#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0, changed state to down
EIGRP: Enqueueing QUERY on Serial0 iidbQ un/rely 0/1 serno 45-49
EIGRP: Enqueueing QUERY on Serial0 nbr 10.1.6.1 iidbQ un/rely 0/0 peerQ un/rely
0/0 serno 45-49
EIGRP: Sending QUERY on Serial0 nbr 10.1.6.1
  AS 1, Flags 0x0, Seq 45/64 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/1 serno
45-49
EIGRP: Received REPLY on Serial0 nbr 10.1.6.1
  AS 1, Flags 0x0, Seq 65/45 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/0
EIGRP: Enqueueing UPDATE on Serial0 iidbQ un/rely 0/1 serno 50-54
EIGRP: Enqueueing UPDATE on Serial0 nbr 10.1.6.1 iidbQ un/rely 0/0 peerQ un/rely
 0/0 serno 50-54
EIGRP: Sending UPDATE on Serial0 nbr 10.1.6.1
  AS 1, Flags 0x0, Seq 46/66 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/1 serno
50-54
EIGRP: Received UPDATE on Serial0 nbr 10.1.6.1
  AS 1, Flags 0x0, Seq 67/46 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/1

Flags, in the debug messages, indicate the state of the flags in the EIGRP packet header (see the section
"EIGRP Packet Header" later in this chapter). 0x0 indicates that no flags are set. 0x1 indicates that the
initialization bit is set. This flag is set when the enclosed route entries are the first in a new neighbor
relationship. 0x2 indicates that the conditional receive bit is set. This flag is used in the proprietary Reliable
Multicasting algorithm:

Seq is the Packet Sequence Number/Acknowledged Sequence Number.

idbq indicates packets in the input queue/packets in the output queue of the interface.

iidbq indicates unreliable multicast packets awaiting transmission/reliable multicast packets awaiting
transmission on the interface.



peerQ indicates unreliable unicast packets awaiting transmission/reliable unicast packets awaiting
transmission on the interface.

serno is a pointer to a doubly linked serial number for the route. This is used by an internal (and
proprietary) mechanism for tracking the correct route information in a rapidly changing topology.

Diffusing Computation: Example 2

This example focuses on Wright and its route to subnet 10.1.7.0. Although the combination of input events
portrayed here (the delay of a link changing twice during a diffusing computation) is unlikely to occur in real
life, the example shows how DUAL handles multiple metric changes.

In Figure 7-13, the cost of the link between Wright and Langley changes from 2 to 10. The distance to 10.1.7.0
via Langley now exceeds Wright's FD, causing that router to begin a local computation. The metric is updated,
and Wright sends updates to all its neighbors except the neighbor on the link whose cost changed (Figure 7-
14).

Figure 7-13. Cayley's route to 10.1.7.0 becomes passive, and an update is sent to Lilienthal.

Figure 7-14. Wright sends updates containing the new metric to all neighbors except Langley.

Note that Langley was the only feasible successor to subnet 10.1.7.0 because Chanute's locally calculated
metric is higher than Wright's FD (1024 > 768). The metric increase on the Wright-Langley link causes Wright



to look in its topology table for a new successor. Because the only feasible successor that Wright can find in its
topology table is Langley, the route becomes active. Queries are sent to the neighbors (Figure 7-15).

Figure 7-15. Wright's route to 10.1.7.0 becomes active, and it queries its neighbors for a feasible
successor. In response to the earlier update from Wright, Cayley makes its route active and queries

its neighbors; also, Chanute changes its metric and sends updates.

At the same time, the updates sent by Wright in Figure 7-14 cause Cayley, Lilienthal, and Chanute to perform a
local calculation.

At Cayley, the route via Wright now exceeds Cayley's FD (2816 > 1024). The route goes active and queries
are sent to the neighbors.

Lilienthal is using Cayley as a successor and in Figure 7-15 has not yet received the query from Cayley.
Therefore, Lilienthal merely recalculates the metric of the path via Wright, finds that it no longer meets the FC,
and drops the path from the topology table.

At Chanute, Wright is the successor. Because Wright's advertised distance no longer meets the FC at Chanute
(2816 > 1024) and because Chanute does have a feasible successor (refer to Example 7-11), Wright is
deleted from Chanute's topology table. Langley becomes the successor at Chanute; the metric is updated, and
Chanute sends updates to its neighbors (refer to Figure 7-15). The route at Chanute never becomes active.

Cayley, Lilienthal, and Chanute each respond differently to the queries from Wright (Figure 7-16).

Figure 7-16. Cayley (a) replies to Wright's query. Lilienthal (b) replies to Wright's query and (c) goes
active for the route, sending queries in response to Cayley's query. Chanute (d) replies to Wright's

query. Wright (e) replies to Cayley's query.



Cayley is already active. Because the input event is a query from the successor, the query origin flag will be 2
(O=2) (refer to Figure 7-7 and Table 7-2).

Lilienthal, upon the receipt of Wright's query, sends a response with its distance via Cayley. However, just after
the reply is sent, Lilienthal receives the query from Cayley. The FD is exceeded, the metric is updated, and the
route goes active. Lilienthal queries its neighbors.

Chanute, which has already switched to Langley as its successor, merely sends a reply.

While all this is going on, Figure 7-16 shows that the cost of the link between Wright and Langley again
increases, from 10 to 20. Wright will recalculate the metric to 10.1.7.0 based on this new cost, but because the
route is active, neither the FD nor the distance it advertises will change until the route becomes passive.

According to Figure 7-7 and Table 7-2, an increase in the distance to the destination while the route is active
will cause O=0 (Figure 7-17). Wright responds to the query from Lilienthal. The distance it reports is the
distance it had when the route first became active (remember, the advertised distance cannot change while the
route is active). Cayley also sends a reply to Lilienthal's query.

Figure 7-17. Wright cannot change the metric it advertises until the route becomes passive.

Lilienthal, having received replies to all its queries, will transition the route to passive (Figure 7-18). A new FD
is set for the route. Cayley remains the successor because its advertised route is lower than the FD at
Lilienthal. Lilienthal also sends a reply to Cayley's query.



Figure 7-18. Having received the last expected reply, Lilienthal changes its route to the passive state
(r=0, O=1).

Figure 7-18 also shows that the distance has changed again, from 20 to 15. Wright recalculates its local
distance for the route again, to 4096 (Figure 7-19). If it were to receive a query before going passive, the route
would still be advertised with a distance of 2816the distance when the route went active.

Figure 7-19. Having received its last expected reply, Cayley changes its route to the passive state.

When Cayley receives the reply to its query, its route to 10.1.7.0 also becomes passive (Figure 7-19) and a
new FD is set. Although Wright's locally calculated metric is 4096, the last metric it advertised was 2816.
Therefore, Wright meets the FC at Cayley and becomes the successor to 10.1.7.0. A reply is sent to Wright.

In Figure 7-20, Wright has received a reply to every query it sent, and its route becomes passive. It chooses
Chanute as its new successor and changes the FD to the sum of Chanute's advertised distance and the cost
of the link to that neighbor. Wright sends an update to all its neighbors, advertising the new locally calculated
metric.

Figure 7-20. Wright transitions to passive, chooses Chanute as the successor, changes the FD, and
updates all neighbors.



Cayley is already using Wright as the successor. When it receives the update from Wright with a lower cost, it
changes its locally calculated metric and FD accordingly and updates its neighbors (Figure 7-21).

Figure 7-21. Cayley recalculates its metric, changes the FD based on the lower cost advertised by
Wright, and updates its neighbors.

The update from Cayley has no effect at Wright because it does not satisfy the FC there. At Lilienthal the
update causes a local computation. Lilienthal lowers the metric, lowers the FD, and updates its neighbors
(Figure 7-22).

Figure 7-22. Lilienthal recalculates its metric, changes the FD based on the update from Cayley, and
updates its neighbors.



Although they are rather elaborate and might take several readings to fully understand, this and the previous
example contain the important core behavior of diffusing computations:

Any time an input event occurs, perform a local calculation.

If one or more feasible successors are found in the topology table, take the ones with the lowest metric
cost as the successors.

If no feasible successor can be found, make the route active and query the neighbors for a feasible
successor.

Keep the route active until all queries are answered by reply or by the expiration of the active timer.

If the diffusing calculation does not result in the discovery of a feasible successor, declare the destination
unreachable.

EIGRP Packet Formats

The IP header of an EIGRP packet specifies protocol number 88, and the maximum length of the packet will be
the IP maximum transmission unit (MTU) of the interface on which it is transmittedusually 1500 octets.
Following the IP header is an EIGRP header followed by various Type/Length/Value (TLV) triplets. These TLVs
will not only carry the route entries but also may provide fields for the management of the DUAL process,
multicast sequencing, and IOS software versions.

EIGRP Packet Header

Figure 7-23 shows the EIGRP header, which begins every EIGRP packet.

Figure 7-23. EIGRP packet header.



Version specifies the particular version of the originating EIGRP process. The version of the EIGRP
process itself has not changed since its release.

Opcode specifies the EIGRP packet type, as shown in Table 7-3. Although the IPX SAP packet type is
included in the table, a discussion of IPX EIGRP is outside the scope of this book.

Table 7-3. EIGRP
packet types.

Opcode Type

1 Update

3 Query

4 Reply

5 Hello

6 IPX SAP

10 SIA Query

11 SIA Reply

Checksum is a standard IP checksum. It is calculated for the entire EIGRP packet, excluding the IP
header.

Flags currently include just two flags. The right-most bit is Init, which when set (0x00000001) indicates
that the enclosed route entries are the first in a new neighbor relationship. The second bit (0x00000002)
is the Conditional Receive bit, used in the proprietary Reliable Multicasting algorithm.

Sequence is the 32-bit sequence number used by the RTP.

ACK is the 32-bit sequence number last heard from the neighbor to which the packet is being sent. A
Hello packet with a nonzero ACK field will be treated as an ACK packet rather than as a Hello. Note that
an ACK field will only be nonzero if the packet itself is unicast because acknowledgments are never
multicast.

Autonomous System Number is the identification number of the EIGRP domain.

Following the header are the TLVs, whose various types are listed in Table 7-4. IPX and AppleTalk types are
included, although they are not discussed in this book. Each TLV includes one of the two-octet type numbers
listed in Table 7-4, a two-octet field specifying the length of the TLV, and a variable field whose format is
determined by the type.

Table 7-4. Type/Length/Value (TLV) types.
Number TLV Type

General TLV Types

0x0001 EIGRP Parameters

0x0003 Sequence

0x0004 Software Version[*]

0x0005 Next Multicast Sequence

IP-Specific TLV Types

0x0102 IP Internal Routes

0x0103 IP External Routes

AppleTalk-Specific TLV Types

0x0202 AppleTalk Internal Routes



0X0203 AppleTalk External Routes

0x0204 AppleTalk Cable
Configuration

IPX-Specific TLV Types

0x0302 IPX Internal Routes

0x0303 IPX External Routes

[*] This packet indicates whether the older software release is running (software version 0) or the
newer release, as of IOS 10.3(11), 11.0(8), and 11.1(3), is running (version 1).

General TLV Fields

These TLVs carry EIGRP management information and are not specific to any one routed protocol. The
Parameters TLV, which is used to convey metric weights and the hold time, is shown in Figure 7-24. The
Sequence, Software Version, and Next Multicast Sequence TLVs are used by the Cisco proprietary Reliable
Multicast algorithm and are beyond the scope of this book.

Figure 7-24. EIGRP Parameters TLV.

IP-Specific TLV Fields

Each Internal and External Routes TLV contains one route entry. Every Update, Query, and Reply packet
contains at least one Routes TLV.

The Internal and External Routes TLVs include metric information for the route. As noted earlier, the metrics
used by EIGRP are the same metrics used by IGRP, although scaled by 256.

IP Internal Routes TLV

An internal route is a path to a destination within the EIGRP autonomous system. The format of the Internal
Routes TLV is shown in Figure 7-25.

Figure 7-25. The IP Internal Routes TLV.

[View full size image]



Next Hop is the next-hop IP address. This address might or might not be the address of the originating
router.

Delay is the sum of the configured delays expressed in units of 10 microseconds. Notice that unlike the
24-bit delay field of the IGRP packet, this field is 32 bits. This larger field accommodates the 256 multiplier
used by EIGRP. A delay of 0xFFFFFFFF indicates an unreachable route.

Bandwidth is 256 x BWIGRP(min), or 2,560,000,000 divided by the lowest configured bandwidth of any
interface along the route. Like Delay, this field is also eight bits larger than the IGRP field.

MTU is the smallest Maximum Transmission Unit of any link along the route to the destination. Although
an included parameter, it has never been used in the calculation of metrics.

Hop Count is a number between 0x01 and 0xFF indicating the number of hops to the destination. A
router will advertise a directly connected network with a hop count of 0; subsequent routers will record
and advertise the route relative to the next-hop router.

Reliability is a number between 0x01 and 0xFF that reflects the total outgoing error rates of the
interfaces along the route, calculated on a five-minute exponentially weighted average. 0xFF indicates a
100 percent reliable link.

Load is also a number between 0x01 and 0xFF, reflecting the total outgoing load of the interfaces along
the route, calculated on a five-minute exponentially weighted average. 0x01 indicates a minimally loaded
link.

Reserved is an unused field and is always 0x0000.

Prefix Length specifies the number of network bits of the address mask. Destination is the destination
address of the route. Although the field is shown as a three-octet field in Figure 7-25 and Figure 7-26 (see
next section), the field varies with the specific address. For example, if the route is to 10.1.0.0/16, the
prefix length will be 16 and the destination will be a two-octet field containing 10.1. If the route is to
192.168.17.64/27, the prefix length will be 27 and the destination will be a four-octet field containing
192.168.16.64. If this field is not exactly three octets, the TLV will be padded with zeros to make it end on
a four-octet boundary.

Figure 7-26. The IP External Routes TLV.

[View full size image]



IP External Routes TLV

An external route is a path that leads to a destination outside of the EIGRP autonomous system and that has
been redistributed into the EIGRP domain. Figure 7-26 shows the format of the External Routes TLV:

Next Hop is the next-hop IP address. On a multiaccess network, the router advertising the route might
not be the best next-hop router to the destination. For example, an EIGRP-speaking router on an Ethernet
link might also be speaking BGP and might be advertising a BGP-learned route into the EIGRP
autonomous system. Because other routers on the link do not speak BGP, they might have no way of
knowing that the interface to the BGP speaker is the best next-hop address. The Next Hop field allows
the "bilingual" router to tell its EIGRP neighbors, "Use address A.B.C.D as the next hop instead of using
my interface address."

Originating Router is the IP address or router ID of the router that redistributed the external route into
the EIGRP autonomous system.

Originating Autonomous System Number is the autonomous system number of the router originating
the route.

Arbitrary Tag may be used to carry a tag set by route maps. See Chapter 14 for information on he use of
route maps.

External Protocol Metric is, as the name implies, the metric of the external protocol. This field is used,
when distributing with IGRP, to track the IGRP metric.

Reserved is an unused field and is always 0x0000.

External Protocol ID specifies the protocol from which the external route was learned. Table 7-5 lists the
possible values of this field.

Table 7-5. Values of the
External Protocol ID field.

Code External
Protocol

0x01 IGRP

0x02 EIGRP



0x03 Static Route

0x04 RIP

0x05 Hello

0x06 OSPF

0x07 IS-IS

0x08 EGP

0x09 BGP

0x0A IDRP

0x0B Connected Link

Flags currently constitute just two flags. If the right-most bit of the eight-bit field is set (0x01), the route is
an external route. If the second bit is set (0x02), the route is a candidate default route. Default routes are
discussed in Chapter 12.

The remaining fields describe the metrics and the destination address. The descriptions of these fields are the
same as those given in the discussion of the Internal Routes TLV.

Address Aggregation

Chapter 1, "Routing Basics," introduced the practice of subnetting, in which the address mask is extended into
the host space to address multiple data links under one major network address. Chapter 6 introduced the
practice of variable-length subnet masking, in which the address mask is extended even more to create
subnets within subnets.

From an opposite perspective, a subnet address may be thought of as a summarization of a group of sub-
subnets. And a major network address may be thought of as a summarization of a group of subnet addresses.
In each case, the summarization is achieved by reducing the length of the address mask.

Address aggregation takes summarization a step further by breaking the class limits of major network
addresses. An aggregate address represents a numerically contiguous group of network addresses, known as
a supernet.[13] Figure 7-27 shows an example of an aggregate address.

[13] An aggregate is, more correctly, any summarized group of addresses. For clarity, in this book the
term aggregate refers to a summarization of a group of major network addresses.

Figure 7-27. This group of network addresses can be represented with a single aggregate address,
or subnet.

Figure 7-28 shows how the aggregate address of Figure 7-27 is derived. For a group of network addresses,
find the bits that are common to all of the addresses and mask these bits. The masked portion is the aggregate
address.



Figure 7-28. The aggregate address is derived by masking all the common bits of a group of
numerically contiguous network addresses.

When designing a supernet, it is important that the member addresses should form a complete, contiguous set
of the formerly masked bits. In Figure 7-28, for example, the 20-bit mask of the aggregate address is four bits
less than the mask of the member addresses. Of the four "difference" bits, notice that they include every
possible bit combination from 0000 to 1111. Failure to follow this design rule could make the addressing
scheme confusing, could reduce the efficiency of aggregate routes, and might lead to routing loops and black
holes.

The obvious advantage of summary addressing is the conservation of network resources. Bandwidth is
conserved by advertising fewer routes, and CPU cycles are conserved by processing fewer routes. Most
important, memory is conserved by reducing the size of the route tables.

Classless routing, VLSM, and aggregate addressing together provide the means to maximize resource
conservation by building address hierarchies. Unlike IGRP, EIGRP supports all of these addressing strategies.
In Figure 7-29, the engineering division of Treetop Aviation has been assigned 16 class C addresses. These
addresses have been assigned to the various departments according to need.

Figure 7-29. At Treetop Aviation, several departments within a larger division are aggregating
addresses. In turn, the entire division can be advertised with a single aggregate address

(192.168.16.0/20).

The aggregate addresses of the engines, electrical, and hydraulics departments are themselves aggregated



into a single address, 192.168.16.0/21. That address and the aggregate address of the airframe department
are aggregated into the single address 192.168.16.0/20, which represents the entire engineering division.

Other divisions may be similarly represented. For example, if Treetop Aviation had a total of eight divisions and
if those divisions were all addressed similarly to the engineering division, the backbone router at the top of the
hierarchy might have only eight routes (Figure 7-30).

Figure 7-30. Although there are 128 major network addresses and possibly more than 32,000 hosts in
this network, the backbone router has only eight aggregate addresses in its route table.

The hierarchical design is continued within each department of each division by subnetting the individual
network addresses. VLSM may be used to further divide the subnets. The routing protocols will automatically
summarize the subnets at network boundaries, as discussed in previous chapters.

Address aggregation also allows both address conservation and address hierarchies in the Internet. With the
exponential growth of the Internet, two increasing concerns have been the depletion of available IP addresses
(particularly class B addresses) and the huge databases needed to store the Internet routing information.

A solution to this problem is Classless Interdomain Routing (CIDR).[14] Under CIDR, aggregates of class C
addresses are allocated by the IANA to the various worldwide address assignment authorities such as Asia
Pacific Network Information Centre (APNIC) in Asia, American Registry for Internet Numbers (ARIN) in North
America, and Réseaux IP Européens (RIPE) in Europe. The aggregates are organized geographically, as
shown in Table 7-6.

[14] V. Fuller, T. Li, J. I. Yu, and K. Varadhan. "Classless Inter-Domain Routing (CIDR): An Address
Assignment and Aggregation Strategy," RFC 1519. September 1993.

Table 7-6. CIDR address allocations by
geographic region.

Region Address Range

Multiregional 192.0.0.0193.255.255.255

Europe 194.0.0.0195.255.255.255

Others 196.0.0.0197.255.255.255

North America 198.0.0.0199.255.255.255

Central/South
America

200.0.0.0201.255.255.255



Pacific Rim 202.0.0.0203.255.255.255

Others 204.0.0.0205.255.255.255

Others 206.0.0.0207.255.255.255

The address assignment authorities in turn divide their portions among the regional Internet Service Providers
(ISPs). When an organization applies for an IP address and requires addressing for fewer than 32 subnets and
4096 hosts, it will be given a contiguous group of class C addresses called a CIDR block.

In this way, the Internet routers of individual organizations might advertise a single summary address to their
ISP. The ISP, in turn, aggregates all of its addresses, and ideally all ISPs in a region of the world may be
summarized by the addresses of Table 7-6. Knowing that the current size of the Internet routing table is
approaching 200,000 routes, it is obvious that CIDR has not been adhered to as well as intended.
Nonetheless, the concept is a good one. Similar efforts are under way to constrain IPv6 address assignments
geographically; we can only hope that the efforts are more successful than they were with IPv4.

EIGRP and IPv6

As the second edition of this book is being written, EIGRP does not support IPv6. However, an effort to extend
EIGRP for IPv6 support is under way, and it is expected that by the time you are reading this chapter that
extension will be available. Because EIGRP packets use TLVs to carry data, extending the protocol to support
IPv6 will be a simple matter of adding IPv6-specific TLVs.



Configuring EIGRP

The case studies in this section demonstrate a basic EIGRP configuration and then examine summarization
techniques and interoperability with IGRP.

Case Study: A Basic EIGRP Configuration

EIGRP requires only two steps to begin the routing process:

Step 1. Enable EIGRP with the command router eigrp process-id.

Step 2. Specify each major network on which to run EIGRP with the network command.

The process ID may be any number between 1 and 65535 (0 is not allowed), and it may be arbitrarily chosen
by the network administrator, if it is the same for all EIGRP processes in all routers that must share information.
Alternatively, the number might be a publicly assigned autonomous system number. Figure 7-31 shows a
simple network; the configurations for the three routers are displayed in Example 7-14, Example 7-15, and
Example 7-16.

Figure 7-31. Unlike IGRP, EIGRP will support the VLSM requirements of this network.

Example 7-14. Earhart.

router eigrp 15
 network 172.20.0.0

Example 7-15. Cochran.

router eigrp 15
 network 172.20.0.0
 network 192.167.17.0

Example 7-16. Lindbergh.

router eigrp 15
 network 172.20.0.0
 network 192.167.16.0

Earhart's route table is shown in Example 7-17. The table shows that the default EIGRP administrative



distance is 90 and that network 172.20.0.0 is variably subnetted.

Example 7-17. Earhart's route table.

Earhart#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.20.0.0/16 is variably subnetted, 4 subnets, 2 masks
C       172.20.10.0/24 is directly connected, Ethernet0
C       172.20.15.4/30 is directly connected, Serial0.1
C       172.20.15.0/30 is directly connected, Serial0.2
D    192.168.17.0/24 [90/2195456] via 172.20.15.6, 00:00:01, Serial0.1
D    192.168.16.0/24 [90/2195456] via 172.20.15.2, 00:00:01, Serial0.2
Earhart#

The network of Figure 7-31 uses default metrics, unlike the earlier examples in this chapter, so a review of the
EIGRP metric calculation in a more realistic scenario might be useful.

Tracing the route from Earhart to network 192.168.16.0, the path traverses a serial interface and an Ethernet
interface, each with default metric values. The minimum bandwidth of the route will be that of the serial
interface,[15] and the delay will be the sum of the two interface delays. Referring back to Table 7-1:

[15] Remember that the default bandwidth of a serial interface is 1544K.

BWEIGRP(min) = 256 x 6476 = 1657856

DLYEIGRP(sum) = 256 x (2000 + 100) = 537600

Therefore,

Metric = 1657856 + 537600 = 2195456

Case Study: Unequal-Cost Load Balancing

Given up to 16 parallel routes of equal cost,[16] EIGRP will do equal-cost load balancing under the same
CEF/fast/process switching constraints as RIP. Unlike RIP, EIGRP can also perform unequal-cost load
balancing. An additional serial link has been added between Earhart and Cochran in Figure 7-32, with a
configured bandwidth of 256K. The goal is to have Earhart perform unequal-cost load balancing across these
two linksspreading the traffic load inversely proportional to the metrics of the link.

[16] The default is four paths. See the case study on setting maximum paths for further details.

Figure 7-32. EIGRP can be configured to perform unequal-cost load balancing across links such as
the two between Earhart and Cochran.



Examining the route from Earhart's S0.1 interface to network 192.168.17.0, the minimum bandwidth is 1544K
(assuming Cochran's Ethernet interface is using the default 100000K bandwidth for Fast Ethernet). Referring
to Table 7-1, DLYEIGRP(sum) for the serial interface and the Fast Ethernet interface is 256 x ( 2000 + 10 ) =

514560. BWEIGRP(min) is 256 x (107/1544) = 1657856, so the composite metric of the route is 514560 +
1657856) = 2172416.

The minimum bandwidth on the route via Earhart's S0.3 to 192.168.17.0 is 256K; DLYEIGRP(sum) is the same

as on the first route. Therefore, the composite metric for this route is 256 x (107/256) + 514560 = 10514432.
Without further configuration, EIGRP will simply select the path with the lowest metric cost. Example 7-18
shows that Earhart is using only the path via Serial 0.1, with a metric of 2172416.

Example 7-18. Earhart is using only the lowest-cost link to network 192.168.17.0. Additional
configuration is needed to enable unequal-cost load balancing.

Earhart#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E  EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o  ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.20.0.0/16 is variably subnetted, 4 subnets, 2 masks
C       172.20.10.0/27 is directly connected, Ethernet0
C       172.20.15.4/30 is directly connected, Serial0.1
C       172.20.15.0/30 is directly connected, Serial0.2
C       172.20.15.8/30 is directly connected, Serial0.3
D    192.168.17.0/24 [90/2172416] via 172.20.15.6, 00:00:09, Serial0.1
D    192.168.16.0/24 [90/2195456] via 172.20.15.2, 00:00:09, Serial0.2
Earhart#

The variance command is used to determine which routes are feasible for unequal-cost load sharing. Variance
defines a multiplier by which a metric may differ, or vary, from the metric of the lowest-cost route. Any route
whose metric exceeds the metric of the lowest-cost route, multiplied by the variance, will not be considered a
feasible route.

The default variance is one, meaning that the metrics of multiple routes must be equal, to load balance.
Variance must be specified in whole numbers.

The metric of Earhart's route through S0.3 is 10514432/2172416 = 4.8 times larger than the metric of the S0.1
route. So to conduct unequal-cost load balancing over both links, the variance at Earhart should be five. The
EIGRP configuration is in Example 7-19.

Example 7-19. Earhart's configuration uses a variance of five to perform unequal-cost load sharing
using EIGRP.



router eigrp 15
 network 172.20.0.0
 variance 5

After specifying a variance of five at Earhart, its route table will include the second, higher-cost route (Example
7-20). The following three conditions must be met for a route to be included in unequal-cost load sharing:

The maximum-paths limit must not be exceeded as a result of adding the route to a load-sharing "group."

The next-hop router must be metrically closer to the destination. That is, its metric for the route must be
smaller than the local router's metric. A next-hop router, being closer to the destination, is often referred to
as the downstream router.

The metric of the lowest-cost route, when multiplied by the variance, must be greater than the metric of
the route to be added.

Example 7-20. The composite metric of the second path to 192.168.17.0 from Earhart is 10514432, or
4.8 times the metric of the lowest-cost route. EIGRP will enter the second path into the route table if
the variance is set to at least five.

Earhart(config)#router eigrp 15
Earhart(config-router)#variance 5
Earhart(config-router)#^Z
Earhart#clear ip route *
Earhart#show ip route
Gateway of last resort is not set
     172.20.0.0/16 is variably subnetted, 4 subnets, 2 masks
C       172.20.10.0/24 is directly connected, Ethernet0
C       172.20.15.4/30 is directly connected, Serial0.1
C       172.20.15.0/30 is directly connected, Serial0.2
C       172.20.15.8/30 is directly connected, Serial0.3
D    192.168.17.0/24 [90/2172416] via 172.20.15.6, 00:00:02, Serial0.1
                     [90/10514432] via 172.20.15.10, 00:00:02, Serial0.3
D    192.168.16.0/24 [90/2195456] via 172.20.15.2, 00:00:02, Serial0.2
Earhart#

The rules concerning per destination versus per packet load sharing, discussed in Chapter 3, "Static Routing,"
apply here as well. Load sharing is per destination if the packet is fast switched or CEF switched using the
default CEF configuration, and per packet if process switching is used or if the CEF configuration was
modified. Example 7-21 shows a debug output resulting from 20 ping packets being sent through Earhart; CEF
and fast switching have been turned off with no ip cef and no ip route-cache, and the router is performing
unequal-cost, per packet load balancing. For every five packets sent over the 1544K link (to next hop
172.20.15.6), one packet is sent over the 256K link (to next hop 172.20.15.10). This corresponds to the
approximately five-to-one variance of the metrics of these two paths.

Example 7-21. Per packet load sharing is being performed, with one packet being sent over the high-
cost link for every five packets sent over the low-cost link.

IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.3), g=172.20.15.10,



    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.3), g=172.20.15.10,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.1), g=172.20.15.6,
    len 100, forward
IP: s=172.20.15.2 (Serial 2), d=192.168.17.1 (Serial0.3), g=172.20.15.10,
    len 100, forward
Earhart#

If variance is set at one, EIGRP enters only the lowest-cost route to a destination into the route table. In some
situations, howeverfor example, to decrease reconvergence time or aid in troubleshootingall feasible routes
should be entered into the table, even though no load balancing should occur. All packets should use the
lowest-cost route and switch to the next-best path only if the primary fails. There is an implicit default command
(that is, it exists, but is not observed in the configuration file) of traffic-share balanced. To configure the
router to only use the minimum-cost path even when multiple paths are shown in the route table, change this
default to traffic-share min. If there are multiple minimum-cost paths and traffic-share min is configured,
EIGRP will perform equal-cost load balancing.

Case Study: Setting Maximum Paths

The maximum number of routes over which EIGRP can load balance is set with the maximum-paths paths
command. paths may be any number from 1 to 16 in IOS 12.3(2)T and later 12.3(T) releases and any number
from 1 to 6 in earlier versions. The default for all versions is 4.

Figure 7-33 shows three parallel paths of varying costs from Earhart to address 172.18.0.0. The network
administrator wants to load balance over a maximum of only two of these routes while ensuring that if either of
these paths should fail, the third route will replace it.

Figure 7-33. The maximum-paths and variance commands can be used together to configure load
balancing over only two of the three links between Earhart and Johnson. If either link fails, the third

will take its place.



The metrics from Earhart are

Via S0.4: 256 x (9765 + (2000 + 10)) = 3014400

Via S0.5: 256 x (19531 + (2000 + 10)) = 5514496

Via S0.6: 256 x (78125 + (2000 + 10)) = 20514560

The metric of the S0.6 route is 6.8 times as large as the lowest-cost metric, so the variance is seven.

Earhart's EIGRP configuration is displayed in Example 7-22.

Example 7-22. Earhart's configuration uses the variance command and the maximum-paths
command to provide unequal-cost load sharing over a specified maximum number of paths.

router eigrp 15
 variance 7
 network 172.20.0.0
 maximum-paths 2

The variance command ensures that any of the three routes to 172.18.0.0 is feasible; the maximum-paths
command limits the load-sharing group to only the two best routes. The results of this configuration can be
seen in Example 7-23. The first route table shows that Earhart was load balancing over the two links with the
lowest of the three metrics, S0.4 and S0.5. After a failure of the S0.4 link, the second route table shows that
the router is now load balancing over the S0.5 and S0.6 links. In each instance, the router will load balance
inversely proportional to the metrics of the two paths.

Example 7-23. The route table for Earhart, before and after the failure of one of three links, shows the
results of using the variance and maximum-paths commands to configure load sharing to 172.18.0.0.

Earhart#debug eigrp neighbor
EIGRP Neighbors debugging is on
Earhart#show ip route
Gateway of last resort is not set

D    172.18.0.0/16 [90/5514496] via 172.20.15.18, 00:00:16, Serial0.5
                   [90/3014400] via 172.20.15.14, 00:00:16, Serial0.4
     172.20.0.0/16 is variably subnetted, 7 subnets, 2 masks
C       172.20.15.20/30 is directly connected, Serial0.6
C       172.20.15.16/30 is directly connected, Serial0.5
C       172.20.10.0/24 is directly connected, Ethernet0
C       172.20.15.4/30 is directly connected, Serial0.1
C       172.20.15.0/30 is directly connected, Serial0.2



C       172.20.15.12/30 is directly connected, Serial0.4
C       172.20.15.8/30 is directly connected, Serial0.3
D    192.168.17.0/24 [90/2195456] via 172.20.15.6, 00:00:18, Serial0.1
                     [90/10537472] via 172.20.15.10, 00:00:18, Serial0.3
D    192.168.16.0/24 [90/2195456] via 172.20.15.2, 00:00:19, Serial0.2
Earhart#
1w6d: EIGRP: Holdtime expired
1w6d: EIGRP: Neighbor 172.20.15.14 went down on Serial0.4
Earhart#show ip route
Gateway of last resort is not set
D    172.18.0.0/16 [90/5514496] via 172.20.15.18, 00:00:09, Serial0.5
                   [90/20514560] via 172.20.15.22, 00:00:09, Serial0.6
     172.20.0.0/16 is variably subnetted, 7 subnets, 2 masks
C       172.20.15.20/30 is directly connected, Serial0.6
C       172.20.15.16/30 is directly connected, Serial0.5
C       172.20.10.0/24 is directly connected, Ethernet0
C       172.20.15.4/30 is directly connected, Serial0.1
C       172.20.15.0/30 is directly connected, Serial0.2
C       172.20.15.12/30 is directly connected, Serial0.4
C       172.20.15.8/30 is directly connected, Serial0.3
D    192.168.17.0/24 [90/2195456] via 172.20.15.6, 00:00:26, Serial0.1
                     [90/10537472] via 172.20.15.10, 00:00:26, Serial0.3
D    192.168.16.0/24 [90/2195456] via 172.20.15.2, 00:00:26, Serial0.2
Earhart#

Care should be taken when configuring multiple parallel paths in a network. Too many parallel paths can
increase the amount of time it takes for EIGRP to converge when a link fails, because the number of
neighboring routers has increased, therefore increasing the querying scope.

Case Study: Multiple EIGRP Processes

Two new routers, Bleriot and Post, have been added to the network. A decision has been made to create two
EIGRP process domains in the network with no communications between the two. Figure 7-34 shows the two
autonomous systems and the related links for each.

Figure 7-34. The routers Bleriot and Cochran will each run multiple EIGRP processes to facilitate the
creation of separate autonomous systems (AS 10 and AS 15) within this IGP.

[View full size image]

The configurations for Post, Johnson, Lindbergh, and Earhart are straightforward: Johnson, Earhart, and
Lindbergh will run EIGRP 15, and Post will run EIGRP 10. At Bleriot, the configuration will be as displayed in
Example 7-24.



Example 7-24. Bleriot's configuration for EIGRP 15 and EIGRP 10.

router eigrp 15
 network 172.20.0.0
!
router eigrp 10
 network 10.0.0.0

Each process will run only on the interfaces of the networks specified. At Cochran, all interfaces other then
FA0/0 belong to network 172.20.0.0 (see Example 7-25).

Using the passive-interface command prevents EIGRP Hellos from being sent on data links where they don't
belong. Note that because Cochran's interfaces are in network 172.20.0.0, the passive-interface command is
used to restrict unnecessary routing protocol traffic. For EIGRP, this command blocks unnecessary Hellos. No
adjacencies will be formed; therefore, no other EIGRP traffic will be sent.

Example 7-25. Cochran's EIGRP 15 and EIGRP 10 configuration requires passive interfaces because
the same major network number is used on both of Cochran's connected interfaces.

router eigrp 15
 passive-interface Fastethernet0/1
 network 172.20.0.0
!
router eigrp 10
 passive-interface Serial0/0.1
 passive-interface Serial 0/0.2
 network 172.20.0.0

Bleriot's neighbor table (Example 7-26) shows that there is one neighbor for EIGRP process 10, 10.108.16.2,
and one neighbor for process 15, 172.20.33.1.

Example 7-26. The neighbors associated with each of the multiple EIGRP processes are displayed
using the show ip eigrp neighbor  command.

Bleriot#show ip eigrp neighbors
IP-EIGRP neighbors for process 15
H   Address                 Interface   Hold Uptime    SRTT   RTO   Q   Seq
                                        (sec)          (ms)        Cnt  Num
0   172.20.33.1             Fa0/0         11 00:31:19    34   204   0   44
IP-EIGRP neighbors for process 10
H   Address                 Interface   Hold Uptime    SRTT   RTO   Q   Seq
                                        (sec)          (ms)        Cnt  Num
0   10.108.16.2             Fa0/1         10 00:19:21   289  1734   0   6
Bleriot#

In lieu of passive interfaces, the network statement for EIGRP can be configured with wildcard bits. The
wildcard bits specify which bits of the address are to be used when identifying interfaces to include in the
EIGRP process.

Cochran's configuration is modified to that shown in Example 7-27.

Example 7-27. Cochran's EIGRP 15 and EIGRP 10 configuration uses wildcard bits with the network to
narrow down the interfaces that will run EIGRP for a given process.

router eigrp 15



 network 172.20.15.0 0.0.0.255
!
router eigrp 10
 network 172.20.32.0 0.0.0.255

Cochran's configuration in Example 7-27 specifies that interfaces with addresses with the first three octets
equal to 172.20.15 run EIGRP process 15, and interfaces with the first three octets equal to 172.20.32 run
EIGRP process 10.

Case Study: Disabling Automatic Summarization

By default, EIGRP summarizes at network boundaries as do the protocols covered in previous chapters. Unlike
those protocols, however, EIGRP's automatic summarization can be disabled.

Look at Bleriot's route table in Example 7-28. Notice that the entry for address 172.20.32.0 is known via Fast
Ethernet 0/0, even though that path goes through one Fast Ethernet link and one serial link, from Bleriot,
through Earhart to Cochran. The path via Post, attached to Fast Ethernet 0/1, is only one Fast Ethernet hop
away. Look more closely at the route table, and you'll see the only entry for an address other then 10.108.16.0
known via Fast Ethernet 0/1 is 172.20.0.0/16. Post has summarized the 172.20.32.0 address before it
advertises it to Bleriot over the 10.0.0.0 network boundary. To enable Bleriot to forward traffic to 172.20.32.0
via Post, disable automatic summarization on Post using the command no auto-summary.

Example 7-28. EIGRP automatic summarization can cause, in some cases, sub-optimal route choices.

Bleriot#show ip route
Gateway of last resort is not set
D    172.18.0.0/16 [90/3016960] via 172.20.33.1, 00:26:42, FastEthernet0/0
     172.20.0.0/16 is variably subnetted, 10 subnets, 4 masks
D       172.20.32.0/24 [90/2174976] via 172.20.33.1, 00:14:46, FastEthernet0/0
C       172.20.33.0/24 is directly connected, FastEthernet0/0
D       172.20.15.20/30
           [90/20514560] via 172.20.33.1, 00:20:28, FastEthernet0/0
D       172.20.15.16/30
           [90/5514496] via 172.20.33.1, 00:20:28, FastEthernet0/0
D       172.20.10.0/27 [90/284160] via 172.20.33.1, 00:43:34, FastEthernet0/0
D       172.20.15.4/30 [90/2172416] via 172.20.33.1, 00:26:59, FastEthernet0/0
D       172.20.15.0/30 [90/2172416] via 172.20.33.1, 00:27:18, FastEthernet0/0
D       172.20.0.0/16 [90/284160] via 10.108.16.2, 00:14:50, FastEthernet0/1
D       172.20.15.12/30
           [90/3014400] via 172.20.33.1, 00:26:49, FastEthernet0/0
D       172.20.15.8/30
           [90/10514432] via 172.20.33.1, 00:20:47, FastEthernet0/0
     10.0.0.0/24 is subnetted, 1 subnets
C       10.108.16.0 is directly connected, FastEthernet0/1
D    192.168.16.0/24 [90/2198017] via 172.20.33.1, 00:27:33, FastEthernet0/0
D    192.168.17.0/24 [90/2174976] via 172.20.33.1, 00:00:38, FastEthernet0/0
Bleriot#

Post's configuration is displayed in Example 7-29.

Example 7-29. Post's configuration disables automatic summarization for EIGRP.

router eigrp 10
 network 10.0.0.0
 network 172.20.0.0
 no auto-summary



Bleriot's new route table is shown in Example 7-30.

Example 7-30. After disabling EIGRP automatic summarization, subnets of distant addresses can be
seen in the route tables.

Bleriot#show ip route
Gateway of last resort is not set
D    172.18.0.0/16 [90/3016960] via 172.20.33.1, 00:35:27, FastEthernet0/0
     172.20.0.0/16 is variably subnetted, 9 subnets, 3 masks
D       172.20.32.0/24 [90/284160] via 10.108.16.2, 00:00:55, FastEthernet0/1
C       172.20.33.0/24 is directly connected, FastEthernet0/0
D       172.20.15.20/30
           [90/20514560] via 172.20.33.1, 00:29:13, FastEthernet0/0
D       172.20.15.16/30
           [90/5514496] via 172.20.33.1, 00:29:13, FastEthernet0/0
D       172.20.10.0/27 [90/284160] via 172.20.33.1, 00:52:19, FastEthernet0/0
D       172.20.15.4/30 [90/2172416] via 172.20.33.1, 00:35:44, FastEthernet0/0
D       172.20.15.0/30 [90/2172416] via 172.20.33.1, 00:36:03, FastEthernet0/0
D       172.20.15.12/30
           [90/3014400] via 172.20.33.1, 00:35:34, FastEthernet0/0
D       172.20.15.8/30
           [90/10514432] via 172.20.33.1, 00:29:20, FastEthernet0/0
     10.0.0.0/24 is subnetted, 1 subnets
C       10.108.16.0 is directly connected, FastEthernet0/1
D    192.168.16.0/24 [90/2198016] via 172.20.33.1, 00:36:06, FastEthernet0/0
D    192.168.17.0/24 [90/2174976] via 172.20.33.1, 00:00:38, FastEthernet0/0
Bleriot#

Figure 7-35 shows another situation in which disabling summarization is useful.

Figure 7-35. Disabling automatic summarization at Cochran and Lindbergh prevents ambiguous
routing to network 192.168.18.0.

New Ethernet links have been added to routers Cochran and Lindbergh, and their addresses create a
discontiguous subnet. The default behavior of both routers is to see themselves as border routers between
major networks 172.20.0.0 and 192.168.18.0. As a result, Earhart will receive summary advertisements to
192.168.18.0 on its serial interfaces to both Lindbergh and Cochran. The result is an ambiguous routing
situation in which Earhart records two equal-cost paths to 192.168.18.0; a packet destined for one of the
subnets might or might not be routed to the correct link.

After disabling automatic summarization, Lindbergh's configuration will be as in Example 7-31.

Example 7-31. Lindbergh's configuration disables automatic summarization.



router eigrp 15
 network 172.20.0.0
 network 192.168.16.0
 network 192.168.18.0
 no auto-summary

By turning off summarization at Lindbergh and Cochran, the individual subnets 192.168.18.24/29 and
192.168.18.128/25 will be advertised into network 172.20.0.0, eliminating the ambiguities at Earhart.

Case Study: Stub Routing

Recall the discussion of DUAL earlier in this chapter. When an entry in a router's EIGRP topology table
changes for the worse (either the metric increases, or the successor is no longer accessible), if there is no
feasible successor for the address, the entry goes into Active state, and the router sends query packets to all
its neighbors. If Earhart's link to Yeager, in Figure 7-36, goes down, Earhart sends queries to all its neighbors,
including Johnson and Lindbergh, to find out if any neighbors have a path to Yeager. Earhart cannot modify its
active entries in the topology table until it hears responses from all its queries regarding that entry. If a problem
develops on the link to Lindbergh before Earhart has received a response to the query it sent about Yeager's
addresses, Yeager's addresses will remain Active, even if the link between Earhart and Yeager comes back up.

Figure 7-36. Yeager is added to the network with a single link to Earhart.

Johnson and Lindbergh, in Figure 7-36, do not have back-door routes to any other site in the network. They
are spoke routers in a hub-and-spoke design. The routers are not used to provide transit paths to any
addresses in the network. When Lindbergh or Johnson need to forward a packet to an address that is not local
to its site, the packet is forwarded to Earhart. Lindbergh knows of one path to 172.20.10.0, for instance, and
that path is via Earhart. There is no need to send Johnson queries about addresses in other locations of the
network and risk causing network instabilities. Johnson and Lindbergh can be configured with stub routing.

A router that has EIGRP Stub neighbors will not send queries to the stubs, thereby eliminating the chance that
a stub-configured remote site will cause stuck in active conditions, and routing instabilities in other parts of the
network.

Johnson is configured as an EIGRP stub router. Johnson's stub router configuration is displayed in Example 7-
32.

Example 7-32. Johnson's EIGRP stub router configuration.



router eigrp 15
 eigrp stub

No configuration changes are required on Earhart, the hub router.

The command eigrp stub causes Johnson to send updates containing its connected and summary routes
only. Johnson can be configured to include any combination of connected routes, summary routes, static
routes, or routes that have been redistributed into EIGRP, with the command:

eigrp stub {connected | redistributed | static | summary | receive-only}

Johnson can also be configured to not send any route information in updates, with the receive-only option.
With the receive-only option, the remote router will not include any addresses in an update. Addresses
connected to the Johnson router would have to be advertised to the rest of the network in some other way to
ensure that traffic can reach the site, perhaps with static routes configured on Earhart.

To verify a neighbor is configured as a stub router, use the command show ip eigrp neighbor detail on the
hub router, as shown in Example 7-33. Earhart's output shows that Johnson is configured as a stub.

Example 7-33. show ip eigrp neighbor detail  displays which neighbor routers are configured as
EIGRP stubs.

Earhart#show ip eigrp neighbor detail
IP-EIGRP neighbors for process 15
H   Address                 Interface   Hold Uptime    SRTT   RTO   Q   Seq Type
                                        (sec)          (ms)        Cnt  Num
7   172.20.33.2             Et1           11 00:00:10    12   200   0   13
   Version 12.1/1.2, Retrans: 0, Retries: 0
6   10.15.15.253            Et2           11 00:00:10    12   200   0   6
   Version 12.3/1.2, Retrans: 1, Retries: 0
5   172.20.15.22            Se0.6         11 00:00:13   298  1788   0   73
   Version 12.3/1.2, Retrans: 0, Retries: 0
   Stub Peer Advertising ( CONNECTED SUMMARY ) Routes
4   172.20.15.14            Se0.4         11 00:00:13   927  5000   0   81
   Version 12.3/1.2, Retrans: 0, Retries: 0
   Stub Peer Advertising ( CONNECTED SUMMARY ) Routes
3   172.20.15.18            Se0.5         10 00:00:13   817  4902   0   80
   Version 12.3/1.2, Retrans: 0, Retries: 0
   Stub Peer Advertising ( CONNECTED SUMMARY ) Routes
0   172.20.15.2             Se0.2         11 00:15:48   274  1644   0   13
   Version 12.3/1.2, Retrans: 0, Retries: 0
2   172.20.15.10            Se0.3         13 00:45:40    72   570   0   59
   Version 12.3/1.2, Retrans: 0, Retries: 0
1   172.20.15.6             Se0.1         11 00:46:01    61   366   0   57
   Version 12.3/1.2, Retrans: 0, Retries: 0
Earhart#

Earhart has three stub neighbors. They are connected to the three links to Johnson: 172.20.15.22,
172.20.15.14, and 172.20.15.17.

Now, suppose a new link is added between Lindbergh and Cochran to add redundancy for traffic connected to
Lindbergh's LAN traveling into the core of the network, as shown in Figure 7-37. Before Lindbergh is
configured as a stub, when the links between Cochran and Earhart fail, Cochran will send queries to Lindbergh
regarding alternate paths to the addresses in its topology table, 172.20.10.0 for instance. Lindbergh responds
with a positive reply, because Lindbergh has an entry in its topology table for 172.20.10.0 via Earhart. Traffic
from Cochran to 172.20.10.1 travels via Lindbergh.



Figure 7-37. A new link is added between Lindbergh and Cochran to add redundancy for traffic
connected to Lindbergh's LAN traveling into the core of the network.

Although this is an alternate path, forwarding traffic through a remote site is not always desirable. In this case,
Lindbergh's links are there to allow redundancy from Lindbergh's addresses to core addresses, not to enable
Lindbergh to act as a transit router. The bandwidth might not be sufficient to provide transit routing. Stub
routing easily solves this problem. As a stub, no queries are sent to Lindbergh, so Lindbergh will not make
itself available to Cochran as an alternate path. Furthermore, Lindbergh only sends updates containing
connected, summary, static, or redistributed routes, not remote routes, such as 172.20.10.0.

Example 7-34 shows Cochran's EIGRP neighbors when Lindbergh (connected to Serial 0/0.4) is not configured
as a stub router. Cochran's two links to Earhart are brought down. Cochran's subsequent topology table
(Example 7-35) shows all addresses are accessible via Lindbergh (Serial 0/0.4).

Example 7-34. Cochran's EIGRP neighbor table shows its neighbors. Lindbergh is not a stub.

Cochran#show ip eigrp neighbor detail
IP-EIGRP neighbors for process 15
H   Address                 Interface       Hold Uptime    SRTT   RTO   Q   Seq
                                            (sec)          (ms)        Cnt  Num
2   172.20.15.26            Se0/0.4           10 00:00:18  1152  5000   0   34
   Version 12.3/1.2, Retrans: 0, Retries: 0
1   172.20.15.9             Se0/0.2           14 00:41:58   104   624   0   205
   Version 12.1/1.2, Retrans: 1, Retries: 0
0   172.20.15.5             Se0/0.1           11 00:49:12    99   594   0   206
   Version 12.1/1.2, Retrans: 2, Retries: 0
IP-EIGRP neighbors for process 10
H   Address                 Interface       Hold Uptime    SRTT   RTO   Q   Seq
                                            (sec)          (ms)        Cnt  Num
0   172.20.32.2             Fa0/1             13 00:42:01    60   360   0   14
   Version 12.1/1.2, Retrans: 2, Retries: 0
Cochran#

Example 7-35. After failure of the primary links between Cochran and Earhart, all addresses are
accessible via the dual connected spoke router, Lindbergh.

%DUAL-5-NBRCHANGE: IP-EIGRP(0) 15: Neighbor 172.20.15.5 (Serial0/0.1) is down:
interface down
%DUAL-5-NBRCHANGE: IP-EIGRP(0) 15: Neighbor 172.20.15.9 (Serial0/0.2) is down:



interface down
Cochran#show ip eigrp topology
IP-EIGRP Topology Table for AS(15)/ID(192.168.17.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status

P 10.0.0.0/8, 1 successors, FD is 2707456
        via 172.20.15.26 (2707456/2195456), Serial0/0.4
P 192.168.18.24/29, 1 successors, FD is 2195456
        via 172.20.15.26 (2195456/281600), Serial0/0.4
P 192.168.16.0/24, 1 successors, FD is 2195456
        via 172.20.15.26 (2195456/281600), Serial0/0.4
P 192.168.17.0/24, 1 successors, FD is 28160
        via Connected, FastEthernet0/0
P 172.20.32.0/24, 1 successors, FD is 28160
        via Connected, FastEthernet0/1
P 172.20.33.0/24, 1 successors, FD is 2707456
        via 172.20.15.26 (2707456/2195456), Serial0/0.4
P 172.20.15.20/30, 1 successors, FD is 21536000
        via 172.20.15.26 (21536000/21024000), Serial0/0.4
P 172.20.15.16/30, 1 successors, FD is 6535936
        via 172.20.15.26 (6535936/6023936), Serial0/0.4
P 172.20.15.24/30, 1 successors, FD is 2169856
        via Connected, Serial0/0.4
P 172.20.10.0/27, 1 successors, FD is 2707456
        via 172.20.15.26 (2707456/2195456), Serial0/0.4
P 172.20.15.4/30, 1 successors, FD is 3193856
        via 172.20.15.26 (3193856/2681856), Serial0/0.4
P 172.20.15.0/30, 1 successors, FD is 2681856
        via 172.20.15.26 (2681856/2169856), Serial0/0.4
P 172.20.15.12/30, 1 successors, FD is 4035840
        via 172.20.15.26 (4035840/3523840), Serial0/0.4
P 172.18.0.0/16, 1 successors, FD is 4038400
        via 172.20.15.26 (4038400/3526400), Serial0/0.4
P 172.20.15.8/30, 1 successors, FD is 11535872
        via 172.20.15.26 (11535872/11023872), Serial0/0.4
P 192.168.18.128/25, 1 successors, FD is 28160
        via Connected, FastEthernet0/2
P 10.108.16.0/24, 1 successors, FD is 284160
        via 172.20.32.2 (284160/281600), FastEthernet0/1
P 172.20.15.24/30, 1 successors, FD is 2169856
        via Connected, Serial0/0.4
Cochran#

Now, Lindbergh is configured as an EIGRP stub in Example 7-36.

Example 7-36. Lindbergh is configured as an EIGRP stub router.

router eigrp 15
 eigrp stub

Example 7-37 shows Cochran's EIGRP neighbor table, and Example 7-38 shows Cochran's EIGRP topology
table after the same two links to Earhart fail again.

Example 7-37. Cochran's EIGRP neighbor table shows its neighbors. Lindbergh is a stub. Cochran is
running a later IOS release (12.3) then Earhart. Notice that the fact that queries are suppressed is
explicitly stated.

Cochran#show ip eigrp neighbor detail
IP-EIGRP neighbors for process 15



H   Address                 Interface       Hold Uptime    SRTT   RTO   Q   Seq
                                            (sec)          (ms)        Cnt  Num
2   172.20.15.26            Se0/0.4           10 00:01:08    56   336   0   20
   Version 12.3/1.2, Retrans: 2, Retries: 0
   Stub Peer Advertising ( CONNECTED SUMMARY ) Routes
   Suppressing queries
1   172.20.15.9             Se0/0.2           11 00:29:46    96    576  0   111
   Version 12.1/1.2, Retrans: 1, Retries: 0
0   172.20.15.5             Se0/0.1           10 00:37:00    96    576  0   110
   Version 12.1/1.2, Retrans: 2, Retries: 0
IP-EIGRP neighbors for process 10
H   Address                 Interface       Hold Uptime    SRTT   RTO   Q   Seq
                                            (sec)          (ms)        Cnt  Num
0   172.20.32.2             Fa0/1             13 00:29:50    51   306   0   10
   Version 12.1/1.2, Retrans: 2, Retries: 0
Cochran#

Example 7-38. After failure of the primary links between Cochran and Earhart, only addresses
connected to Lindbergh are reachable via Serial 0/0.4.

%DUAL-5-NBRCHANGE: IP-EIGRP(0) 15: Neighbor 172.20.15.5 (Serial0/0.1) is down:
interface down
%DUAL-5-NBRCHANGE: IP-EIGRP(0) 15: Neighbor 172.20.15.9 (Serial0/0.2) is down:
interface down

Cochran#show ip eigrp topology
IP-EIGRP Topology Table for AS(15)/ID(192.168.17.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status

P 192.168.18.24/29, 1 successors, FD is 2195456
        via 172.20.15.26 (2195456/281600), Serial0/0.4
P 192.168.16.0/24, 1 successors, FD is 2195456
        via 172.20.15.26 (2195456/281600), Serial0/0.4
P 192.168.17.0/24, 1 successors, FD is 28160
        via Connected, FastEthernet0/0
P 172.20.32.0/24, 1 successors, FD is 28160
        via Connected, FastEthernet0/1
P 172.20.15.24/30, 1 successors, FD is 2169856
        via Connected, Serial0/0.4
P 172.20.15.0/30, 1 successors, FD is 2681856
        via 172.20.15.26 (2681856/2169856), Serial0/0.4
P 192.168.18.128/25, 1 successors, FD is 28160
        via Connected, FastEthernet0/2
P 10.108.16.0/24, 1 successors, FD is 284160
        via 172.20.32.2 (284160/281600), FastEthernet0/1
P 172.20.15.24/30, 1 successors, FD is 2169856
        via Connected, Serial0/0.4
Cochran#

Configuring Lindbergh as an EIGRP stub prevents it from becoming a transit router during a failure of core
links.

Configuring stub routing with EIGRP greatly increases the scalability of an EIGRP network, by minimizing
queries, and thus the amount of time that network outages require addresses to be in an active state.

Stub routing eliminates queries sent to the stub router, but it does nothing to hide the topology of the rest of
the network from the stub's point of view. Earhart can hide the topology of the rest of the network from the
stubs. They don't need to know about every individual subnet because all packets for each of the subnets are
always forwarded to the hub. Earhart can accomplish this by summarizing addresses.



Case Study: Address Summarization

Router Yeager, shown in the network in Figure 7-37, has a single link to Earhart. The six addresses that
Earhart must advertise to Yeager can be summarized with two aggregate addresses. Earhart's configuration
will be as shown in Example 7-39.

Example 7-39. Earhart's configuration summarizes routes to Yeager.

interface Ethernet2
 ip address 10.15.15.254 255.255.255.252
 ip summary-address eigrp 15 172.0.0.0 255.0.0.0
 ip summary-address eigrp 15 192.168.16.0 255.255.240.0

The ip summary-address eigrp command will automatically suppress the advertisement of the more specific
networks to Yeager. Example 7-40 shows the route table of Yeager before and after the aggregate addresses
are configured. Even in this small network, the number of EIGRP-learned entries has been reduced by half; in
a large network, the impact on route tables and the memory required to store them can be significant.

Example 7-40. Yeager's route table before and after aggregate addresses are configured at Earhart.

Yeager#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

D    172.18.0.0/16 [90/3040000] via 10.15.15.254, 00:13:07, Ethernet0
D    172.20.0.0/16 [90/307200] via 10.15.15.254, 00:13:07, Ethernet0
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C       10.10.1.0/24 is directly connected, Ethernet1
C       10.15.15.252/30 is directly connected, Ethernet0
     192.168.17.0/27 is subnetted, 1 subnets
D       192.168.17.0 [90/2198016] via 10.15.15.254, 00:03:57, Ethernet0
D    192.168.16.0/24 [90/2221056] via 10.15.15.254, 00:01:51, Ethernet0
     192.168.18.0/24 is variably subnetted, 2 subnets, 2 masks
D       192.168.18.24/29 [90/2221056] via 10.15.15.254, 00:13:09, Ethernet0
D       192.168.18.128/25 [90/2198016] via 10.15.15.254, 00:13:09, Ethernet0

Yeager#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C       10.10.1.0/24 is directly connected, Ethernet1
C       10.15.15.252/30 is directly connected, Ethernet0
D    172.0.0.0/8 [90/307200] via 10.15.15.254, 00:00:57, Ethernet0
D    192.168.16.0/20 [90/2198016] via 10.15.15.254, 00:00:57, Ethernet0



Authentication

MD5 cryptographic checksums are the only authentication supported in EIGRP, which on first consideration
might seem less flexible than RIPv2 and OSPF, which support both MD5 and clear-text passwords. However,
clear-text password authentication should be used only when a neighboring device does not support the more
secure MD5. Because EIGRP will be spoken only between two Cisco devices, this situation will never arise.

The steps for configuring EIGRP authentication are

Step 1. Define a key chain with a name.

Step 2. Define the key or keys on the key chain.

Step 3. Enable authentication on an interface and specify the key chain to be used.

Step 4. Optionally configure key management.

Key-chain configuration and management are described in Chapter 6. EIGRP authentication is enabled and
linked to a key chain on an interface with the commands ip authentication key-chain eigrp and ip
authentication mode eigrp md5.[17]

[17] Although MD5 is the only authentication mode available, the ip authentication mode eigrp
md5 command anticipates the possibility of another mode being available in the future.

Referring to Figure 7-37, the configuration in Example 7-41 enables EIGRP authentication on Cochran's
interface to Earhart.

Example 7-41. Cochran is configured to use MD5 authentication with Earhart.

key chain Edwards
 key 1
 key-string PanchoBarnes
!
interface Serial0/0.1
 ip address 172.20.15.6 255.255.255.252
 ip authentication key-chain eigrp 15 Edwards
 ip authentication mode eigrp 15 md5
interface Serial0/0.2
 ip address 172.20.15.10 255.255.255.252
 ip authentication key-chain eigrp 15 Edwards
 ip authentication mode eigrp 15 md5

A similar configuration would be necessary on Earhart. The commands accept-lifetime and send-lifetime
are used for key-chain management as described in Chapter 6.



Troubleshooting EIGRP

Troubleshooting the exchange of RIP route information is a reasonably simple procedure. Routing updates are
either propagated or they are not, and they either contain accurate information or they do not. The added
complexity of EIGRP means an added complexity to the troubleshooting procedure. Neighbor tables and
adjacencies must be verified, the query/response procedure of DUAL must be followed, and the influences of
VLSM on automatic summarization must be considered.

This section's case study describes a sequence of events that typically can be used when pursuing an EIGRP
problem. Following the case study is a discussion of an occasional cause of instabilities in larger EIGRP
internets.

Case Study: A Missing Neighbor

Figure 7-38 shows a small EIGRP network. Users are complaining that subnet 192.168.16.224/28 is
unreachable. An examination of the route tables reveals that something is wrong at router Grissom (Example 7-
42).[18]

[18] When troubleshooting a network, it is a good practice to verify that the addresses of all router
interfaces belong to the correct subnet.

Figure 7-38. Subnet 192.168.16.224/28 is not reachable through Grissom in this example of an EIGRP
network.

Example 7-42. The route tables of Shepard and Grissom show that Grissom's EIGRP process is not
advertising or receiving routes on subnet 192.168.16.16/28.

Grissom#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
     192.168.16.0/24 is variably subnetted, 3 subnets, 2 masks
C       192.168.16.40/30 is directly connected, Serial0
C       192.168.16.16/28 is directly connected, Ethernet0
D       192.168.16.224/28 [90/2195456] via 192.168.16.42, 01:07:26, Serial0
_______________________________________________________________________________
Shepard#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP



Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
     192.168.16.0/24 is variably subnetted, 4 subnets, 2 masks
C       192.168.16.36/30 is directly connected, Serial0
C       192.168.16.16/28 is directly connected, Ethernet0
D       192.168.16.192/28 [90/2297856] via 192.168.16.38, 01:07:20, Serial0
D       192.168.16.128/28 [90/307200] via 192.168.16.17, 01:07:20, Ethernet0

The following observations are made from the two route tables of Example 7-42:

Shepard does not have subnets 192.168.16.40/30 and 192.168.16.224/28 in its route table, although
Grissom does.

Grissom's route table does not contain any of the subnets that should be advertised by Glenn or Shepard.

Shepard's route table contains the subnets advertised by Glenn (and Glenn's table contains the subnets
advertised by Shepard, although its route table is not included in Example 7-42).

The conclusion to be drawn from these observations is that Grissom is not advertising or receiving routes
correctly over subnet 192.168.16.16/28.

Among the possible causes, the simplest causes should be examined first. These follow:

An incorrect interface address or mask

An incorrect EIGRP process ID

A missing or incorrect network statement

In this case, there are no EIGRP or address configuration errors.

Next, the neighbor tables should be examined. Looking at the neighbor tables at Grissom, Shepard, and Glenn
(Example 7-43), two facts stand out:

Grissom (192.168.16.19) is in its neighbors' tables, but its neighbors are not in Grissom's neighbor table.

The entire network has been up for more than five hours; this information is reflected in the uptime
statistic for all neighbors except Grissom. However, Grissom's uptime shows approximately one minute.

Example 7-43. Shepard and Glenn see Grissom as a neighbor, but Grissom does not see them. This
suggests that Shepard and Glenn are receiving Hellos from Grissom, but Grissom is not receiving
Hellos from Shepard and Glenn.

Grissom#show ip eigrp neighbors
IP-EIGRP neighbors for process 75
H   Address           Interface   Hold    Uptime    SRTT    RTO    Q    Seq
                                  (sec)             (ms)          Cnt   Num
0   192.168.16.42     Se0           11    05:27:11   23     200    0    8
___________________________________________________________________________
Shepard#show ip eigrp neighbors
IP-EIGRP neighbors for process 75
H   Address           Interface   Hold    Uptime    SRTT    RTO    Q    Seq
                                  (sec)             (ms)          Cnt   Num
1   192.168.16.19     Et0           12    00:01:01    0    5000    1    0
2   192.168.16.17     Et0           11    05:27:33    8     200    0    6
0   192.168.16.38     Se0           14    05:27:34   22     200    0    10
___________________________________________________________________________
Glenn#show ip eigrp neighbors
IP-EIGRP neighbors for process 75



H   Address           Interface   Hold    Uptime    SRTT    RTO    Q    Seq
                                  (sec)             (ms)          Cnt   Num
1   192.168.16.19     Et0           14    00:00:59    0    8000    1    0
2   192.168.16.18     Et0           10    05:30:11    9      20    0    7
0   192.168.16.130    Et1          12    05:30:58    6      20    0    7

If Grissom is in Shepard's neighbor table, Shepard must be receiving Hellos from it. Grissom, however, is
apparently not receiving Hellos from Shepard. Without this two-way exchange of Hello packets, an adjacency
will not be established and route information will not be exchanged.

A closer examination of Shepard's and Glenn's neighbor tables reinforces this hypothesis:

The SRTT for Grissom is 0, indicating that a packet has never made the round trip.

The RTO for Grissom has increased to five and eight seconds, respectively.

There is a packet enqueued for Grissom (Q Cnt).

The sequence number recorded for Grissom is 0, indicating that no reliable packets have ever been
received from it.

These factors indicate that the two routers are trying to send a packet reliably to Grissom, but are not receiving
an ACK.

In Example 7-44, debug eigrp packets is used at Shepard to get a better look at what is happening. All
EIGRP packet types will be displayed, but a second debug command is used with it: debug ip eigrp neighbor
75 192.168.16.19. This command adds a filter to the first command. It tells debug eigrp packet to display only
IP packets of EIGRP 75 (the process ID of the routers in Figure 7-38) and only those packets that concern
neighbor 192.168.16.19 (Grissom).

Example 7-44. The command debug ip eigrp neighbor  is used to control the packets displayed by
debug eigrp packets.

Shepard#debug eigrp packets
EIGRP Packets debugging is on
   (UPDATE, REQUEST, QUERY, REPLY, HELLO, IPXSAP, PROBE, ACK)
Shepard#debug ip eigrp neighbor 75 192.168.16.19
IP Neighbor target enabled on AS 75 for 192.168.16.19
IP-EIGRP Neighbor Target Events debugging is on
EIGRP: Sending UPDATE on Ethernet0 nbr 192.168.16.19, retry 14, RTO 5000
   AS 75, Flags 0x1, Seq 22/0 idbQ 1/0 iidbQ un/rely 0/0 peerQ un/rely 0/1 serno
1-4
EIGRP: Received HELLO on Ethernet0 nbr 192.168.16.19
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/1
EIGRP: Sending UPDATE on Ethernet0 nbr 192.168.16.19, retry 15, RTO 5000
AS 75, Flags 0x1, Seq 22/0 idbQ 1/0 iidbQ un/rely 0/0 peerQ un/rely 0/1 serno
1-4
EIGRP: Received HELLO on Ethernet0 nbr 192.168.16.19
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/1
EIGRP: Sending UPDATE on Ethernet0 nbr 192.168.16.19, retry 16, RTO 5000
   AS 75, Flags 0x1, Seq 22/0 idbQ 1/0 iidbQ un/rely 0/0 peerQ un/rely 0/1 serno
1-4
EIGRP: Received HELLO on Ethernet0 nbr 192.168.16.19
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/1
EIGRP: Retransmission retry limit exceeded
EIGRP: Received HELLO on Ethernet0 nbr 192.168.16.19
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0
EIGRP: Enqueueing UPDATE on Ethernet0 nbr 192.168.16.19 iidbQ un/rely 0/1 peerQ
un/rely 0/0 serno 1-4
EIGRP: Sending UPDATE on Ethernet0 nbr 192.168.16.19
   AS 75, Flags 0x1, Seq 23/0 idbQ 1/0 iidbQ un/rely 0/0 peerQ un/rely 0/1 serno
1-4



Example 7-44 shows that Hello packets are being received from Grissom. It also shows that Shepard is
attempting to send updates to Grissom; Grissom is not acknowledging them. After the 16th retry, the message
"Retransmission retry limit exceeded" is displayed. This exceeded limit accounts for the low uptime shown for
Grissom in the neighbor tableswhen the retransmission retry limit is exceeded, Grissom is removed from the
neighbor table. But because Hellos are still being received from Grissom, it quickly reappears in the table and
the process begins again.

Example 7-45 shows the output from debug eigrp neighbors at Shepard. This command is not IP specific,
but instead shows EIGRP neighbor events. Here, two instances of the events described in the previous
paragraph are displayed: Grissom is declared dead as the retransmission limit is exceeded but is immediately
"revived" when its next Hello is received.

Example 7-45. debug eigrp neighbors displays neighbor events.

Shepard#debug eigrp neighbors
EIGRP Neighbors debugging is on
Shepard#
EIGRP: Retransmission retry limit exceeded
EIGRP: Holdtime expired
EIGRP: Neighbor 192.168.16.19 went down on Ethernet0
EIGRP: New peer 192.168.16.19
EIGRP: Retransmission retry limit exceeded
EIGRP: Holdtime expired
EIGRP: Neighbor 192.168.16.19 went down on Ethernet0
EIGRP: New peer 192.168.16.19

Although Example 7-44 shows that update packets are being sent to Grissom, observation of EIGRP packets
at that router shows that they are not being received (Example 7-46).

Example 7-46. Grissom is exchanging Hellos with Cooper via interface S0 and is sending Hellos out
E0. However, Grissom is not receiving any EIGRP packets on interface EO.

Grissom#debug eigrp packets
EIGRP Packets debugging is on
     (UPDATE, REQUEST, QUERY, REPLY, HELLO, IPXSAP, PROBE, ACK)
Grissom#
EIGRP: Sending HELLO on Serial0
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0
EIGRP: Received HELLO on Serial0 nbr 192.168.16.42
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/0
EIGRP: Sending HELLO on Ethernet0
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0
EIGRP: Sending HELLO on Serial0
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0
EIGRP: Received HELLO on Serial0 nbr 192.168.16.42
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/0
EIGRP: Sending HELLO on Ethernet0
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0
EIGRP: Sending HELLO on Serial0
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0
EIGRP: Sending HELLO on Ethernet0
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0
EIGRP: Received HELLO on Serial0 nbr 192.168.16.42
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0 peerQ un/rely 0/0
EIGRP: Sending HELLO on Serial0
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0
EIGRP: Sending HELLO on Ethernet0
   AS 75, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0



Because Grissom is successfully exchanging Hellos with Cooper, Grissom's EIGRP process must be working.
Suspicion therefore falls on Grissom's Ethernet interface. An inspection of the configuration file shows that an
access list is configured as an incoming filter on E0 in Example 7-47.

Example 7-47. An incoming access-list is denying EIGRP packets.

interface Ethernet0
 ip address 192.168.16.19 255.255.255.240
 ip access-group 150 in
!
!
access-list 150 permit tcp any any established
access-list 150 permit tcp any host 192.168.16.238 eq ftp
access-list 150 permit tcp host 192.168.16.201 any eq telnet
access-list 150 permit tcp any host 192.168.16.230 eq pop3
access-list 150 permit udp any any eq snmp
access-list 150 permit icmp any 192.168.16.224 0.0.0.15

When EIGRP packets are received at Grissom's E0 interface, they are first filtered through access list 150.
They will not match any entry on the list and are therefore being dropped. The problem is resolved (Example 7-
48) by adding the following entry to the access list:

access-list 150 permit eigrp 192.168.16.16 0.0.0.15 any

Example 7-48. When an entry is added to the access list to permit EIGRP packets, Grissom's
neighbor and route tables show that it now has routes to all subnets.

Grissom#show ip eigrp neighbors
IP-EIGRP neighbors for process 75
H   Address                 Interface    Hold Uptime    SRTT   RTO   Q   Seq
                                         (sec)          (ms)        Cnt  Num
2   192.168.16.17           Et0             10 00:06:20    4   200   0   41
1   192.168.16.18           Et0             14 00:06:24   15   200   0   85
0   192.168.16.42           Se0             10 06:22:56   22   200   0   12
Grissom#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
   192.168.16.0/24 is variably subnetted, 6 subnets, 2 masks
C    192.168.16.40/30 is directly connected, Serial0
D    192.168.16.36/30 [90/2195456] via 192.168.16.18, 00:06:27, Ethernet0
C    192.168.16.16/28 is directly connected, Ethernet0
D    192.168.16.224/28 [90/2195456] via 192.168.16.42, 00:06:12, Serial0
D    192.168.16.192/28 [90/2323456] via 192.168.16.18, 00:06:27, Ethernet0
D    192.168.16.128/28 [90/307200] via 192.168.16.17, 00:06:12, Ethernet0
Grissom#

Stuck-in-Active Neighbors

When a route goes active and queries are sent to neighbors, the route will remain active until a reply is
received for every query. But what happens if a neighbor is dead or otherwise incapacitated and cannot reply?



The route would stay permanently active. The active timer and SIA-retransmit timer are designed to prevent
this situation. Both the active timer and the SIA-retransmit timer are set when a query is sent. If the SIA-
retransmit timer is not supported by the router's IOS (IOS versions earlier then 12.2[4.1]), only the active timer
is used. If the timers expire before a reply to the query is received, the route is declared stuck-in-active, the
neighbor is presumed dead, and it is flushed from the neighbor table.[19] The SIA route and any other routes
via that neighbor are eliminated from the route table. DUAL will be satisfied by considering the neighbor to
have replied with an infinite metric.

[19] As mentioned previously, the default active time is three minutes. It can be changed with the
command timers active-time.

In reality, this sequence of events should never happen. The loss of Hellos should identify a disabled neighbor
long before the active timer expires.

But what happens in large EIGRP networks where a query might, like the bunny in the battery advertisement,
keep going and going? Remember that queries cause the diffusing calculation to grow larger, whereas replies
cause it to grow smaller (refer to Figure 7-6). Queries must eventually reach the edge of the network, and
replies must eventually begin coming back, but if the diameter of the diffusing calculation grows large enough,
an active timer might expire before all replies are received. The result, flushing a legitimate neighbor from the
neighbor table, is obviously destabilizing.

When neighbors mysteriously disappear from neighbor tables and then reappear, or users complain of
intermittently unreachable destinations, SIA routes might be the culprit. Checking the error logs of routers is a
good way to find out whether SIAs have occurred (Example 7-49).

Example 7-49. The final entry of this error log shows a SIA message.

Gagarin#show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
    Console logging: level debugging, 3369 messages logged
    Monitor logging: level debugging, 0 messages logged
    Trap logging: level informational, 71 message lines logged
    Buffer logging: level debugging, 3369 messages logged
Log Buffer (4096 bytes):
   ...
   ...
   ...
DUAL: dual_rcvupdate(): 10.51.1.0/24 via 10.1.2.1 metric 409600/128256
DUAL: Find FS for dest 10.51.1.0/24. FD is 4294967295, RD is 4294967295 found
DUAL: RT installed 10.51.1.0/24 via 10.1.2.1
DUAL: Send update about 10.51.1.0/24. Reason: metric chg
DUAL: Send update about 10.51.1.0/24. Reason: new if
DUAL: dual_rcvupdate(): 10.52.1.0/24 via 10.1.2.1 metric 409600/128256
DUAL: Find FS for dest 10.52.1.0/24. FD is 4294967295, RD is 4294967295 found
%DUAL-3-SIA: Route 10.11.1.0/24 stuck-in-active state in IP-EIGRP 1. Cleaning up
Gagarin#

When chasing the cause of SIAs, close attention should be paid to the topology table in routers. If routes can
be "caught" in the active state, the neighbors from whom queries have not yet been received should be noted.
For example, Example 7-50 shows a topology table in which several routes are active. Notice that most of them
have been active for 15 seconds and that one (10.6.1.0) has been active for 41 seconds.

Example 7-50. This topology table shows several active routes, all of which are waiting for a reply
from neighbor 10.1.2.1.

Gagarin#show ip eigrp topology
IP-EIGRP Topology Table for process 1
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply
       r - Reply Status
A 10.11.1.0/24, 0 successors, FD is 3072128000, Q



    1 replies, active 00:00:15, query-origin: Local origin
    Remaining replies:
        via 10.1.2.1, r, Ethernet0
A 10.10.1.0/24, 0 successors, FD is 3584128000, Q
    1 replies, active 00:00:15, query-origin: Local origin
    Remaining replies:
        via 10.1.2.1, r, Ethernet0
A 10.9.1.0/24, 0 successors, FD is 4096128000, Q
    1 replies, active 00:00:15, query-origin: Local origin
    Remaining replies:
        via 10.1.2.1, r, Ethernet0
A 10.2.1.0/24, 1 successors, FD is Inaccessible, Q
    1 replies, active ve 00:00:15, query-origin: Local origin
    Remaining res:
        via 10.1.2.1, r, Ethernet0
P 10.1.2.0/24, 1 successors, FD is 281600
        via Connected, Ethernet0
A 10.6.1.0/24, 0 successors, FD is 3385160704, Q
    1 replies, active 00:00:41, query-origin: Local origin
    Remaining replies:
        via 10.1.2.1, r, Ethernet0
A 10.27.1.0/24, 0 successors, FD is 3897160704, Q
--More-

Notice also that in each case, the neighbor 10.1.2.1 has its reply status flag (r) set. That is the neighbor from
which replies have not yet been received. There might be no problem with the neighbor itself or with the link to
the neighbor, but this information points to the direction within the network topology in which the investigation
should proceed.

Common causes of SIAs in larger EIGRP networks are heavily congested, low-bandwidth data links and
routers with low memory or overutilized CPUs. The problem will be exacerbated if these limited resources must
handle very large numbers of queries.

The careless adjustment of the bandwidth parameter on interfaces might be another cause of SIAs. Recall that
EIGRP is designed to use no more than 50 percent of the available bandwidth of a link. This restriction means
that EIGRP's pacing is keyed to the configured bandwidth. If the bandwidth is set artificially low in an attempt
to manipulate routing choices, the EIGRP process might be starved. If IOS 11.2 or later is being run, the
command ip bandwidth-percent eigrp may be used to adjust the percentage of bandwidth used.

For example, suppose that an interface is connected to a 56K serial link, but the bandwidth is set to 14K.
EIGRP would limit itself to 50 percent of this amount, or 7K. The commands in Example 7-51 adjust the EIGRP
bandwidth percent to 200 percent200 percent of 14K, which is 50 percent of the actual bandwidth of the 56K
link.

Example 7-51. Router configuration adjusts the percentage of the configured bandwidth that EIGRP
will use.

interface Serial 3
 ip address 172.18.107.210 255.255.255.240
 bandwidth 14
 ip bandwidth-percent eigrp 1 200

Increasing the active timer period with the timers active-time command might help avoid SIAs in some
situations, but this step should not be taken without careful consideration of the effects it might have on
reconvergence.

A new timer, the SIA-retransmit timer, and the two new EIGRP packet types, SIA-query and SIA-reply, help to
minimize SIAs and to push the reset of the neighbor to link that is actually having the problem responding to
queries.



Consider the network in Figure 7-39. From router Mercury, EIGRP will route traffic to network 172.16.100.0 via
Apollo. Vostok is not a feasible successor because the metric from Vostok to 172.16.100.0 is too high. Vostok
routes traffic to 172.16.100.0 via Mercury and Apollo. Soyuz is not a feasible successor because the metric
from Soyuz to 172.16.100.0 is too high.

Figure 7-39. Mercury does not list Vostok as a feasible successor to 172.16.100.0/24.

When the link between Mercury and Apollo fails, as shown in Figure 7-40, Mercury places the address
172.16.100.0 (and any other address known via neighbor Apollo) into Active, and sends a query to Vostok.
Vostok also places the address into Active state, and sends a query to Soyuz. The Active timers are set. In
addition, the SIA-retransmit timers are set. The SIA-retransmit timer is set to one-half the value of the Active
timer, typically 90 seconds.

Figure 7-40. SIA-queries and SIA-replies are used to avoid SIA conditions.

When the SIA-retransmit timer expires, Mercury sends an SIA-query to Vostok. Vostok sends an SIA-query to
Soyuz. Vostok responds to the SIA-query from Mercury with an SIA-reply. Mercury resets the Active timer and
the SIA-retransmit timer. The routers will send up to three SIA-queries (assuming no reply has been received
from the original address query) as long as SIA-replies are received, before resetting a neighbor. So as long as
a neighbor router responds to the SIA-queries, it won't be declared stuck-in-active and reset, for six minutes,
assuming a default Active time of 180 seconds. This gives ample time for a large network to respond to
queries.

But, say there is a problem on the link from Vostok to Soyuz that is allowing enough Hellos to get through to
keep the neighbors active, but the SIA-reply is not received by Vostok within the SIA-retransmit time. If no SIA-
reply is received within 90 seconds of a SIA-query, and no response to the original address query has been
received, Vostok will reset neighbor Soyuz and reply to Mercury's original query that the address is
unreachable.

The SIA-retransmit timer does two things. If neighbors are responding to SIA-queries, large networks are given
more time to respond to address queries. If neighbors are not responding, the neighbor is reset. Only the
router that is not receiving responses from its neighbor will reset the adjacency. Before the SIA-retransmit timer



was introduced, any router that did not receive a response to an active query after the Active timer expired
would reset the neighbor adjacency, even if the problem was somewhere downstream in the network.

A good network design is the best solution to instabilities such as SIA routes. By using a combination of
intelligent address assignment, route filtering, default routes, stub routing, and summarization, boundaries may
be constructed in a large EIGRP network to restrict the size and scope of diffusing computations. Chapter 13
includes an example of such a design.



Looking Ahead

When comparing EIGRP and OSPF, it is often said that an advantage of EIGRP is that it is simpler to
configure. This observation is true for many networks, but this chapter's discussion of troubleshooting
shows that as a network grows, efforts must be made to "compartmentalize" the EIGRP topology.
Ironically, the very complexity of OSPF might make it easier to configure in large networks, as the next
chapter shows.



Summary Table: Chapter 7 Command Review

Command Description
accept-lifetime
start-time
{infinite | end-
time | duration
seconds}

Specifies the time period during which the
authentication key on a key chain is
received as valid.

auto-summary Enables automatic summarization at
network boundaries. This command is
enabled by default.

bandwidth
kilobits

Specifies the bandwidth parameter, in
kilobits per second, on an interface.

debug eigrp
packets

Displays EIGRP packet activity.

debug ip eigrp
neighbor
process-id
address

Adds a filter to the debug eigrp packets
command, telling it to display only IP
packets for the indicated process and
neighbor.

delay tens-of-
microseconds

Specifies the delay parameter, in tens of
microseconds, on an interface.

eigrp stub
{connected |
redistributed |
static |
summary |
receive-only}

Configures a spoke router as an EIGRP
stub.

ip
authentication
key-chain eigrp
process-id key-
chain

Configures a key chain on an EIGRP
interface and specifies the name of the
key chain to be used.

ip
authentication
mode eigrp
process-id md5

Enables EIGRP authentication on an
interface.

ip bandwidth-
percent eigrp
process-id
percent

Configures the percentage of bandwidth
used by EIGRP; the default is 50 percent.

ip hello-interval
eigrp process-id
seconds

Configures the EIGRP hello interval.

ip hold-time
eigrp process-id
seconds

Configures the EIGRP hold time.

ip summary-
address eigrp

Configures a router to send a summary
EIGRP advertisement.



process-id
address mask
key number Specifies a key on a key chain.

key chain name-
of-chain

Specifies a group of authentication keys.

key-string text Specifies the authentication string, or
password, used by a key.

metric weights
tos k1 k2 k3 k4
k5

Specifies how much weight the bandwidth,
load, delay, reliability, and MTU size
parameters should be given in the IGRP
and EIGRP metric calculations.

network
network-number

Specifies the network address of one or
more interfaces on which IGRP, EIGRP, or
RIP processes should be enabled.

passive-
interface type
number

Disables the transmission of broadcast or
multicast routing updates on an interface.

router eigrp
process-id

Enables an EIGRP process.

send-lifetime
start-time
{infinite | end-
time | duration
seconds}

Specifies the time period during which the
authentication key on a key chain may be
sent.

show ip eigrp
neighbors [type
number ]

Displays the EIGRP neighbor table.

show ip eigrp
topology
[process-id | [[ip
address] mask]]

Displays the EIGRP topology table.

timers active-
time {minutes |
disabled}

Changes or disables the default 3-minute
active time.

traffic-share
{balanced | min}

Specifies whether an IGRP or EIGRP
routing process should use unequal-cost
load balancing or equal-cost load
balancing only.

variance
multiplier

Specifies a route multiplier by which a
route metric can vary from the lowest-cost
metric and still be included in an unequal-
cost load balancing group.



Review Questions

1 Is EIGRP a distance vector or a link-state routing protocol?

2 What is the maximum configured bandwidth EIGRP will use on a link? Can this percentage
be changed?

3 How do EIGRP and IGRP differ in the way they calculate the composite metric?

4 What are the four basic components of EIGRP?

5 In the context of EIGRP, what does the term reliable delivery mean? Which two methods
ensure reliable delivery of EIGRP packets?

6 Which mechanism ensures that a router is accepting the most recent route entry?

7 What is the multicast IP address used by EIGRP?

8 What are the packet types used by EIGRP?

9 At what interval, by default, are EIGRP Hello packets sent?

10 What is the default hold time?

11 What is the difference between the neighbor table and the topology table?

12 What is a feasible distance?

13 What is the feasibility condition?

14 What is a feasible successor?

15 What is a successor?

16 What is the difference between an active route and a passive route?

17 What causes a passive route to become active?

18 What causes an active route to become passive?

19 What does stuck-in-active mean?

20 What is the difference between subnetting and address aggregation?



Configuration Exercises

1 Write EIGRP configurations for Routers A, B, and C in Figure 7-41. Use process ID 5.

Figure 7-41. Network for Configuration Exercises 1 and 2.

2 The serial interfaces connecting Routers A and B in Figure 7-41 are both S0. Configure
authentication between these two routers, using the first key two days from today's date.
Configure a second key to be used beginning 30 days after the first key.

Figure 7-42. Network for Configuration Exercise 3.

3 Router D is added in Figure 7-42. Add this router to the configurations written in
Configuration Exercise 2.

4 Router F has been added in Figure 7-43. Configure this router to run EIGRP with the
routers configured in Configuration Exercises 2 and 3.



Figure 7-43. Network for Configuration Exercises 4 and 5.

[View full size image]

5 Configure route summarization wherever possible in the network of Figure 7-43.



Troubleshooting Exercises

1 Table 7-7 shows the values displayed in the show interface command for every interface
in Figure 7-44. Which router will router F use as the successor to subnet A?

Table 7-7. Metric values for all interfaces in Figure 7-44,
as displayed in the show interface command.

Router Interface BW(k) DLY(mmS)
A E0

F0

T0

S0

S1

10000

100000

16000

512

1544

1000

100

630

20000

20000
B TO

S0

16000

1544

630

20000
C E0

S0

10000

1544

1000

20000
D E0

F0

S0

10000

100000

1544

1000

100

20000
E E0

S0

10000

1544

1000

20000
F F0

S0

100000

512

100

20000
G E0

E1

F0

S0

10000

10000

100000

56

1000

1000

100

20000

Figure 7-44. Network for Troubleshooting Exercises 1 through 5.

[View full size image]



2 In Figure 7-44, what is router C's feasible distance to subnet A?

3 In Figure 7-44, what is router G's feasible distance to subnet A?

4 In Figure 7-44, which routers will router G show in its topology table as feasible
successors?

5 In Figure 7-44, what is router A's feasible distance to subnet B?



Chapter 8. OSPFv2
This chapter covers the following subjects:

Operation of OSPF

Configuring OSPF

Troubleshooting OSPF

Open Shortest Path First (OSPF) was developed by the Internet Engineering Task Force (IETF) as a
replacement for the problematic RIP and is now the IETF-recommended Interior Gateway Protocol
(IGP). OSPF is a link-state protocol that, as the name implies, uses Dijkstra's Shortest Path First (SPF)
algorithm and that is openthat is, it isn't proprietary to any vendor or organization. OSPF has evolved
through several RFCs, all of which were written by John Moy. Version 1 of the protocol was specified in
RFC 1131; this version never progressed beyond the experimental stage. Version 2, which is still the
current version for IPv4, was first specified in RFC 1247, and the most recent specification is RFC
2328.

Like all link-state protocols, OSPF's major advantages over distance vector protocols are fast
reconvergence, scalability to much larger networks, and less susceptibility to bad routing information.
Other features of OSPF are

The use of areas, which reduces the protocol's impact on CPU and memory, contains the flow of
routing protocol traffic, and makes possible the construction of hierarchical network topologies

Fully classless behavior, eliminating such classful problems as discontiguous subnets

Support of classless route table lookups, VLSM, and supernetting for efficient address
management

A dimensionless, arbitrary metric

Equal-cost load balancing for more efficient use of multiple paths[1]

[1] More accurately, the RFC calls for equal-cost multipath, the discovery and use of
multiple equal-cost paths, without prescribing how the protocol should route individual
packets across these multiple paths. The Cisco OSPF implementation performs equal-
cost load balancing as described in previous chapters.

The use of reserved multicast addresses to reduce the impact on non-OSPFspeaking devices

Support of authentication for more secure routing

The use of route tagging for the tracking of external routes

OSPF also has the capability of supporting Type of Service (TOS) routing, although it was never
widely implemented. RFC 2328 has deleted the TOS routing option for this reason.



Operation of OSPF[2]

[2] Because of the interrelationship of OSPF terms and concepts, this chapter frequently uses terms
before they are fully defined. The reader is advised to read this section more than once to ensure a
complete understanding of OSPF operation. It will also be useful to review the section "Link State
Routing Protocols" in Chapter 4, "Dynamic Routing Protocols."

At a very high level, the operation of OSPF is easily explained:

1. OSPF-speaking routers send Hello packets out all OSPF-enabled interfaces. If two routers sharing a
common data link agree on certain parameters specified in their respective Hello packets, they will
become neighbors.

2. Adjacencies, which can be thought of as virtual point-to-point links, are formed between some neighbors.
OSPF defines several network types and several router types. The establishment of an adjacency is
determined by the types of routers exchanging Hellos and the type of network over which the Hellos are
exchanged.

3. Each router sends link-state advertisements (LSAs) over all adjacencies. The LSAs describe all of the
router's links, or interfaces, the router's neighbors, and the state of the links. These links might be to stub
networks (networks with no other router attached), to other OSPF routers, to networks in other areas, or
to external networks (networks learned from another routing process). Because of the varying types of
link-state information, OSPF defines multiple LSA types.

4. Each router receiving an LSA from a neighbor records the LSA in its link-state database and sends a
copy of the LSA to all of its other neighbors.

5. By flooding LSAs throughout an area, all routers will build identical link-state databases.

6. When the databases are complete, each router uses the SPF algorithm to calculate a loop-free graph
describing the shortest (lowest cost) path to every known destination, with itself as the root. This graph is
the SPF tree.

7. Each router builds its route table from its SPF tree.[3]

[3] This fundamental procedure of calculating routes from the link-state database, rather than
by exchanging routes with neighbors, has repercussions for route filtering. See Chapter 13,
"Route Filtering," for more information.

When all link-state information has been flooded to all routers in an area and neighbors have verified that their
databases are identicalthat is, the link-state databases have been synchronizedand the route tables have been
built, OSPF is a quiet protocol. Hello packets are exchanged between neighbors as keepalives, and LSAs are
retransmitted every 30 minutes. If the network topology is stable, no other activity should occur.

Neighbors and Adjacencies

Before any LSAs can be sent, OSPF routers must discover their neighbors and establish adjacencies. The
neighbors will be recorded in a neighbor table , along with the link (interface) on which each neighbor is
located and which contains other information necessary for the maintenance of the neighbor (Example 8-1).

Example 8-1. The neighbor table records all OSPF-speaking neighbors.

Monet#show ip ospf neighbor
Neighbor ID    Pri   State    Dead Time    Address        Interface
192.168.30.70    1   FULL/DR  00:00:34     192.168.17.73  Ethernet0
192.168.30.254   1   FULL/DR  00:00:34     192.168.32.2   Ethernet1
192.168.30.70    1   FULL/BDR 00:00:34     192.168.32.4   Ethernet1
192.168.30.30    1   FULL/ -  00:00:33     192.168.17.50  Serial0.23
192.168.30.10    1   FULL/ -  00:00:32     192.168.17.9   Serial1



192.168.30.68    1   FULL/ -  00:00:39     192.168.21.134 Serial2.824
192.168.30.18    1   FULL/ -  00:00:30     192.168.21.142 Serial2.826
192.168.30.78    1   FULL/ -  00:00:36     192.168.21.170 Serial2.836

The tracking of other OSPF routers requires that each router have a Router ID , an IP address by which the
router is uniquely identified within the OSPF domain. Cisco routers derive their Router IDs by the following
means:

1. If the Router ID has been manually configured using the router-id command, that Router ID is used.

2. If no Router ID has been manually configured, the router chooses the numerically highest IP address on
any of its loopback interfaces.

3. If no loopback interfaces are configured with IP addresses, the router chooses the numerically highest IP
address on any of its physical interfaces. The interface from which the Router ID is taken does not have
to be running OSPF.

Using addresses associated with loopback interfaces has two advantages:

The loopback interface is more stable than any physical interface. It is active when the router boots up,
and it only fails if the entire router fails.

The network administrator has more leeway in assigning predictable or recognizable addresses as the
Router IDs.

The Cisco OSPF will continue to use a Router ID learned from a physical interface even if the interface
subsequently fails or is deleted (see "Case Study: Setting Router IDs with Loopback Interfaces," later in this
chapter). Therefore, the stability of a loopback interface is only a minor advantage. The primary benefit is the
ability to control the Router ID.

The OSPF router begins a neighbor relationship by advertising its Router ID in Hello packets.

Hello Protocol

The Hello protocol serves several purposes:

It is the means by which neighbors are discovered.

It advertises several parameters on which two routers must agree before they can become neighbors.

Hello packets act as keepalives between neighbors.

It ensures bidirectional communication between neighbors.

It elects Designated Routers (DRs) and Backup Designated Routers (BDRs) on Broadcast and
Nonbroadcast Multiaccess (NBMA) networks.

OSPF-speaking routers periodically send a Hello packet out each OSPF-enabled interface. This period is
known as the HelloInterval  and is configured on a per interface basis. Cisco uses a default HelloInterval of 10
seconds for broadcast networks and 30 seconds for non-broadcast; the value can be changed with the
command ip ospf hello-interval. If a router has not heard a Hello from a neighbor within a period of time
known as the RouterDeadInterval, it will declare the neighbor down. The Cisco default RouterDeadInterval is
four times the HelloInterval and can be changed with the command ip ospf dead-interval.[4]

[4] RFC 2328 does not set a required value for either the HelloInterval or the RouterDeadInterval,
although it does suggest respective values of 10 seconds and 4X HelloInterval.

Each Hello packet contains the following information:

Router ID of the originating router.



Area ID of the originating router interface.

Address mask of the originating interface.

Authentication type and authentication information for the originating interface.

HelloInterval of the originating interface.

RouterDeadInterval of the originating interface.

Router Priority.

DR and BDR.

Five flag bits signifying optional capabilities.

Router IDs of the originating router's neighbors. This list contains only routers from which Hellos were
heard on the originating interface within the last RouterDeadInterval.

This section overviews the meaning and use of most of the information listed. Subsequent sections discuss
the DR, BDR, and Router Priority, and illustrate the precise format of the Hello packet. When a router receives
a Hello from a neighbor, it will verify that the Area ID, Authentication, Network Mask, HelloInterval,
RouterDeadInterval, and Options values match the values configured on the receiving interface. If they do not,
the packet is dropped and no adjacency is established.

If everything matches, the Hello packet is declared valid. If the ID of the originating router is already listed in
the neighbor table for that receiving interface, the RouterDeadInterval timer is reset. If the Router ID is not
listed, it is added to the neighbor table.

Whenever a router sends a Hello, it includes in the packet the Router IDs of all neighbors listed for the link on
which the packet is to be transmitted. If a router receives a valid Hello in which it finds its own Router ID listed,
the router knows that two-way communication has been established.

After two-way communication has been established, adjacencies may be established. However, as mentioned
earlier, not all neighbors will become adjacent. Whether an adjacency is formed or not depends on the type of
network to which the two neighbors are attached. Network types also influence the way in which OSPF
packets are transmitted; therefore, before discussing adjacencies, it is necessary to discuss network types.

Network Types

OSPF defines five network types:

Point-to-point networks

Broadcast networks

Nonbroadcast Multiaccess (NBMA) networks

Point-to-multipoint networks

Virtual links

Point-to-point networks, such as a T1, DS-3, or SONET link, connect a single pair of routers. Valid neighbors
on point-to-point networks will always become adjacent. The destination address of OSPF packets on these
networks will always be the reserved class D address 224.0.0.5, known as AllSPFRouters.[5]

[5] The exception to this rule is retransmitted LSAs, which are always unicast on all network types.
This exception is covered later, in the section "Reliable Flooding: Acknowledgments."

Broadcast networks, such as Ethernet, Token Ring, and FDDI, might be better defined as broadcast multi-
access networks to distinguish them from NBMA networks. Broadcast networks are multi-access in that they
are capable of connecting more than two devices, and they are broadcast in that all attached devices can
receive a single transmitted packet. OSPF routers on broadcast networks will elect a DR and a BDR, as



described in the next section, "Designated Routers and Backup Designated Routers." Hello packets are
multicast with the AllSPFRouters destination address 224.0.0.5, as are all OSPF packets originated by the DR
and BDR. The destination Media Access Control (MAC) identifier of the frames carrying these packets is
0100.5E00.0005. All other routers will multicast link-state update and link-state acknowledgment packets
(described later) to the reserved class D address 224.0.0.6, known as AllDRouters. The destination MAC
identifier of the frames carrying these packets is 0100.5E00.0006.

NBMA networks, such as X.25, Frame Relay, and ATM, are capable of connecting more than two routers but
have no broadcast capability. A packet sent by one of the attached routers would not be received by all other
attached routers. As a result, extra configuration might be necessary for routers on these networks to acquire
their neighbors. OSPF routers on NBMA networks elect a DR and BDR, and all OSPF packets are unicast.

Point-to-multipoint networks are a special configuration of NBMA networks in which the networks are treated
as a collection of point-to-point links. Routers on these networks do not elect a DR and BDR, and the OSPF
packets are unicast to each known neighbor.

Virtual links, described in a later section, are special configurations that are interpreted by the router as
unnumbered point-to-point networks. OSPF packets are unicast over virtual links.

In addition to these five network types, it should be noted that all networks fall into one of two more-general
types:

Transit networks have two or more attached routers. They might carry packets that are "just passing
through"packets that were originated on and are destined for a network other than the transit network.

Stub networks have only a single attached router.[6] Packets on a stub network always have either a
source or a destination address belonging to that network. That is, all packets were either originated by a
device on the network or are destined for a device on the network. OSPF advertises host routes (routes
with a mask of 255.255.255.255) as stub networks. Loopback interfaces are also considered stub
networks and are advertised as host routes.[7]

[6] Do not confuse stub networks with stub areas, discussed later in the chapter.

[7] Beginning with IOS 11.3, this default behavior can be changed by adding the command ip
ospf network point-to-point to the loopback interface. This will cause the loopback interface's
address to be advertised as a subnet route.

Designated Routers and Backup Designated Routers

Multiaccess networks present two problems for OSPF, relating to the flooding of LSAs (described in a later
section):

The formation of an adjacency between every attached router would create many unnecessary LSAs. If n
is the number of routers on a multiaccess network, there would be n(n 1)/2 adjacencies (Figure 8-1).
Each router would flood n 1 LSAs for its adjacent neighbors, plus one LSA for the network, resulting in n2
LSAs originating from the network.

Figure 8-1. Ten adjacencies would be required for each of the five routers on this OSPF network
to become fully adjacent with all of its neighbors; 25 LSAs would be originated from the

network.



Flooding on the network itself would be chaotic and excessive. A router would flood an LSA to all its
adjacent neighbors, which in turn would flood it to all their adjacent neighbors, creating many copies of
the same LSA on the same network.

To prevent these problems, a DR is elected on multi-access networks. The DR has the following duties:

To represent the multi-access network and its attached routers to the rest of the OSPF area

To manage the flooding process on the multi-access network

The concept behind the DR is that the broadcast link itself is considered a "pseudonode," or a virtual router.
When the SPF tree is calculated, the link appears as a node and the routers attached to the link are attached
to that node. The cost from an attached router to the pseudonode is the outgoing cost of that router's interface
to the broadcast link, but the cost from the pseudonode to any attached router is 0. This way, the overall path
cost is not affected by the pseudonode.

Each router on the network forms an adjacency with the DR (Figure 8-2), which represents the pseudonode
with a special Network LSA. Keep in mind that a router might be a DR on one of its attached multi-access
networks, and it might not be the DR on another of its attached multi-access networks. In other words, the DR
is a property of a router's interface, not the entire router.

Figure 8-2. The DR represents the multi-access network. Other routers on the network will form
adjacencies with the DR, not with each other.



A significant problem with the DR scheme as described so far is that if the DR fails, a new DR must be elected.
New adjacencies must be established, and all routers on the network must synchronize their databases with
the new DR (part of the adjacency-building process). While all this is happening, the network is unavailable for
transit packets.

To prevent this problem, a BDR is elected in addition to the DR. All routers form adjacencies not only with the
DR but also with the BDR. The DR and BDR also become adjacent with each other. If the DR fails, the BDR
becomes the new DR. Because the other routers on the network are already adjacent with the BDR, network
unavailability is minimized.

The election of the DR and BDR is triggered by the interface state machine, which is described in a later
section. For the election process to function properly, the following preconditions must exist:

Each multi-access interface of each router has a Router Priority , which is an 8-bit unsigned integer
ranging from 0 to 255. The default priority on Cisco routers is 1 and can be changed on a per multi-
access-interface basis with the command ip ospf priority . Routers with a priority of 0 are ineligible to
become the DR or BDR.

Hello packets include fields for the originating router to specify its Router Priority and for the IP addresses
of the connected interfaces of the routers it considers the DR and BDR.

When an interface first becomes active on a multi-access network, it sets the DR and BDR to 0.0.0.0. It
also sets a wait timer  with a value equal to the RouterDeadInterval.

Existing interfaces on a multi-access network record the addresses of the DR and the BDR in the
interface data structure, described in a later section.

The election procedure of the DR and BDR is as follows:

1. After two-way communication has been established with one or more neighbors, examine the Priority, DR,
and BDR fields of each neighbor's Hello. List all routers eligible for election (that is, routers with priority
greater than 0 and whose neighbor state is at least two-way); all routers declaring themselves to be the
DR (their own interface address is in the DR field of the Hello packet); and all routers declaring
themselves to be the BDR (their own interface address is in the BDR field of the Hello packet). The
calculating router will include itself on this list unless it is ineligible.

2. From the list of eligible routers, create a subset of all routers not claiming to be the DR (routers declaring
themselves to be the DR cannot be elected BDR).



3. If one or more neighbors in this subset include its own interface address in the BDR field, the neighbor
with the highest priority will be declared the BDR. In a tie, the neighbor with the highest Router ID will be
chosen.

4. If no router in the subset claims to be the BDR, the neighbor with the highest priority will become the BDR.
In a tie, the neighbor with the highest Router ID will be chosen.

5. If one or more of the eligible routers include their own address in the DR field, the neighbor with the
highest priority will be declared the DR. In a tie, the neighbor with the highest Router ID will be chosen.

6. If no router has declared itself the DR, the newly elected BDR will become the DR.

7. If the router performing the calculation is the newly elected DR or BDR, or if it is no longer the DR or BDR,
repeat steps 2 through 6.

In simpler language, when an OSPF router becomes active and discovers its neighbors, it checks for an active
DR and BDR. If a DR and BDR exist, the router accepts them. If there is no BDR, an election is held in which
the router with the highest priority becomes the BDR. If more than one router has the same priority, the one
with the numerically highest Router ID wins. If there is no active DR, the BDR is promoted to DR and a new
election is held for the BDR.

It should be noted that the priority can influence an election, but will not override an active DR or BDR. That is,
if a router with a higher priority becomes active after a DR and BDR have been elected, the new router will not
replace either of them. So the first two DR-eligible routers to initialize on a multiaccess network will become the
DR and BDR.

After the DR and BDR have been elected, the other routers (known as DRothers) will establish adjacencies
with the DR and BDR only. All routers continue to multicast Hellos to the AllSPFRouters address 224.0.0.5 so
that they can track neighbors, but DRothers multicast update packets to the AllDRouters address 224.0.0.6.
Only the DR and BDR will listen to this address; in turn, the DR will flood the updates to the DRothers on
224.0.0.5.

Note that if only one eligible router is attached to a multiaccess network, that router will become the DR and
there will be no BDR. Any other routers will form adjacencies only with the DR. If none of the routers attached
to a multi-access network are eligible, there will be no DR or BDR and no adjacencies will form. The neighbor
states of all routers will remain two-way (explained later, in "Neighbor State Machine").

The duties performed by the DR and BDR are described more fully in subsequent sections.

OSPF Interfaces

The essence of a link-state protocol is that it is concerned with links and the state of those links. Before Hellos
can be sent, before adjacencies can be formed, and before LSAs can be sent, an OSPF router must
understand its own links. A router's interfaces are the means by which OSPF interprets links. As a result, when
speaking of OSPF, it is not uncommon to hear the terms interface and link used synonymously. This section
examines the data structure OSPF associates with each interface and the various states of an OSPF interface.

Interface Data Structure

An OSPF router maintains a data structure for each OSPF-enabled interface. In Example 8-2, the command
show ip ospf interface  has been used to observe the components of an interface data structure.[8]

[8] Depending on the version of IOS you are running, the output of this command might show more
information than is discussed here; but this information is essential to every OSPF interface.

Example 8-2. The OSPF-specific data related to an interface can be observed with the command
show ip ospf interface . In this example, the interface is attached to a point-to-point network type.



Renoir#show ip ospf interface Serial1.738
Serial1.738 is up, line protocol is up
   Internet Address 192.168.21.21/30, Area 7
   Process ID 1, Router ID 192.168.30.70, Network Type POINT_TO_POINT, Cost: 781
   Transmit Delay is 1 sec, State POINT_TO_POINT,
   Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
      Hello due in 00:00:07
   Neighbor Count is 1, Adjacent neighbor count is 1
      Adjacent with neighbor 192.168.30.77
   Message digest authentication enabled
      Youngest key id is 10

The components of the interface data structure are as follows:

IP Address and Mask This component is the configured address and mask of the interface. OSPF
packets originated from this interface will have this source address. In Example 8-2, the address/mask
pair is 192.168.21.21/30.

Area ID The area to which the interface, and the network to which it is attached, belong. OSPF packets
originated from this interface will have this Area ID. In Example 8-2, the area ID is 7.

Process ID This Cisco-specific feature is not part of the open standard. Cisco routers are capable of
running multiple OSPF processes and use the Process ID to distinguish them. The Process ID has no
significance outside the router on which it is configured. In Example 8-2, the Process ID is 1.

Router ID In Example 8-2, the Router ID is 192.168.30.70.

Network Type The type of network to which the interface is connected: broadcast, point-to-point, NBMA,
point-to-multipoint, or virtual link. In Example 8-2, the network type is point-to-point.[9]

[9] Depending on the version of IOS you are running, the output of this command might show
more information than is discussed here; but this information is essential to every OSPF
interface.

Cost The outgoing cost for packets transmitted from this interface. Cost is the OSPF metric, expressed as
an unsigned 16-bit integer in the range of 1 to 65535. Cisco uses a default cost of 108/BW, expressed in
whole numbers, where BW is the configured bandwidth of the interface and 108 is the reference
bandwidth. The interface in Example 8-2 has a configured bandwidth of 128K (not shown in the example),
so the cost is 108/128K = 781.

The cost can be changed with the command ip ospf cost. This command is especially important when
configuring Cisco routers in a multivendor environment. Another vendor, for example, might use a default cost
of 1 on all interfaces (essentially making OSPF cost reflect hop counts). If all routers do not assign costs in the
same manner, OSPF can route improperly, suboptimally, or in some other unexpected way.

The reference bandwidth of 108 creates a problem for some modern media with bandwidths higher than 100M
(such as OC-3 or above and Gigabit Ethernet). 108/100M = 1, meaning that higher bandwidths calculate to a
fraction of 1, which is not allowed. So any cost that is calculated to a fraction of 1 is rounded up to 1. However,
this means that if your network consists of high-bandwidth links, all interfaces wind up with a cost of 1 and the
calculated shortest paths become based on least router hops. To remedy this, Cisco provides the command
auto-cost reference-bandwidth, which allows the default reference bandwidth to be changed.

Other components of the interface data structure are as follows:

InfTransDelay The seconds by which LSAs exiting the interface will have their ages incremented. In
Example 8-2, this is displayed as Transmit Delay and is shown to be the Cisco default, 1 second.
InfTransDelay can be changed with the command ip ospf transmit-delay .

State The functional state of the interface, which is described in the following section, "Interface State



Machine."

Router Priority This 8-bit unsigned integer in the range of 0 to 255 elects the DR and BDR. The priority
is not displayed in Example 8-2 because the network type is point-to-point; no DR or BDR is elected on
this network type. Example 8-3 shows another OSPF interface in the same router. This interface shows
an attached network type of broadcast, so a DR and BDR are elected. The priority shown is 1, the Cisco
default. The command ip ospf priority  is used to change the Router Priority.

Example 8-3. This interface is attached to a broadcast network type, and the router is the DR on this
network.

Renoir#show ip ospf interface Ethernet0
Ethernet0 is up, line protocol is up
   Internet Address 192.168.17.73/29, Area 0
   Process ID 1, Router ID 192.168.30.70, Network Type BROADCAST, Cost: 10
   Transmit Delay is 1 sec, State DR, Priority 1
   Designated Router (ID) 192.168.30.70, Interface address 192.168.17.73
   Backup Designated router (ID) 192.168.30.80, Interface address 192.168.17.74
   Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
      Hello due in 00:00:03
   Neighbor Count is 1, Adjacent neighbor count is 1
      Adjacent with neighbor 192.168.30.80 (Backup Designated Router)
   Message digest authentication enabled
      Youngest key id is 10

Designated Router The DR for the network to which the interface is attached is recorded both by its
Router ID and by the address of the interface attached to the shared network. Note that no DR is
displayed in Example 8-2; it will be displayed only for multi-access network types. In Example 8-3, the DR
is 192.168.30.70. The address of its attached interface is 192.168.17.73. A look at the Router ID, the
interface address, and the interface state shows that Renoir is the DR.

Backup Designated Router The BDR for the network to which the interface is attached is also recorded
both by its Router ID and by the address of the attached interface. In Example 8-3, the BDR is
192.168.30.80, and its interface address is 192.168.17.74.

HelloInterval The period, in seconds, between transmissions of Hello packets on the interface. This
period is advertised in Hello packets that are transmitted from the interface. Cisco uses a default of 10
seconds on broadcast networks and 30 seconds on non-broadcast networks, which can be changed with
the command ip ospf hello-interval. Example 8-3 displays HelloInterval as Hello and shows that the
default is being used.

RouterDeadInterval The period, in seconds, that the router will wait to hear a Hello from a neighbor on
the network to which the interface is connected before declaring the neighbor down. The
RouterDeadInterval is advertised in Hello packets transmitted from the interface. Cisco uses a default of
four times the HelloInterval; the default can be changed with the command ip ospf dead-interval.
Example 8-3 displays the RouterDeadInterval as Dead and shows that the default is being used.

Wait Timer The length of time the router will wait for a DR and BDR to be advertised in a neighbor's
Hello packet before beginning a DR and BDR selection. The period of the wait timer is the
RouterDeadInterval. In Example 8-2, the wait time is irrelevant because the interface is attached to a
point-to-point network; no DR or BDR will be used.

RxmtInterval The period, in seconds, the router will wait between retransmissions of OSPF packets that
have not been acknowledged. Example 8-3 displays this period as retransmit and shows that the Cisco
default of five seconds is being used. An interface's RxmtInterval can be changed with the command ip
ospf retransmit-interval.

Hello Timer A timer that is set to the HelloInterval. When it expires, a Hello packet is transmitted from the
interface. Example 8-3 shows that the Hello timer will expire in three seconds.

Neighboring Routers A list of all valid neighbors (neighbors whose Hellos have been seen within the



past RouterDeadInterval) on the attached network. Example 8-4 shows yet another interface on the same
router. Here, five neighbors are known on the network, but only two are adjacent (the Router IDs of only
the adjacent neighbors are displayed). As a DRother on this network, the router has established an
adjacency only with the DR and the BDR, in keeping with the DR protocol.

Example 8-4. On this network, the router sees five neighbors but has only formed adjacencies with
the DR and the BDR.

Renoir#show ip ospf interface Ethernet1
Ethernet1 is up, line protocol is up
   Internet Address 192.168.32.4/24, Area 78
   Process ID 1, Router ID 192.168.30.70, Network Type BROADCAST, Cost: 10
   Transmit Delay is 1 sec, State DROTHER, Priority 1
   Designated Router (ID) 192.168.30.254, Interface address 192.168.32.2
   Backup Designated router (ID) 192.168.30.80, Interface address 192.168.32.1
   Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
      Hello due in 00:00:01
   Neighbor Count is 5, Adjacent neighbor count is 2
      Adjacent with neighbor 192.168.30.80 (Backup Designated Router)
      Adjacent with neighbor 192.168.30.254 (Designated Router)
   Message digest authentication enabled
      Youngest key id is 10

AuType Describes the type of authentication used on the network. The authentication type may be Null
(no authentication), Simple Password, or Cryptographic (Message Digest). Example 8-4 shows that
Message Digest authentication is being used. If Null authentication is used, no authentication type or key
information will be displayed when show ip ospf interface  is invoked.

Authentication Key A 64-bit password if simple authentication has been enabled for the interface or a
message digest key if Cryptographic authentication is used. Example 8-4 shows that the "youngest key
ID" is 10. This alludes to the fact that Cryptographic authentication allows the configuration of multiple
keys on an interface to ensure smooth and secure key changes.

Example 8-5 shows an interface that is connected to an NBMA network. Notice that the HelloInterval is 30
seconds, the default for NBMA, and that the RouterDeadInterval is at the default of four times the HelloInterval.

Example 8-5. This interface is attached to a NBMA Frame Relay network and is the BDR for this
network.

Renoir#show ip ospf interface Serial3
Serial3 is up, line protocol is up
   Internet Address 192.168.16.41/30, Area 0
   Process ID 1, Router ID 192.168.30.105, Network Type NON_BROADCAST, Cost: 64
   Transmit Delay is 1 sec, State BDR, Priority 1
   Designated Router (ID) 192.168.30.210, Interface address 192.168.16.42
   Backup Designated router (ID) 192.168.30.105, Interface address 192.168.16.41
   Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5
      Hello due in 00:00:08
   Neighbor Count is 1, Adjacent neighbor count is 1
      Adjacent with neighbor 192.168.30.210 (Designated Router)

It is worthwhile to spend some time comparing Example 8-2 through Example 8-5. All four interfaces are on the
same router, yet on each network the router performs a different role. In each case, the interface state dictates
the role of the OSPF router on a network. The next section describes the various interface states and the
interface state machine.

Interface State Machine



An OSPF-enabled interface will transition through several states before it becomes fully functional. Those
states are Down, Point-to-Point, Waiting, DR, Backup, DRother, and Loopback.

Down This is the initial interface state. The interface is not functional, all interface parameters are set to
their initial values, and no protocol traffic is transmitted or received on the interface.

Point-to-Point This state is applicable only to interfaces connected to point-to-point, point-to-multipoint,
and virtual link network types. When an interface transitions to this state, it is fully functional. It will begin
sending Hello packets every HelloInterval and will attempt to establish an adjacency with the neighbor at
the other end of the link.

Waiting This state is applicable only to interfaces connected to broadcast and NBMA network types.
When an interface transitions to this state, it will begin sending and receiving Hello packets and will set
the wait timer. The router will attempt to identify the network's DR and BDR while in this state.

DR In this state, the router is the DR on the attached network and will establish adjacencies with the other
routers on the multi-access network.

Backup In this state, the router is the BDR on the attached network, and will establish adjacencies with
the other routers on the multi-access network.

DRother In this state, the router is neither the DR nor the BDR on the attached network. It will form
adjacencies only with the DR and BDR, although it will track all neighbors on the network.

Loopback In this state, the interface is looped back via software or hardware. Although packets cannot
transit an interface in this state, the interface address is still advertised in Router LSAs (described later)
so that test packets can find their way to the interface.

Figure 8-3 shows the OSPF interface states and the input events that will cause a state transition. The input
events are described in Table 8-1.

Figure 8-3. The OSPF interface state machine; see Table 8-1 for a description of input events (IEs).

[View full size image]

Table 8-1. Input events for the interface state machine.
Input
Event

Description

IE1 Lower-level protocols indicate that the network
interface is operational.

IE2 Lower-level protocols indicate that the network
interface is not operational.

IE3 Network management or lower-level protocols
indicate that the interface is looped up.

IE4 Network management or lower-level protocols



indicate that the interface is looped down.
IE5 A Hello packet is received in which either the

originating neighbor lists itself as the BDR or the
originating neighbor lists itself as the DR and
indicates no BDR.

IE6 The wait timer has expired.
IE7 The router is elected as the DR for this network.
IE8 The router is elected as the BDR for this

network.
IE9 The router has not been elected as the DR or

BDR for this network.
IE10 A change has occurred in the set of valid

neighbors on this network. This change may be
one of the following:

1. The establishment of two-way
communication with a neighbor

2. The loss of two-way communication with a
neighbor

3. The receipt of a Hello in which the
originating neighbor newly lists itself as the
DR or BDR

4. The receipt of a Hello from the DR in which
that router is no longer listed as the DR

5. The receipt of a Hello from the BDR in
which that router is no longer listed as the
BDR

6. The expiration of the RouterDeadInterval
without having received a Hello from the DR
or the BDR or both

OSPF Neighbors

The preceding section discussed a router's relationship with the attached data link. Although a router's
interaction with other routers was discussed in the context of electing DRs and BDRs, the purpose of the DR
election process is still to establish a relationship with a link. This section discusses a router's relationship with
the neighbors on the network. The ultimate purpose of the neighbor relationship is the formation of
adjacencies over which to pass routing information.

An adjacency is established in four general phases:

1. Neighbor discovery.

2. Bidirectional communication. This communication is accomplished when two neighbors list each other's
Router IDs in their Hello packets.

3. Database synchronization. Database Description, Link State Request, Link State Update, and Link State
Acknowledgement packets (described in a later section) are exchanged to ensure that both neighbors
have identical information in their link-state databases. For the purposes of this process, one neighbor will
become the master and the other will become the slave. As the name implies, the master will control the
exchange of Database Description packets.



4. Full adjacency.

As previously discussed, neighbor relationships are established and maintained through the exchange of Hello
packets. On broadcast and point-to-point network types, Hellos are multicast to AllSPFRouters (224.0.0.5). On
NBMA, point-to-multipoint, and virtual link network types, Hellos are unicast to individual neighbors. The
implication of unicasting is that the router must first learn of the existence of its neighbors either through
manual configuration or an underlying mechanism such as Inverse ARP. The configuration of neighbors on
these network types is covered in the appropriate sections.

Hellos are sent every HelloInterval on every network type, with one exception: On NBMA networks, a router
will send Hellos to neighbors whose neighbor state is down every PollInterval. On Cisco routers, the default
PollInterval is 120 seconds.

Neighbor Data Structure

An OSPF router builds the Hello packets for each network using the information stored in the interface data
structure of the attached interface. By sending the Hello packets containing this information, the router informs
neighbors about itself. Likewise, for each neighbor the router will maintain a neighbor data structure consisting
of the information learned from other routers' Hello packets.

In Example 8-6, the command show ip ospf neighbor is used to observe some of the information in the
neighbor data structure for a single neighbor.[10]

[10] Compare this usage with Example 8-1.

Example 8-6. An OSPF router describes each conversation with each neighbor by a neighbor data
structure.

Seurat#show ip ospf neighbor 10.7.0.1
 Neighbor 10.7.0.1, interface address 10.8.1.2
    In the area 0 via interface Ethernet0/0
    Neighbor priority is 1, State is FULL, 6 state changes
    DR is 10.8.1.1 BDR is 10.8.1.2
    Options is 0x52
    LLS Options is 0x1 (LR)
    Dead timer due in 00:00:30
    Neighbor is up for 09:55:04
    Index 1/3, retransmission queue length 0, number of retransmission 1
    First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
    Last retransmission scan length is 1, maximum is 1
    Last retransmission scan time is 0 msec, maximum is 0 msec

Actually, the data structure records more information about each neighbor than is shown in the example.[11]
The components of the neighbor data structure are as follows:

[11] And as with show ip ospf interface , you might see somewhat different information than what is
shown in Example 8-6 depending on what version of IOS you are running.

Neighbor ID The router ID of the neighbor. In Example 8-6, the neighbor ID is 10.7.0.1.

Neighbor IP Address The IP address of the neighbor's interface attached to the network. When OSPF
packets are unicasted to the neighbor, this address will be the destination address. In Example 8-6, the
neighbor's IP address is 10.8.1.2.

Area ID For two routers to become neighbors, the Area ID carried in a received Hello packet must match
the Area ID of the receiving interface. The Area ID of the neighbor in Example 8-6 is 0 (0.0.0.0).

Interface The interface attached to the network on which the neighbor is located. In Example 8-6, the
neighbor is reached via Ethernet0/0.



Neighbor Priority This component is the Router Priority of the neighbor, as advertised in the neighbor's
Hello packets. The priority is used in the DR/BDR election process. The neighbor in Example 8-6 has a
priority of 1, the Cisco default.

State This component is the router's view of the functional state of the neighbor, as described in the
following section, "Neighbor State Machine." The state of the neighbor in Example 8-6 is Full.

Designated Router This address is included in the DR field of the neighbor's Hello packets. The DR in
Example 8-6 is 10.8.1.1.

Backup Designated Router This address is included in the BDR field of the neighbor's Hello packets.
The BDR in Example 8-6 is 10.8.1.2.

PollInterval This value is recorded only for neighbors on NBMA networks. Because neighbors might not
be automatically discovered on NBMA networks, if the neighbor state is Down, a Hello will be sent to the
neighbor every PollIntervalsome period longer than the HelloInterval. The neighbor in Example 8-6 is on
an NBMA network, as indicated by the default Cisco PollInterval of 120 seconds.

Neighbor Options The optional OSPF capabilities supported by the neighbor. Options are discussed in
the section describing the Hello packet format. The value of the Options field in Example 8-6 is 0x52.

Inactivity Timer A timer whose period is the RouterDeadInterval, as defined in the interface data
structure. The timer is reset whenever a Hello is received from the neighbor. If the inactivity timer expires
before a Hello is heard from the neighbor, the neighbor is declared Down. In Example 8-6, the inactivity
timer is shown as the Dead Timer and will expire in 30 seconds.

Components of the neighbor data structure that are not displayed by the show ip ospf neighbor command
are as follows:

Master/Slave The master/slave relationship, negotiated with neighbors in the ExStart state, establishes
which neighbor will control the database synchronization.

DD Sequence Number The Sequence Number of the Database Description (DD) packet currently being
sent to the neighbor.

Last Received Database Description Packet The Initialize, More, and Master bits; the options; and the
sequence number of the last received Database Description packet are recorded. This information is
used to determine whether the next DD packet is a duplicate.

Link State Retransmission List This component is a list of LSAs that have been flooded on the
adjacency, but have not yet been acknowledged. The LSAs are retransmitted every RxmtInterval, as
defined in the interface data structure, until they are acknowledged or until the adjacency is destroyed.
While the display in Example 8-6 does not show the LS Retransmission List, it does show the number of
LSAs currently on the list ("retransmission queue length"), which is 0.

Database Summary List This component is the list of LSAs sent to the neighbor in Database
Description packets during database synchronization. These LSAs make up the link-state database when
the router goes into exchange state.

Link State Request List This list records LSAs from the neighbor's Database Description packets that
are more recent than the LSAs in the link-state database. Link State Request packets are sent to the
neighbor for copies of these LSAs; as the requested LSAs are received in Link State Update packets, the
Request List is depleted.

Neighbor State Machine

An OSPF router transitions a neighbor (as described in the neighbor data structure) through several states
before the neighbor is considered fully adjacent:

Down The initial state of a neighbor conversation indicates that no Hellos have been heard from the
neighbor in the last RouterDeadInterval. Hellos are not sent to down neighbors unless those neighbors
are on NBMA networks; in this case, Hellos are sent every PollInterval. If a neighbor transitions to the



Down state from some higher state, the link state Retransmission, Database Summary, and Link State
Request lists are cleared.

Attempt This state applies only to neighbors on NBMA networks, where neighbors are manually
configured. A DR-eligible router transitions a neighbor to the Attempt state when the interface to the
neighbor first becomes Active or when the router is the DR or BDR. A router sends packets to a neighbor
in Attempt state at the HelloInterval instead of the PollInterval.

Init This state indicates that a Hello packet has been seen from the neighbor in the last
RouterDeadInterval, but two-way communication has not yet been established. A router includes the
Router IDs of all neighbors in this state or higher in the Neighbor field of the Hello packets.

2-Way This state indicates that the router has seen its own Router ID in the Neighbor field of the
neighbor's Hello packets, which means that a bidirectional conversation has been established. On multi-
access networks, neighbors must be in this state or higher to be eligible to be elected as the DR or BDR.
The reception of a Database Description packet from a neighbor in the init state also causes a transition
to 2-Way.

ExStart In this state, the router and its neighbor establish a master/slave relationship and determine the
initial DD sequence number in preparation for the exchange of Database Description packets. The
neighbor with the highest Router ID becomes the master.

Exchange The router sends Database Description packets describing its entire link-state database to
neighbors that are in the Exchange state. The router may also send Link State Request packets,
requesting more recent LSAs, to neighbors in this state.

Loading The router sends Link State Request packets to neighbors that are in the Loading state,
requesting more recent LSAs that have been discovered in the Exchange state but have not yet been
received.

Full Neighbors in this state are fully adjacent, and the adjacencies appear in Router LSAs and Network
LSAs.

Figure 8-4 through Figure 8-6 show the OSPF neighbor states and the input events that cause a state
transition. The input events are described in Table 8-2, and the decision points are defined in Table 8-3. Figure
8-4 shows the normal progression from the least functional state to the fully functional state, and Figure 8-5
and Figure 8-6 show the complete OSPF neighbor state machine.

Figure 8-4. The normal series of transitions in the OSPF neighbor state machine that take a neighbor
from Down to Full.



Figure 8-5. The neighbor state machine, from Down to Init.

Figure 8-6. The neighbor state machine, from Init to Full.

[View full size image]

Table 8-2. Input events for Figure 8-4 through Figure 8-6.
Input
Event

Description

IE1 This event occurs only for NBMA-connected neighbors.
The input event will be triggered under either of the
following conditions:

1. The interface to the NBMA network first becomes
active, and the neighbor is eligible for DR election.

2. The router becomes either DR or BDR, and the
neighbor is not eligible for DR election.

IE2 A valid Hello packet has been received from the
neighbor.

IE3 The neighbor is no longer reachable, as determined by



the lower level protocols, by an explicit instruction from
the OSPF process itself, or by the expiration of the
inactivity timer.

IE4 The router first sees its own Router ID listed in the
Neighbor field of the neighbor's Hello packet or
receives a Database Description packet from the
neighbor.

IE5 The neighbor should not become adjacent.
IE6 This input event occurs under either of the following

conditions:

(1) The neighbor state first transitions to 2-Way.

(2) The interface state changes.
IE7 An adjacency should be formed with this neighbor.
IE8 The master/slave relationship has been established

and DD sequence numbers have been exchanged.
IE9 The exchange of Database Description packets has

been completed.
IE10 Entries exist in the Link State Request list.
IE11 The Link State Request list is empty.
IE12 The adjacency should be broken and then restarted.

This input event might be triggered by any of the
following:

(1) The reception of a Database Description packet
with an unexpected DD sequence number

(2) The reception of a Database Description packet
with the Options field set differently than the Options
field of the last DD packet

(3) The reception of a Database Description packet,
other than the first packet, in which the Init bit is set

(4) The reception of a Link State Request packet for an
LSA that is not in the database

IE13 A Hello packet has been received from the neighbor in
which the receiving router's Router ID is not listed in
the Neighbor field.

IE14 This event occurs when the interface state changes.
IE15 The existing or forming adjacency with this neighbor

should continue.
IE16 The existing or forming adjacency with this neighbor

should not continue.

Table 8-3. Decision points for Figure 8-4 and Figure 8-6.
Decision Description
DP1 Should an adjacency be established with the neighbor?

An adjacency should be formed if one or more of the
following conditions is true:

(1) The network type is point-to-point.



(2) The network type is point-to-multipoint.

(3) The network type is virtual link.

(4) The router is the DR for the network on which the
neighbor is located.

(5) The router is the BDR for the network on which the
neighbor is located.

(6) The neighbor is the DR.

(7) The neighbor is the BDR.
DP2 Is the Link State Request list for this neighbor empty?
DP3 Should the existing or forming adjacency with the

neighbor continue?

Building an Adjacency

Neighbors on point-to-point, point-to-multipoint, and virtual link networks always become adjacent unless the
parameters of their Hellos don't match. On broadcast and NBMA networks, the DR and BDR become adjacent
with all neighbors, but no adjacencies exist between DRothers.

The adjacency building process uses three OSPF packet types:

Database Description packets (type 2)

Link State Request packets (type 3)

Link State Update packets (type 4)

The formats of these packet types are described in detail in a subsequent section, "OSPF Packet Formats."

The Database Description packet is of particular importance to the adjacency-building process. As the name
implies, the packets carry a summary description of each LSA in the originating router's link-state database.
These descriptions are not the complete LSAs, but merely their headersenough information for the receiving
router to decide whether it has the latest copy of the LSA in its own database. In addition, three flags in the DD
packet are used to manage the adjacency building process:

The I-bit, or Initial bit, which when set indicates the first DD packet sent

The M-bit, or More bit, which when set indicates that this is not the last DD packet to be sent

The MS-bit, or Master/Slave bit, which is set in the DD packets originated by the master

When the master/slave negotiation begins in the ExStart state, both neighbors will claim to be the master by
sending an empty DD packet with the MS-bit set to one. The DD sequence number in these two packets will
be set to the originating router's idea of what the sequence number should be. The neighbor with the lower
Router ID will become the slave and will reply with a DD packet in which the MS-bit is zero and the DD
sequence number is set to the master's sequence number. This DD packet will be the first packet populated
with LSA summaries. When the master/slave negotiation is completed, the neighbor state transitions to
Exchange.

In the Exchange state, the neighbors synchronize their link-state databases by describing all entries in their
respective link-state databases. The Database Summary List is populated with the headers of all LSAs in the
router's database; Database Description packets containing the listed LSA headers are sent to the neighbor.

If either router sees that its neighbor has an LSA that is not in its own database, or that the neighbor has a
more recent copy of a known LSA, it places the LSA on the Link State Request list. It then sends a Link State
Request packet asking for a complete copy of the LSA in question. Link State Update packets convey the



requested LSAs. As the requested LSAs are received, they are removed from the Link State Request list.

All LSAs sent in Update packets must be individually acknowledged. Therefore, the transmitted LSAs are
entered into the Link State Retransmission list. As they are acknowledged, they are removed from the list. The
LSA may be acknowledged by one of two means:

Explicit Acknowledgment A Link State Acknowledgment packet containing the LSA header is received.

Implicit Acknowledgment An Update packet that contains the same instance of the LSA (neither LSA is
more recent than the other) is received.

The master controls the synchronization process and ensures that only one DD packet is outstanding at a
time. When the slave receives a DD packet from the master, the slave acknowledges the packet by sending a
DD packet with the same sequence number. If the master does not receive an acknowledgment of an
outstanding DD packet within the RxmtInterval, as specified in the interface data structure, the master sends a
new copy of the packet.

The slave sends DD packets only in response to DD packets it receives from the master. If the received DD
packet has a new sequence number, the slave sends a DD packet with the same sequence number. If the
received sequence number is the same as a previously acknowledged DD packet, the acknowledging packet
is re-sent.

When the database synchronization process is complete, one of two state transitions will occur:

If there are still entries of the Link State Request list, the router transitions the state of the neighbor to
Loading.

If the Link State Request list is empty, the router transitions the state of the neighbor to Full.

The master knows that the synchronization process is complete when it has sent all the DD packets necessary
to fully describe its link-state database and has received a DD packet with the M-bit set to zero. The slave
knows that the process is complete when it receives a DD packet with the M-bit set to zero and sends an
acknowledging DD packet that also has its M-bit set to zero (that is, the slave has fully described its own
database). Because the slave must acknowledge each received DD packet, the slave will always be the first to
know that the synchronization process is complete.

Figure 8-7 shows the adjacency-building process. This example is taken directly from RFC 2328.

Figure 8-7. The link-state database synchronization process and associated neighbor states.
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The following steps are illustrated in Figure 8-7:

1. RT1 becomes active on the multi-access network and sends a Hello packet. It has not yet heard from any
neighbors, so the Neighbor field of the packet is empty, and the DR and BDR fields are set to 0.0.0.0.

2. Upon reception of the Hello from RT1, RT2 creates a neighbor data structure for RT1 and sets RT1's
state to Init. RT2 sends a Hello packet with RT1's Router ID in the Neighbor field; as the DR, RT2 also
includes its own interface address in the DR field.

3. Seeing its Router ID in the received Hello packet (IE 4 in Table 8-2), RT1 creates a neighbor data
structure for RT2 and sets RT2's state to ExStart for the master/slave negotiation. It then generates an
empty (no LSA summaries) Database Description packet; the DD sequence number is set to x, the I-bit is
set to indicate that this is RT1's initial DD packet for this exchange, the M-bit is set to indicate that this is
not the last DD packet, and the MS-bit is set to indicate that RT1 is asserting itself as the master.

4. RT2 transitions RT1's state to ExStart upon reception of the DD packet. It then sends a responding DD
packet with a DD sequence number of y; RT2 has a higher router ID than RT1, so it sets the MS-bit. Like
the first DD packet, this one is used for the master/slave negotiation and therefore is empty.

5. Agreeing that RT2 is the master, RT1 transitions RT2's state to Exchange. RT1 will generate a DD packet
with RT2's DD sequence number of y and the MS = 0, indicating that RT1 is the slave. This packet will be
populated with LSA headers from RT1's Link State Summary list.

6. RT2 transitions its neighbor state to Exchange upon receipt of RT1's DD packet. It will send a DD packet
containing LSA headers from its Link State Summary list and will increment the DD sequence number to y
+ 1.

7. RT1 sends an acknowledging packet containing the same sequence number as in the DD packet that it
just received from RT2. The process continues, with RT2 sending a single DD packet and then waiting for
an acknowledging packet from RT1 containing the same sequence number before sending the next
packet. When RT2 sends the DD packet with the last of its LSA summaries, it sets M = 0.

8. Receiving this packet and knowing that the acknowledging packet it will send contains the last of its own
LSA summaries, RT1 knows the Exchange process is done. However, it has entries in its Link State
Request list; therefore, it will transition to Loading.

9. When RT2 receives RT1's last DD packet, RT2 transitions RT1's state to Full because it has no entries in
its Link State Request list.

10. RT1 sends Link State Request packets, and RT2 sends the requested LSAs in Link State Update
packets, until RT1's Link State Request list is empty. RT1 will then transition RT2's state to Full.

Note that if either router has entries in its Link State Request list, it does not need to wait for the Loading state
to send Link State Request packets; it may do so while the neighbor is still in the Exchange state.
Consequently, the synchronization process is not as tidy as depicted in Figure 8-7, but it is more efficient.

Figure 8-8 shows an analyzer capture of an adjacency being built between two routers. Although Link State
Request and Link State Update packets are being sent while both neighbors are still in the Exchange state,
attention to the I-, M-, and MS-bits and the sequence numbers reveals that the real-life process follows the
generic procedure of Figure 8-7.

Figure 8-8. This analyzer capture shows an adjacency being built.

[View full size image]



In Example 8-7, the output of the command debug ip ospf adj shows the adjacency of Figure 8-8 being built
from the perspective of one of the routers (router ID 192.168.30.175).

Example 8-7. This debug output shows the adjacency events of Figure 8-8 from the perspective of
one of the routers.

Degas#debug ip ospf adj
OSPF adjacency events debugging is on
OSPF: Rcv DBD from 192.168.30.70 on Ethernet0 seq 0x20E0 opt 0x2 flag 0x7 len 32
state INIT
OSPF: 2 Way Communication to 192.168.30.70 on Ethernet0,
  state 2WAY
OSPF: Neighbor change Event on interface Ethernet0
OSPF: DR/BDR election on Ethernet0
OSPF: Elect BDR 192.168.30.70
OSPF: Elect DR 192.168.30.175
   DR: 192.168.30.175 (Id) BDR: 192.168.30.70 (Id)
OSPF: Send DBD to 192.168.30.70 on Ethernet0 seq 0xB17 opt 0x2 flag 0x7 len 32
OSPF: First DBD and we are not SLAVE
OSPF: Rcv DBD from 192.168.30.70 on Ethernet0 seq 0xB17 opt 0x2 flag 0x2 len 92
state EXSTART
OSPF: NBR Negotiation Done. We are the MASTER
OSPF: Send DBD to 192.168.30.70 on Ethernet0 seq 0xB18 opt 0x2 flag 0x3 len 72
OSPF: Database request to 192.168.30.70
OSPF: Rcv DBD from 192.168.30.70 on Ethernet0 seq 0xB18 opt 0x2 flag 0x0 len 32
state EXCHANGE
OSPF: Send DBD to 192.168.30.70 on Ethernet0 seq 0xB19 opt 0x2 flag 0x1 len 32
OSPF: Rcv DBD from 192.168.30.70 on Ethernet0 seq 0xB19 opt 0x2 flag 0x0 len 32
state EXCHANGE
OSPF: Exchange Done with 192.168.30.70 on Ethernet0
OSPF: Synchronized with 192.168.30.70 on Ethernet0,
state FULL

At the end of the synchronization process in Figure 8-8, a series of Link State Update and Link State
Acknowledgment packets can be observed. These are part of the LSA flooding process, discussed in the next
section.

Flooding

The entire OSPF topology can be depicted as a group of routers, or nodes, interconnected not by physical



links but by logical adjacencies (Figure 8-9). For the nodes to route properly over this logical topology, each
node must possess an identical map of the topology. This map is the topological database.

Figure 8-9. A group of routers interconnected by data links will be viewed by OSPF as a group of
nodes interconnected by adjacencies.

The OSPF topological database is better known as the link-state database. This database consists of all the
LSAs the router has received. A change in the topology is represented as a change in one or more of the
LSAs. Flooding is the process by which these changed or new LSAs are sent throughout the network, to
ensure that the database of every node is updated and remains identical to all other nodes' databases.

Flooding makes use of the following two OSPF packet types:

Link State Update packets (type 4)

Link State Acknowledgment packets (type 5)

As Figure 8-10 shows, each Link State Update and Acknowledgment packet may carry multiple LSAs. Although
the LSAs themselves are flooded throughout the area, the Update and Acknowledgment packets travel only
between two nodes across an adjacency.

Figure 8-10. LSAs are sent across adjacencies within link-state update packets.

On point-to-point networks, updates are sent to the multicast address AllSPFRouters (224.0.0.5). On point-to-
multipoint and virtual link networks, updates are unicasted to the interface addresses of the adjacent
neighbors.

On broadcast networks, DRothers form adjacencies only with the DR and BDR. Therefore, updates are sent to
the address AllDRouters (224.0.0.6). The DR in turn multicasts an Update packet containing the LSA to all
adjacent routers on the network using the address AllSPFRouters. All routers then flood the LSA out all other
interfaces (Figure 8-11). Although the BDR hears and records LSAs multicast from DRothers, it does not



reflood or acknowledge them unless the DR fails to do so. The same DR/BDR functionality exists on NBMA
networks, except that LSAs are unicast from DRothers to the DR and BDR, and the DR unicasts a copy of the
LSA to all adjacent neighbors.

Figure 8-11. On a broadcast network, a DRother sends an LSA only to the DR and BDR (a); the DR
refloods the LSA to all adjacent neighbors (b); all routers then flood the LSA on all other interfaces

(c).

Because identical link-state databases are essential to correct OSPF operation, flooding must be reliable.
Transmitting routers must know that their LSAs were received successfully, and receiving routers must know
that they are accepting the correct LSAs.

Reliable Flooding: Acknowledgments

Each individual transmitted LSA must be acknowledged. This may be accomplished by either an implicit
acknowledgment or an explicit acknowledgment.

A neighbor can implicitly acknowledge the receipt of an LSA by including a duplicate of the LSA in an update
back to the originator. Implicit acknowledgments are more efficient than explicit acknowledgments in some
situations, such as when the neighbor was intending to send an update to the originator anyway.

A neighbor explicitly acknowledges the receipt of an LSA by sending a Link State Acknowledgment packet. A
single Link State Acknowledgment packet is capable of acknowledging multiple LSAs. The packet carries only
LSA headersenough to completely identify the LSAnot the complete LSA.

When a router first sends an LSA, a copy of the LSA is entered into the Link State Retransmission list of every
neighbor to which it was sent. The LSA is retransmitted every RxmtInterval until it is acknowledged or until the
adjacency is broken. The Link State Update packets containing retransmissions are always unicast, regardless
of the network type.



Acknowledgments might be either delayed or direct. By delaying an acknowledgment, more LSAs can be
acknowledged in a single Link State Acknowledgment packet; on a broadcast network, LSAs from multiple
neighbors can be acknowledged in a single multicast Link State Acknowledgment packet. The period by which
an acknowledgment is delayed must be less than the RxmtInterval to prevent unnecessary retransmissions.
Under normal circumstances, the unicast/multicast addressing conventions used for Link State Update packets
on various network types also apply to Link State Acknowledgments.

Direct acknowledgments are always sent immediately and are always unicast. Direct acknowledgments are
sent whenever the following conditions occur:

A duplicate LSA is received from a neighbor, possibly indicating that it has not yet received an
acknowledgment.

The LSA's age is MaxAge (described in the next section), and there is no instance of the LSA in the
receiving router's link-state database.

Reliable Flooding: Sequencing, Checksums, and Aging

Each LSA contains three values that are used to ensure that the most recent copy of the LSA exists in every
database. These values are sequence number, checksum, and age.

OSPF uses a 32-bit signed, linear sequence number space (discussed in Chapter 4, "Dynamic Routing
Protocols") ranging from InitialSequenceNumber (0x80000001) to MaxSequenceNumber (0x7fffffff). When a
router originates an LSA, the router sets the LSA's sequence number to InitialSequenceNumber. Each time the
router produces a new instance of the LSA, the router increments the sequence number by one.

If the present sequence number is MaxSequenceNumber and a new instance of the LSA must be created, the
router must first flush the old LSA from all databases. This is done by setting the age of the existing LSA to
MaxAge (defined later in this section) and reflooding it over all adjacencies. As soon as all adjacent neighbors
have acknowledged the prematurely aged LSA, the new instance of the LSA with a sequence number of
InitialSequenceNumber may be flooded.

The checksum is a 16-bit integer calculated using a Fletcher algorithm.[12] The checksum is calculated over
the entire LSA with the exception of the Age field (which changes as the LSA passes from node to node and
would therefore require recalculation of the checksum at each node). The checksum of each LSA is also
verified every five minutes as it resides in the link-state database, to ensure that it has not been corrupted in
the database.

[12] Alex McKenzie, "ISO Transport Protocol Specification ISO DP 8073," RFC 905, April 1984,
Annex B.

The age is an unsigned 16-bit integer that indicates the age of the LSA in seconds. The range is 0 to 3600
(one hour, known as MaxAge). When a router originates an LSA, the router sets the age to 0. As the flooded
LSA transits a router, the age is incremented by a number of seconds specified by InfTransDelay. Cisco
routers have a default InfTransDelay of one second, which can be changed with the command ip ospf
transmit-delay. The age is also incremented as it resides in the database.

When an LSA reaches MaxAge, the LSA is reflooded and then flushed from the database. When a router
needs to flush an LSA from all databases, it prematurely sets the age to MaxAge and refloods it. Only the
router that originated the LSA can prematurely age it.

Example 8-8 shows a portion of a link-state database; the age, sequence number, and checksum of each LSA
can be observed. More detailed discussion of the database and the various LSA types is in "Link-State
Database," later in this chapter.

Example 8-8. The age, sequence number, and checksum for each LSA are recorded in the link-state
database. The age is incremented in seconds.

Manet#show ip ospf database
       OSPF Router with ID (192.168.30.43) (Process ID 1)
                   Router Link States (Area 3)



Link ID        ADV Router     Age   Seq#        Checksum Link Count
192.168.30.13  192.168.30.13  910   0x80000F29  0xA94E   2
192.168.30.23  192.168.30.23  1334  0x80000F55  0x8D53   3
192.168.30.30  192.168.30.30  327   0x800011CA  0x523    8
192.168.30.33  192.168.30.33  70    0x80000AF4  0x94DD   3
192.168.30.43  192.168.30.43  1697  0x80000F2F  0x1DA1   2

When multiple instances of the same LSA are received, a router determines which is the most recent by the
following algorithm:

1. Compare the sequence numbers. The LSA with the highest sequence number is more recent.

2. If the sequence numbers are equal, then compare the checksums. The LSA with the highest unsigned
checksum is the more recent.

3. If the checksums are equal, then compare the age. If only one of the LSAs has an age of MaxAge (3600
seconds), it is considered the more recent.

4. If the ages of the LSAs differ by more than 15 minutes (known as MaxAgeDiff), the LSA with the lower age
is more recent.

5. If none of the preceding conditions are met, the two LSAs are considered identical.

Areas

The reader should by now have a good feel for why OSPF, with its multiple databases and complex algorithms,
can put greater demands on the memory and processors of a router than the previously examined protocols
can. As a network grows, these demands can become significant or even crippling. And although flooding is
more efficient than the periodic, full-table updates of RIP, it can still place an unacceptable burden on the data
links of a large network. Contrary to popular belief, the SPF algorithm itself is not particularly processor-
intensive. Rather, the related processes, such as flooding and database maintenance, burden the CPU.

OSPF uses areas to reduce these adverse effects. In the context of OSPF, an area is a logical grouping of
OSPF routers and links that effectively divide an OSPF domain into sub-domains (Figure 8-12). Routers within
an area will have no detailed knowledge of the topology outside of their area. Because of this condition

A router must share an identical link-state database only with the other routers in its area, not with the
entire OSPF domain. The reduced size of the database reduces the impact on a router's memory.

The smaller link-state databases mean fewer LSAs to process and therefore less impact on the CPU.

Because the link-state database must be maintained only within an area, most flooding is also limited to
the area.

Figure 8-12. An OSPF area is a logical grouping of OSPF routers. Each area is described by its own
link-state database, and each router must maintain a database only for the area to which it belongs.



Areas are identified by a 32-bit Area ID. As Figure 8-12 shows, the Area ID may be expressed either as a
decimal number or in dotted decimal, and the two formats may be used together on Cisco routers. The choice
usually depends on which format is more convenient for identifying the particular Area ID. For example, area 0
and area 0.0.0.0 are equivalent, as are area 16 and area 0.0.0.16, and area 271 and area 0.0.1.15. In each of
these cases, the decimal format would probably be preferred. However, given the choice of area 3232243229
and area 192.168.30.29, the latter would probably be chosen.

Three types of traffic may be defined in relation to areas:

Intra-area traffic consists of packets that are passed between routers within a single area.

Inter-area traffic consists of packets that are passed between routers in different areas.

External traffic consists of packets that are passed between a router within the OSPF domain and a
router within another routing domain.

Area ID 0 (or 0.0.0.0) is reserved for the backbone. The backbone is responsible for summarizing the
topologies of each area to every other area. For this reason, all inter-area traffic must pass through the
backbone; non-backbone areas cannot exchange packets directly.

Many OSPF designers have a favorite rule of thumb concerning the maximum number of routers that an area
can handle. This number might range from 30 to 200. However, the number of routers has little actual bearing
on the maximum size of an area. Far more important factors include the number of links in an area, the stability
of the topology, the memory and horsepower of the routers, the use of summarization, and the number of
summary LSAs entering the area. Because of these factors, 25 routers might be too many for some areas, and
other areas might accommodate well over 500 routers.

It is perfectly reasonable to design a small OSPF network with only a single area. Regardless of number of
areas, a potential problem arises when an area is so underpopulated that no redundant links exist within it. If
such an area becomes partitioned, service disruptions might occur. Partitioned areas are discussed in more
detail in a later section.

Router Types

Routers, like traffic, can be categorized in relation to areas. All OSPF routers will be one of four router types,
as shown in Figure 8-13:

Internal Routers are routers whose interfaces all belong to the same area. These routers have a single
link-state database.

Area Border Routers (ABRs) connect one or more areas to the backbone and act as a gateway for
inter-area traffic. An ABR always has at least one interface that belongs to the backbone, and must



maintain a separate link-state database for each of its connected areas. For this reason, ABRs often have
more memory and perhaps more powerful processors than internal routers. An ABR summarizes the
topological information of its attached areas into the backbone, which then propagates the summary
information to the other areas.

Figure 8-13. All OSPF routers can be classified as an Internal Router, a Backbone Router, an Area
Border Router (ABR), or an Autonomous System Boundary Router (ASBR). Note that any of the

first three router types might also be an ASBR.

[View full size image]

Backbone Routers are routers with at least one interface attached to the backbone. Although this
requirement means that ABRs are also Backbone Routers, Figure 8-13 shows that not all Backbone
Routers are ABRs. An Internal Router whose interfaces all belong to area 0 is also a Backbone Router.

Autonomous System Boundary Routers (ASBRs) are gateways for external traffic, injecting routes
into the OSPF domain that were learned (redistributed) from some other protocol, such as the BGP and
EIGRP processes shown in Figure 8-13. An ASBR can be located anywhere within the OSPF autonomous
system except within stub areas; it may be an Internal, Backbone, or ABR.

Partitioned Areas

A partitioned area is an area in which a link failure causes one part of the area to become isolated from
another. If a non-backbone area becomes partitioned and if all routers on either side of the partition can still
find an ABR, as in Figure 8-14, no service disruptions will occur. The backbone merely treats the partitioned
area as two separate areas. Intra-area traffic from one side of the partition to the other side will become inter-
area traffic, passing through the backbone to circumvent the partition. Note that a partitioned area is not the
same as an isolated area, in which no path exists to the rest of the OSPF domain.

Figure 8-14. (a) Area 3 is connected to the backbone (area 0) by two ABRs. (b) A link failure in area 3
creates a partitioned area, but all routers within area 3 can still reach an ABR. In these
circumstances, traffic can still be routed between the two sides of the partitioned area.



A partition of the backbone itself is a more serious matter. As Figure 8-15 shows, a partitioned backbone area
isolates the areas on each side of the partition, creating two separate OSPF domains.

Figure 8-15. If a backbone becomes partitioned, each side of the partition and any connected areas
become isolated from the other side.

Figure 8-16 shows some better area designs. Both area 0 and area 2 are designed so that neither of them can
be partitioned by a single link failure. The vulnerability of area 2, however, is that if the ABR fails, the area will
be isolated. Area 3 uses two ABRs; here, neither a single link failure nor a single ABR failure can isolate any
part of the area.

Figure 8-16. In areas 0 and 2, no single link failure can partition the area. In area 3, no single ABR or
link failure can isolate the area.



Virtual Links

A virtual link is a link to the backbone through a non-backbone area. Virtual links are used for the following
purposes:

1. To link an area to the backbone through a non-backbone area (Figure 8-17)

Figure 8-17. A virtual link connects area 23 to the backbone through area 12.

2. To connect the two parts of a partitioned backbone through a nonbackbone area (Figure 8-18)

Figure 8-18. A virtual link reconnects a partitioned backbone through a nonbackbone area.

In both examples, the virtual link is not associated with a particular physical link. The virtual link is a tunnel
through which packets may be routed on the optimal path from one endpoint to the other.

Several rules are associated with the configuration of virtual links:

Virtual links must be configured between two ABRs.

The area through which the virtual link is configured, known as the transit area, must have full routing



information.

The transit area cannot be a stub area.

As mentioned previously, OSPF classifies a virtual link as a network type. Specifically, the link is considered an
unnumberedthat is, unaddressedlink, belonging to the backbone, between two ABRs. These ABRs are
considered neighbors by virtue of the virtual link between them, although they are not linked physically. Within
each ABR, the virtual link will transition to the fully functional point-to-point interface state when a route to the
neighboring ABR is found in the route table. The cost of the link is the cost of the route to the neighbor. When
the interface state becomes point-to-point, an adjacency is established across the virtual link.

Virtual links add a layer of complexity and troubleshooting difficulty to any network. It is best to avoid the need
for them by ensuring that areas, particularly backbone areas, are designed with redundant links to prevent
partitioning. When two or more networks are merged, sufficient planning should take place beforehand so that
no area is left without a direct link to the backbone.

If a virtual link is configured, it should be used only as a temporary fix to an unavoidable topology problem. A
virtual link is a flag marking a part of the network that needs to be reengineered. Permanent virtual links are
virtually always a sign of a poorly designed network.

Link-State Database

All valid LSAs received by a router are stored in its link-state database. The collected LSAs will describe a
graph of the area topology. Because each router in an area calculates its shortest path tree from this
database, it is imperative for accurate routing that all area databases are identical.

A list of the LSAs in a link-state database can be observed with the command show ip ospf database , as
shown in Example 8-9. This list does not show all of the information stored for each LSA, but shows only the
information in the LSA header. Note that this database contains LSAs from multiple areas, indicating that the
router is an ABR.

Example 8-9. The command show ip ospf database  displays a list of all LSAs in the link-state
database.

Homer#show ip ospf database
OSPF Router with ID (192.168.30.50) (Process ID 1)

                   Router Link States (Area 0)

Link ID            ADV Router      Age   Seq#        Checksum   Link count
192.168.30.10      192.168.30.10   1010  0x80001416  0xA818     3
192.168.30.20      192.168.30.20   677   0x800013C9  0xDE18     3
192.168.30.70      192.168.30.70   857   0x80001448  0xFD79     3
192.168.30.80      192.168.30.80   1010  0x800014D1  0xEB5C     5

                   Net Link States (Area 0)

Link ID            ADV Router      Age   Seq#        Checksum
192.168.17.18     192.168.30.20    677   0x800001AD  0x849A
192.168.17.34     192.168.30.60    695   0x800003E2  0x4619
192.168.17.58     192.168.30.40    579   0x8000113C  0xF0D
192.168.17.73     192.168.30.70    857   0x8000044F  0xB0E7

                   Summary Net Link States (Area 0)

Link ID            ADV Router      Age   Seq#        Checksum
172.16.121.0       192.168.30.60   421   0x8000009F  0xD52
172.16.121.0       192.168.30.70   656   0x8000037F  0x86A
10.63.65.0         192.168.30.10   983   0x80000004  0x1EAA
10.63.65.0         192.168.30.80   962   0x80000004  0x780A

                   Summary ASB Link States (Area 0)



Link ID            ADV Router      Age   Seq#        Checksum
192.168.30.12      192.168.30.20   584   0x80000005  0xFC4C
192.168.30.12      192.168.30.30   56    0x80000004  0x45BA
172.20.57.254      192.168.30.70   664   0x800000CE  0xF2CF
172.20.57.254      192.168.30.80   963   0x80000295  0x23CC

                   Router Link States (Area 4)

Link ID            ADV Router      Age   Seq#         Checksum   Link count
192.168.30.14     192.168.30.14   311   0x80000EA5   0x93A0     7
192.168.30.24     192.168.30.24   685   0x80001333   0x6F56     6
192.168.30.50     192.168.30.50   116   0x80001056   0x42BF     2
192.168.30.54     192.168.30.54   1213  0x80000D1F   0x3385     2

                   Summary Net Link States (Area 4)

Link ID            ADV Router      Age   Seq#        Checksum
172.16.121.0       192.168.30.40   1231  0x80000D88  0x73BF
172.16.121.0       192.168.30.50   34    0x800003F4  0xF90D
10.63.65.0         192.168.30.40   1240  0x80000003  0x5110
10.63.65.0         192.168.30.50   42    0x80000005  0x1144

                   Summary ASB Link States (Area 4)

Link ID            ADV Router      Age   Seq#        Checksum
192.168.30.12      192.168.30.40   1240  0x80000006  0x6980
192.168.30.12      192.168.30.50   42    0x80000008  0xC423
172.20.57.254      192.168.30.40   1241  0x8000029B  0xEED8
172.20.57.254      192.168.30.50   43    0x800002A8  0x9818

                   AS External Link States

Link ID            ADV Router      Age   Seq#        Checksum   Tag
10.83.10.0         192.168.30.60   459   0x80000D49  0x9C0B     0
10.1.27.0          192.168.30.62   785   0x800000EB  0xB5CE     0
10.22.85.0         192.168.30.70   902   0x8000037D  0x1EC0     65502
10.22.85.0         192.168.30.80   1056  0x800001F7  0x6B4B     65502
Homer#

Most of the entries in Example 8-9 have been deleted for brevity; the actual link-state database contains 1,445
entries and four areas, as shown in Example 8-10.

Example 8-10. The command show ip ospf database database-summary  displays the number of
LSAs in a link-state database by area and by LSA type.

Homer#show ip ospf database database-summary
            OSPF Router with ID (192.168.30.50) (Process ID 1)

Area ID        Router  Network  Sum-Net  Sum-ASBR  Subtotal  Delete  Maxage
0              8       4        185      27        224       0       0
4              7       0        216      26        249       0       0
5              7       0        107      13        127       0       0
56             2       1        236      26        265       0       0
AS External                                        580       0       0
Total          24      5        744      92        1445
Homer#

As mentioned earlier in "Reliable Flooding: Sequencing, Checksums, and Aging," the LSAs are aged as they
reside in the link-state database. If they reach MaxAge (1 hour), they are flushed from the OSPF domain. The
implication here is that there must be a mechanism for preventing legitimate LSAs from reaching MaxAge and



being flushed. This mechanism is the link-state refresh. Every 30 minutes, known as the LSRefreshTime, the
router that originated the LSA floods a new copy of the LSA with an incremented sequence number and an
age of zero. Upon receipt, the other OSPF routers replace the old copy of the LSA and begin aging the new
copy.

So the link-state refresh process can be thought of as a keepalive for each LSA. An additional benefit is that
any LSAs that might have become corrupted in a router's LS database are replaced with the refreshed copy of
the legitimate LSA.

The idea behind associating an individual refresh timer with each LSA is that the LSRefreshTime of the LSAs
do not expire all at once, reflooding all LSAs every 30 minutes. Instead, the reflooding is spread out in a semi-
random pattern. The problem with this approach is that with each individual LSA being reflooded as its
LSRefreshTime expires, bandwidth is used inefficiently. Update packets can be transmitted with only a few, or
even a single, LSA.

Prior to IOS 11.3, Cisco chose to have a single LSRefreshTime associated with the entire LS database. Every
30 minutes, each router refreshes all of the LSAs it originated, regardless of their actual age. Although this
strategy avoids the problem of inefficiency, it reintroduces the problem the individual refresh timers were meant
to solve. If the LS database is large, each router can create spikes in the area traffic and CPU usage every
half hour.

Therefore a mechanism known as LSA group pacing  was introduced to reach a compromise between the
problems of individual refresh timers and a single monolithic timer. Each LSA has its own refresh timer, but as
the individual refresh timers expire, a delay is introduced before the LSAs are flooded. By delaying the refresh,
more LSAs can be grouped together before being flooded, so that Update packets are carrying a larger
number of LSAs. By default, the group-pacing interval is 240 seconds (4 minutes). Depending on the IOS
version, the default can be changed with either timers lsa-group-pacing or timers pacing lsa-group.[13] If
the database is very large (10,000 or more LSAs), decreasing the group pacing interval is beneficial; if the
database is small, increasing the interval might be useful. The range of the group pacing timer is 10 to 1800
seconds.

[13] Group pacing was introduced in IOS 11.3AA with the command timers lsa-group-pacing;
beginning with IOS 12.2(4)T, the command changed to timers pacing lsa-group.

LSA Types

Because of the multiple router types defined by OSPF, multiple types of LSA are also necessary. For example,
a DR must advertise the multi-access link and all the routers attached to the link. Other router types would not
advertise this type of information. Both Example 8-9 and Example 8-10 show that there are multiple types of
LSAs. Each type describes a different aspect of an OSPF network. Table 8-4 lists the LSA types and the type
codes that identify them.

Table 8-4. LSA types.
Type
Code

Description

1 Router LSA
2 Network LSA
3 Network Summary LSA
4 ASBR Summary LSA
5 AS External LSA
6 Group Membership LSA
7 NSSA External LSA
8 External Attributes LSA
9 Opaque LSA (link-local scope)
10 Opaque LSA (area-local scope)
11 Opaque LSA (AS scope)



Router LSAs  are produced by every router (Figure 8-19). This most fundamental LSA lists all of a router's
links, or interfaces, the state and outgoing cost of each link, and any known OSPF neighbors on the link.
These LSAs are flooded only within the area in which they are originated. The command show ip ospf
database router will list all of the Router LSAs in a database. Example 8-11 shows a variant of the command,
in which a single router LSA is observed by specifying the router's ID. As this and the subsequent illustrations
show, the complete LSA is recorded in the link-state database. For a description of all the LSA fields, see the
"OSPF Packet Formats" section later in this chapter.

Figure 8-19. The Router LSA describes all of a router's interfaces.

Example 8-11. The command show ip ospf database router  displays Router LSAs from the link-state
database.

Homer#show ip ospf database router 192.168.30.10
      OSPF Router with ID (192.168.30.50) (Process ID 1)

                    Router Link States (Area 0)

Routing Bit Set on this LSA
LS age: 680
Options: (No TOS-capability)
LS Type: Router Links
Link State ID: 192.168.30.10
Advertising Router: 192.168.30.10
LS Seq Number: 80001428
Checksum: 0x842A
Length: 60
Area Border Router
 Number of Links: 3

  Link connected to: another Router (point-to-point)
   (Link ID) Neighboring Router ID: 192.168.30.80
   (Link Data) Router Interface address: 192.168.17.9
    Number of TOS metrics: 0
     TOS 0 Metrics: 64

  Link connected to: a Stub Network
   (Link ID) Network/subnet number: 192.168.17.8
   (Link Data) Network Mask: 255.255.255.248



    Number of TOS metrics: 0
     TOS 0 Metrics: 64

  Link connected to: a Transit Network
   (Link ID) Designated Router address: 192.168.17.18
   (Link Data) Router Interface address: 192.168.17.17
    Number of TOS metrics: 0
     TOS 0 Metrics: 10

Homer#

One line you will notice in Example 8-11 and in several subsequent LSA displays is the statement "Routing Bit
Set on this LSA." The routing bit is not a part of the LSA itself; it is an internal maintenance bit used by IOS
indicating that the route to the destination advertised by this LSA is valid. So when you see "Routing Bit Set on
this LSA," it means that the route to this destination is in the routing table.

Network LSAs are produced by the DR on every multi-access network (Figure 8-20). As discussed earlier, the
DR represents the multi-access network and all attached routers as a pseudonode, or a single virtual router. In
this sense, a Network LSA represents a pseudonode just as a Router LSA represents a single physical router.
The Network LSA lists all attached routers, including the DR itself. Like Router LSAs, Network LSAs are
flooded only within the originating area. In Example 8-12, the command show ip ospf database network is
used to observe a Network LSA.

Figure 8-20. A DR originates a Network LSA to represent a multi-access network and all attached
routers.

Example 8-12. Network LSAs can be observed with the command show ip ospf database network .

Homer#show ip ospf database network 192.168.17.18
       OSPF Router with ID (192.168.30.50) (Process ID 1)

                    Net Link States (Area 0)

Routing Bit Set on this LSA
LS age: 244



Options: (No TOS-capability)
LS Type: Network Links
Link State ID: 192.168.17.18 (address of Designated Router)
Advertising Router: 192.168.30.20
LS Seq Number: 800001BF
Checksum: 0x60AC
Length: 32
Network Mask: /29
      Attached Router: 192.168.30.20
      Attached Router: 192.168.30.10
      Attached Router: 192.168.30.30

Homer#

Notice that unlike the Router LSA, there is no metric field in the Network LSA. This is because, as explained
earlier in this chapter, the cost from the pseudonode represented by the LSA to any attached router is always
0.

Network Summary LSAs are originated by ABRs. They are sent into a single area to advertise destinations
outside that area (Figure 8-21). In effect, these LSAs are the means by which an ABR tells the internal routers
of an attached area what destinations the ABR can reach. An ABR also advertises the destinations within its
attached areas into the backbone with Network Summary LSAs. Default routes external to the area, but
internal to the OSPF autonomous system, are also advertised by this LSA type. The command show ip ospf
database summary is used to display the network summary LSAs in the database, as shown in Example 8-
13.

Figure 8-21. An ABR will originate a Network Summary LSA to describe inter-area destinations.

Example 8-13. Network Summary LSAs can be observed with the command show ip ospf database
summary.

Homer#show ip ospf database summary 172.16.121.0
       OSPF Router with ID (192.168.30.50) (Process ID 1)

                    Summary Net Link States (Area 0)

Routing Bit Set on this LSA
LS age: 214
Options: (No TOS-capability)
LS Type: Summary Links(Network)
Link State ID: 172.16.121.0 (summary Network Number)
Advertising Router: 192.168.30.60
LS Seq Number: 800000B1
Checksum: 0xE864
Length: 28



Network Mask: /24
   TOS: 0 Metric: 791

When an ABR originates a Network Summary LSA, it includes the cost from itself to the destination the LSA is
advertising. The ABR will originate only a single Network Summary LSA for each destination even if it knows of
multiple routes to the destination. Therefore, if an ABR knows of multiple routes to a destination within its own
attached area, it originates a single Network Summary LSA into the backbone with the lowest cost of the
multiple routes. Likewise, if an ABR receives multiple Network Summary LSAs from other ABRs across the
backbone, the original ABR will choose the lowest cost advertised in the LSAs and advertise that one cost into
its attached non-backbone areas.

When another router receives a Network Summary LSA from an ABR, it does not run the SPF algorithm.
Rather, it simply adds the cost of the route to the ABR and the cost included in the LSA. A route to the
advertised destination, via the ABR, is entered into the route table along with the calculated cost. This
behaviordepending on an intermediate router instead of determining the full route to the destinationis distance
vector behavior. So, while OSPF is a link-state protocol within an area, it uses a distance vector algorithm to
find inter-area routes.[14]

[14] This distance vector behavior is the reason for requiring a backbone area and requiring that all
inter-area traffic pass through the backbone. By forming the areas into what is essentially a hub-and-
spoke topology, the route loops to which distance vector protocols are prone are avoided.

ASBR Summary LSAs are also originated by ABRs. ASBR Summary LSAs are identical to Network Summary
LSAs except that the destination they advertise is an ASBR (Figure 8-22), not a network. The command show
ip ospf database asbr-summary is used to display ASBR Summary LSAs (Example 8-14). Note in the
illustration that the destination is a host address, and the mask is zero; the destination advertised by an ASBR
Summary LSA will always be a host address because it is a route to a router.

Figure 8-22. ASBR Summary LSAs advertise routes to ASBRs.

Example 8-14. ASBR Summary LSAs can be observed with the command show ip ospf database
asbr-summary.

Homer#show ip ospf database asbr-summary
       OSPF Router with ID (192.168.30.50) (Process ID 1)

                    Summary ASB Link States (Area 0)

Routing Bit Set on this LSA
LS age: 1640
Options: (No TOS-capability)
LS Type: Summary Links (AS Boundary Router)
Link State ID: 192.168.30.12 (AS Boundary Router address)



Advertising Router: 192.168.30.20
LS Seq Number: 80000009
Checksum: 0xF450
Length: 28
Network Mask: /0
   TOS: 0 Metric: 64
--More-

Autonomous System External LSAs, or External LSAs, are originated by ASBRs. They advertise either a
destination external to the OSPF autonomous system, or a default route[15] external to the OSPF autonomous
system (Figure 8-23). Referring back to Example 8-9, you can see that the AS External LSAs are the only LSA
types in the database that are not associated with a particular area; external LSAs are flooded throughout the
autonomous system. The command show ip ospf database external displays AS External LSAs (Example 8-
15).

[15] Default routes are routes that are chosen if no more specific route exists in the route table.
OSPF and RIP use an IP address of 0.0.0.0 to identify a default route. See Chapter 12, "Default
Routes and On-Demand Routing" for more information.

Figure 8-23. AS External LSAs advertise destinations external to the OSPF autonomous system.

Example 8-15. AS External LSAs can be observed with the command show ip ospf database external .

Homer#show ip ospf database external 10.83.10.0
       OSPF Router with ID (192.168.30.50) (Process ID 1)

                    AS External Link States

Routing Bit Set on this LSA
LS age: 1680
Options: (No TOS-capability)
LS Type: AS External Link
Link State ID: 10.83.10.0 (External Network Number)
Advertising Router: 192.168.30.60
LS Seq Number: 80000D5A
Checksum: 0x7A1C
Length: 36
Network Mask: /24
      Metric Type: 1 (Comparable directly to link state metric)
      TOS: 0



      Metric: 10
      Forward Address: 172.20.57.254
      External Route Tag: 0
Homer#

Group Membership LSAs are used in an enhancement of OSPF known as Multicast OSPF  (MOSPF).[16]
MOSPF routes packets from a single source to multiple destinations, or group members, which share a class D
multicast address. Although Cisco supports other multicast routing protocols, MOSPF is not supported as of
this writing. For this reason, neither MOSPF nor the Group Membership LSA is covered in this book.

[16] John Moy, "Multicast Extensions to OSPF," RFC 1584, March 1994.

NSSA External LSAs are originated by ASBRs within not-so-stubby areas (NSSAs). NSSAs are described in
the following section. An NSSA External LSA is almost identical to an AS External LSA, as the section on OSPF
packet formats shows. Unlike AS External LSAs, which are flooded throughout an OSPF autonomous system,
NSSA External LSAs are flooded only within the not-so-stubby area in which it was originated. The command
show ip ospf database nssa-external displays NSSA External LSAs (Example 8-16).

Example 8-16. NSSA External LSAs can be observed with the command show ip ospf database nssa-
external.

Morisot#show ip ospf database nssa-external
         OSPF Router with ID (10.3.0.1) (Process ID 1)

                     Type-7 AS External Link States (Area 15)

LS age: 532
Options: (No TOS-capability, No Type 7/5 translation, DC)
LS Type: AS External Link
Link State ID: 10.0.0.0 (External Network Number)
Advertising Router: 10.3.0.1
LS Seq Number: 80000001
Checksum: 0x9493
Length: 36
Network Mask: /16
      Metric Type: 2 (Larger than any link state path)
      TOS: 0
      Metric: 100
      Forward Address: 10.3.0.1
      External Route Tag: 0

--More-

External Attributes LSAs were proposed as an alternative to running Internal BGP (iBGP), to transport BGP
information across an OSPF domain. This LSA has never been deployed on a wide scale, and is not supported
in IOS.

Opaque LSAs are a class of LSAs that consist of a standard LSA header followed by application-specific
information.[17] The Information field can be used directly by OSPF or indirectly by other applications to
distribute information throughout the OSPF domain. Opaque LSAs have been used to add various extensions
to OSPF, such as traffic engineering parameters for Multiprotocol Label Switching (MPLS) networks.

[17] Rob Coltun, "The OSPF Opaque LSA Option," RFC 2370, July 1998.

Stub Areas

An ASBR learning external destinations will advertise those destinations by flooding AS External LSAs



throughout the OSPF autonomous system. In many cases, these External LSAs may make up a large
percentage of the LSAs in the databases of every router. For example, Example 8-10 shows that 580 of the
LSAs in that database40 percentare external LSAs.

In Figure 8-24, not every router needs to know about all the external destinations. The routers in area 2 must
send a packet to an ABR to reach the ASBR, no matter what the external destination might be. For this reason,
area 2 can be configured as a stub area.

Figure 8-24. Memory can be conserved and performance improved by making area 2 a stub area.

A stub area is an area into which AS External LSAs are not flooded. And if type 5 LSAs are not known inside an
area, type 4 LSAs are unnecessary; these LSAs are also blocked. ABRs at the edge of a stub area use
Network Summary (type 3) LSAs to advertise a single default route (destination 0.0.0.0) into the area. Any
destination that the internal routers cannot match to an intra- or inter-area route will match the default route.
Because the default route is carried in type 3 LSAs, it will not be advertised outside of the area.

The performance of routers within a stub area can be improved, and memory conserved, by the reduced size
of their databases. Of course, the improvement will be more marked in OSPF domains with a large number of
type 5 LSAs. There are, however, four restrictions on stub areas:

1. As in any area, all routers in a stub area must have identical link-state databases. To ensure this
condition, all stub routers will set a flag (the E-bit) in their Hello packets to zero; they will not accept any
Hello from a router in which the E-bit is set to one. As a result, adjacencies will not be established with
any router that is not configured as a stub router.

2. Virtual links cannot be configured within, nor transit, a stub area.

3. No router within a stub area can be an ASBR. This restriction is intuitively understandable because
ASBRs produce type 5 LSAs, and type 5 LSAs cannot exist within a stub area.

4. A stub area might have more than one ABR, but because of the default route, the internal routers cannot
determine which router is the optimal gateway to the ASBR.

Totally Stubby Areas

If memory is saved by blocking the propagation of type 5 and type 4 LSAs into an area, wouldn't more memory
be saved by blocking type 3 LSAs? In addressing this question, Cisco carries the concept of stub areas to its
logical conclusion with a scheme known as totally stubby areas.

Totally stubby areas use a default route to reach not only destinations external to the autonomous system but
also all destinations external to the area. The ABR of a totally stubby area will block not only AS External LSAs
but also all Summary LSAswith the exception of a single type 3 LSA to advertise the default route.

Not-So-Stubby Areas

In Figure 8-25, a router with a few stub networks must be attached to the OSPF domain via one of the area 2



routers. The router supports only RIP, so the area 2 router will run RIP and redistribute the networks into
OSPF. Unfortunately, this configuration makes the area 2 router an ASBR, and therefore area 2 can no longer
be a stub area.

Figure 8-25. Because a few external destinations must be redistributed into OSPF at one of the area
2 routers, all of area 2 is ineligible to be a stub area.

The RIP speaker does not need to learn routes from OSPFa default route pointing to the area 2 router is all it
needs. But all OSPF routers must know about the networks attached to the RIP router to route packets to
them.

Not-so-stubby areas (NSSAs)[18] allow external routes to be advertised into the OSPF autonomous system
while retaining the characteristics of a stub area to the rest of the autonomous system. To do this, the ASBR in
an NSSA will originate type 7 LSAs to advertise the external destinations. These NSSA External LSAs are
flooded throughout the NSSA but are blocked at the ABR.

[18] Rob Coltun and Vince Fuller, "The OSPF NSSA Option," RFC 1587, March 1994.

The NSSA External LSA has a flag in its header known as the P-bit. The NSSA ASBR has the option of setting
or clearing the P-bit. If the NSSA's ABR receives a type 7 LSA with the P-bit set to one, it will translate the type
7 LSA into a type 5 LSA and flood it throughout the other areas (see Figure 8-26). If the P-bit is set to zero, no
translation will take place and the destination in the type 7 LSA will not be advertised outside of the NSSA.
This option allows you to design an NSSA in which the external destinations learned in that area are known
only in that area.

Figure 8-26. An ASBR within an NSSA will originate NSSA External LSAs. If the P-bit of an NSSA
External LSA is set, the ABR will translate the LSA into an AS External LSA.



NSSAs are supported in IOS 11.2 and later.

Table 8-5 summarizes which LSAs are allowed in which areas.

Table 8-5. LSA types allowed per area type.
Area Type 1&2 3 4 5 7
Backbone (area 0) Yes Yes Yes Yes No
Non-backbone, non-
stub

Yes Yes Yes Yes No

Stub Yes Yes No No No
Totally stubby Yes No[*] No No No

Not-so-stubby Yes Yes Yes No Yes

[*] Except for a single type 3 LSA per ABR, advertising the default route.

Route Table

The Dijkstra algorithm is used to calculate the Shortest Path Tree from the LSAs in the link state database.
Chapter 4 has a somewhat detailed discussion of the Dijkstra algorithm; for a full description of the OSPF
calculation of the SPF tree, see section 16.1 of RFC 2328.

OSPF determines the shortest path based on an arbitrary metric called cost, which is assigned to each
interface. The cost of a route is the sum of the costs of all the outgoing interfaces to a destination. RFC 2328
does not specify any values for cost. Cisco routers calculate a default OSPF cost as 108/BW, where BW is the
configured bandwidth of the interface and 108 is the reference bandwidth. As discussed previously, the default
reference bandwidth can be changed with the command auto-cost reference-bandwidth. Fractional costs
are rounded down to the nearest whole number. Table 8-6 shows the default costs calculated by this formula
for some typical interfaces.

Table 8-6. Cisco default interface costs.
Interface Type Cost (108/BW)
FDDI, Fast Ethernet, any
interface > 100M

1

HSSI (45M) 2
16M Token Ring 6
Ethernet 10
4M Token Ring 25
T1 (1.544M) 64

DS0 (64K)[*] 1562

56K[*] 1785

Tunnel (9K) 11111

[*] Assumes the default bandwidth of the serial interface has been changed.

The command ip ospf cost can be used to override the default automatic cost calculations and assign a fixed
cost to an interface. For example, a large network with homogeneous backbone link speeds might assign link



costs based on line of sight or wire/fiber distance. LSAs record cost in a 16-bit field, so the total cost of an
interface can range from 1 to 65535.

Destination Types

Each route entry is classified according to a destination type. The destination type will be either network or
router .

Network entries are the addresses of networks to which packets can be routed. These are the destinations
that are entered into the route table (Example 8-17).

Example 8-17. The OSPF entries in the route table are network destination types.

Homer#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route

Gateway of last resort is 192.168.32.2 to network 0.0.0.0

O E1 192.168.118.0/24 [110/94] via 192.168.17.74, 02:15:01, Ethernet0
O E1 10.0.0.0/8 [110/84] via 192.168.17.41, 02:15:01, Serial0.19
O E1 192.168.119.0/24 [110/94] via 192.168.17.74, 02:15:01, Ethernet0
O E2 172.19.0.0/16 [110/21] via 192.168.32.2, 02:15:01, Ethernet1
     172.21.0.0/16 is variably subnetted, 2 subnets, 2 masks
O E2   172.21.0.0/16 [110/801] via 192.168.21.6, 02:15:01, Serial1.724
O      172.21.121.0/24 [110/791] via 192.168.21.6, 04:18:30, Serial1.724
     172.16.0.0/16 is variably subnetted, 104 subnets, 7 masks
O      172.16.21.48/30 [110/844] via 192.168.21.10, 04:18:48, Serial1.725
O IA   172.16.30.61/32 [110/856] via 192.168.17.74, 02:15:19, Ethernet0
O IA   172.16.35.0/24 [110/865] via 192.168.17.74, 02:15:19, Ethernet0
C      172.16.32.0/24 is directly connected, Ethernet1
O      172.16.17.48/29 [110/74] via 192.168.17.74, 06:19:46, Ethernet0
O E1   172.16.46.0/24 [110/30] via 192.168.32.2, 02:15:19, Ethernet1
O      172.16.45.0/24 [110/20] via 192.168.32.2, 3d10h, Ethernet1
O IA   172.16.30.54/32 [110/1061] via 192.168.17.74, 02:15:21, Ethernet0
O      172.16.17.56/29 [110/84] via 192.168.17.74, 06:19:48, Ethernet0
O      172.16.54.0/24 [110/11] via 192.168.32.2, 3d10h, Ethernet1
O      172.16.55.0/24 [110/11] via 192.168.32.2, 3d10h, Ethernet1
O      172.16.52.0/24 [110/11] via 192.168.32.2, 3d10h, Ethernet1
O      172.16.53.0/24 [110/11] via 192.168.32.2, 3d10h, Ethernet1
C      172.16.25.28/30 is directly connected, Tunnel29
--More-

Router entries  are routes to ABRs and ASBRs. If a router needs to send a packet to an inter-area destination,
it must know how to find an ABR; if a packet must go to an external destination, the router must know how to
find an ASBR. Router entries contain this information, and are kept in a separate, internal route table. This
table can be observed with the command show ip ospf border-routers (Example 8-18).

Example 8-18. Router entries, kept in a separate table from network entries, are routes to ABRs and
ASBRs.

Homer#show ip ospf border-routers
OSPF Process 1 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route
i 192.168.30.10 [74] via 192.168.17.74, Ethernet0, ABR, Area 0, SPF 391



I 192.168.30.12 [148] via 192.168.17.74, Ethernet0, ASBR, Area 0, SPF 391
I 192.168.30.18 [205] via 192.168.17.74, Ethernet0, ASBR, Area 0, SPF 391
i 192.168.30.20 [84] via 192.168.17.74, Ethernet0, ABR, Area 0, SPF 391
i 192.168.30.27 [781] via 192.168.21.6, Serial1.724, ASBR, Area 7, SPF 631
i 192.168.30.30 [74] via 192.168.17.74, Ethernet0, ABR/ASBR, Area 0, SPF 391
I 192.168.30.38 [269] via 192.168.17.74, Ethernet0, ASBR, Area 0, SPF 391
i 192.168.30.37 [390] via 192.168.21.10, Serial1.725, ASBR, Area 7, SPF 631
i 192.168.30.40 [84] via 192.168.17.74, Ethernet0, ABR/ASBR, Area 0, SPF 391
i 192.168.30.47 [400] via 192.168.21.10, Serial1.725, ASBR, Area 7, SPF 631
i 192.168.30.50 [74] via 192.168.17.41, Serial0.19, ABR/ASBR, Area 0, SPF 391
I 192.168.30.62 [94] via 192.168.17.74, Ethernet0, ASBR, Area 0, SPF 391
i 192.168.30.60 [64] via 192.168.17.41, Serial0.19, ABR/ASBR, Area 0, SPF 391
i 192.168.30.60 [790] via 192.168.21.10, Serial1.725, ABR/ASBR, Area 7, SPF 631
i 192.168.30.80 [10] via 192.168.32.5, Ethernet1, ABR/ASBR, Area 78, SPF 158
i 192.168.30.80 [10] via 192.168.17.74, Ethernet0, ABR/ASBR, Area 0, SPF 391
i 172.20.57.254 [10] via 192.168.32.2, Ethernet1, ASBR, Area 78, SPF 158
Homer#

As Example 8-18 shows, the internal route table looks very similar to any other route tablethere are
destinations, metrics, next-hop addresses, and exit interfaces. The difference is that all destinations are the
Router IDs of ABRs and ASBRs. Each entry is tagged as intra-area (i) or inter-area (I), and the entry indicates
whether the destination is an ABR, an ASBR, or both. The area is recorded, as is the iteration of the SPF
algorithm that installed the entry.

Path Types

Each route to a network destination is also classified as one of four path types. These path types are intra-
area, inter-area, type 1 external, and type 2 external:

Intra-area paths are to destinations within one of the router's attached areas.

Inter-area paths are to destinations in another area but within the OSPF autonomous system. An inter-
area path, tagged with an IA in Example 8-17, always passes through at least one ABR.

Type 1 external paths (E1 in Example 8-17) are to destinations outside the OSPF autonomous system.

When an external route is redistributed into any autonomous system, it must be assigned a metric that is
meaningful to the routing protocol of the autonomous system. Within OSPF, the ASBR is responsible for
assigning a cost to the external routes they advertise. Type 1 external paths have a cost that is the sum of
this external cost plus the cost of the path to the ASBR. Configuring an ASBR to advertise an external
(redistributed) route with an E1 metric is covered in Chapter 11, "Route Redistribution."

Type 2 external paths (E2) are also to destinations outside the OSPF autonomous system, but do not
take into account the cost of the path to the ASBR.

E1 and E2 routes provide the network administrator with the option of choosing whether the internal cost to the
ASBR is important or whether only the external cost of an external route, disregarding the internal cost of
reaching the ASBR, is more important. For example, "hot potato" routinggetting packets to external destinations
out of the network at the closest exit pointusually requires E1 metrics, whereas if you want packets to exit your
network at the closest point to their external destination, use E2 metrics. OSPF external routes are, by default,
E2 paths.

In Figure 8-27, router A has two paths to external destination 10.1.2.0. If the destination is advertised as E1,
the A-B-D path will have a cost of 35 (5 + 20 + 10) and will be preferred over the A-C-D path whose cost is 50
(30 + 10 + 10). If the destination is advertised as E2, the cost of the two internal links to the ASBRs will be
disregarded. In this case, the A-B-D path has a cost of 30 (20 + 10) and the A-C-D path has a cost of 20 (10 +
10). The latter will be the preferred path.

Figure 8-27. If the route to external network 10.1.2.0 is advertised with an E1 metric, router A will
choose B as the "closest" ASBR. If the destination is advertised with an E2 metric, C will be chosen

as the ASBR.



Route Table Lookups

When an OSPF router examines the destination address of a packet, it takes the following steps to select the
best route:[19]

[19] The lookup procedure described here adheres to RFC 2328. The earlier OSPF RFCs specify
creating a set of matching routes first, then choosing the preferred path type, and choosing the
longest match last.

1. Select the route or routes with the most specific match to the destination address. For example, if there
are route entries for 172.16.64.0/18, 172.16.64.0/24, and 172.16.64.192/27, and the destination address
is 172.16.64.205, the last entry will be chosen. The most specific match should always be the longest
matchthe route with the longest address mask. The entries may be host, subnet, network, supernet, or
default addresses. If no match can be found, an ICMP Destination Unreachable message will be sent to
the source address and the packet will be dropped.

2. Prune the set of selected entries by eliminating less-preferred path types. Path types are prioritized in the
following order, with 1 being the most preferred and 4 being the least preferred:

1. Intra-area paths

2. Inter-area paths

3. E1 external paths

4. E2 external paths

If multiple equal-cost, equal-path-type routes exist in the final set, OSPF utilizes them. By default, the Cisco
OSPF implementation load balances over a maximum of 16 equal-cost paths (four in older versions of IOS);
this number can be changed within the range of one to six with the command maximum-paths.[20]

[20] As this edition is being produced, Cisco is increasing the maximum supported by the maximum-
paths command from 6 to 16.

Authentication

OSPF has the capability of authenticating all packets exchanged between neighbors. Authentication may be by
simple passwords or by MD5 cryptographic checksums. These authentication methods are discussed in
Chapter 6, "RIPv2, RIPng, and Classless Routing," and examples of configuring OSPF authentication are
given in the configuration section.

OSPF over Demand Circuits

OSPF sends Hellos every 10 seconds and refreshes its LSAs every 30 minutes. These functions maintain the
neighbor relationships, ensure that the link-state databases are accurate, and use less bandwidth than
traditional distance vector protocols such as RIP. However, even this minimal traffic is undesirable on demand
circuitsusage-sensitive connections such as X.25 SVCs, ISDN, and dialup lines. The recurring charges for



such links may be determined by connect time or traffic volume or both, thus motivating the network manager
to minimize their uptime.

An enhancement that makes OSPF practical over demand circuits is the capability of suppressing the Hello
and LSA refresh functions so that a link does not have to be constantly up.[21] Although this enhancement is
designed specifically for usage-sensitive circuits, it might be useful on any bandwidth-limited link.[22]

[21] John Moy, "Extending OSPF to Support Demand Circuits," RFC 1793, April 1995.

[22] Although OSPF over demand circuits may be configured on any interface, Hellos are not
suppressed on multi-access network types; doing so would prevent the DR processes from
functioning properly. As a result, the enhancement is really useful only on point-to-point and point-to-
multipoint network types.

OSPF over demand circuits brings up a demand link to perform the initial database synchronization and
subsequently brings up the link to flood only LSAs in which certain changes have occurred. These LSA
changes are

A change in the LSA Options field.

A new instance of an existing LSA is received in which the age is MaxAge.

A change in the Length field of the LSA header.

A change in the contents of the LSA, excluding the 20-octet header, the checksum, or the sequence
number.

Because no periodic Hellos are exchanged (Hellos are used only to bring up the link), OSPF must make a
presumption of reachability . That is, it must presume that the demand circuit will be available when needed. In
some instances, however, the link might not be immediately accessible. For example, a dialup link might be in
use, both B channels of a BRI link might be in use, or the maximum number of allowed X.25 SVCs may already
be up. In these situations, where the link is unavailable not because it is down but because of normal
operational characteristics, the link is oversubscribed.

OSPF will not report an oversubscribed demand link as down, and packets routed to an oversubscribed link
will be dropped rather than being queued. This behavior makes sense because there is no way to predict
when the link will again become available; a stream of packets to an unavailable interface could overflow the
buffers.

Several changes to the interface and neighbor state machines and to the flooding procedure must be made to
support OSPF over demand circuits (see RFC 1793 for more details). Within the LSA format, two changes are
made.

First, if LSAs are not periodically refreshed across a demand circuit, no routers on the other side of the link
should declare the LSA invalid after MaxAge. The semantics of the LSA's Age field are changed to accomplish
this by designating the high bit as the DoNotAge bit. When an LSA is flooded over a demand circuit, the
transmitting router will set DoNotAge = 1. As the LSA is flooded to all routers on the other side of the link, the
Age field will be incremented normally by InfTransDelay seconds.[23] However, after being installed in a
database, an LSA will not be aged like the other LSAs.

[23] Note that this means MaxAge will actually be MaxAge + DoNotAge.

The second change derives from the first change. Because all routers must be capable of correctly interpreting
the DoNotAge bit, a new flag known as the Demand Circuit bit  (DC-bit) is added to all LSAs. By setting this
flag in all LSAs it originates, a router signals to the other routers that it is capable of supporting OSPF over
demand circuits.

A peripheral benefit of the enhancements made by OSPF over Demand Circuitsnamely, designating the high
bit of the Age field as the DoNotAge bitis that you can now reduce flooding in stable topologies. With the
command ip ospf flood-reduction entered for an interface, the DoNotAge bit is set on LSAs advertised out
the interface and the LSAs are not refreshed unless they change.



OSPF Packet Formats

The OSPF packet consists of multiple encapsulations, and deconstructing one is like peeling an onion. As
shown in Figure 8-28, the outside of the onion is the IP header. Encapsulated within the IP header is one of
five OSPF packet types. Each packet type begins with an OSPF packet header, whose format is the same for
all packet types. The OSPF packet data following the header varies according to the packet type. Each packet
type has a number of type-specific fields, followed by more data. The data contained in a Hello packet is a list
of neighbors. LS Request packets contain a series of fields describing the requested LSAs. LS Update
packets contain a list of LSAs, as shown in Figure 8-28. These LSAs in turn have their own headers and type-
specific data fields. Database Description and LS Acknowledgment packets contain a list of LSA headers.

Figure 8-28. An OSPF packet is composed of a series of encapsulations.

Note that OSPF packets are exchanged only between neighbors on a network. They are never routed beyond
the network on which they originate.

Figure 8-29 shows an analyzer capture of an IP header for a packet carrying OSPF data, indicated by the
protocol number of 89. When OSPF packets are multicast, their TTL is set to 1, as can be seen here. Because
an OSPF packet should never be routed past an immediate neighbor, setting the TTL to 1 helps to ensure that
the packet never travels more than a single hop. Some routers run processes that prioritize packets according
to the Precedence bits (Weighted Fair Queuing and Weighted Random Early Detection, for example). OSPF
sets the Precedence bits to Internetwork Control (110b), as shown in Figure 8-29, so that these processes will
give a high priority to OSPF packets.

Figure 8-29. OSPF uses a protocol number of 89. It also sets the TTL value in the IP header to 1 and
the Precedence bits to Internetwork Control.

[View full size image]



This section details the five OSPF packet types, beginning with the header. The following section details the
LSA types. An Options field is carried in Hello, Database Description packets, and in all LSAs. The format of
this field is the same in all cases and is detailed in its own section.

Packet Header

All OSPF packets begin with a 24-octet header, as shown in Figure 8-30.

Figure 8-30. The OSPF packet header.

Version is the OSPF version number. The OSPF version number is 2. There is an OSPF version 3,
created for routing IPv6; OSPFv3 is covered in the next chapter.

Type specifies the packet type following the header. Table 8-7 lists the five packet types by the number
appearing in the Type field.

Table 8-7. OSPF packet types.
Type
Code

Description

1 Hello



2 Database Description
3 Link State Request
4 Link State Update
5 Link State

Acknowledgment

Packet length is the length of the OSPF packet, in octets, including the header.

Router ID is the ID of the originating router.

Area ID is the area from which the packet originated. If the packet is sent over a virtual link, the Area ID
will be 0.0.0.0, the backbone Area ID, because virtual links are considered part of the backbone.

Checksum is a standard IP checksum of the entire packet, including the header.

AuType is the authentication mode being used.

Table 8-8 lists the possible authentication modes.

Table 8-8. OSPF authentication types.
AuType Authentication Type
0 Null (no authentication)
1 Simple (clear text) Password

Authentication
2 Cryptographic (MD5) Checksum

Authentication is the information necessary for the packet to be authenticated by whatever mode is
specified in the AuType field. If AuType = 0, the field is not examined and therefore may contain anything.
If AuType = 1, the field contains a password of up to 64 bits. If AuType = 2, the Authentication field
contains a Key ID, the Authentication Data Length, and a nondecreasing Cryptographic sequence
number. The message digest is appended to the end of the OSPF packet, and is not considered part of
the packet itself.

Key ID identifies the authentication algorithm and the secret key used to create the message digest.

Authentication Data Length specifies the length, in octets, of the message digest appended to the end
of the packet.

Cryptographic Sequence Number is a nondecreasing number used to prevent replay attacks.

Hello Packet

The Hello packet (Figure 8-31) establishes and maintains adjacencies. The Hello carries parameters on which
neighbors must agree in order to form an adjacency.

Figure 8-31. The OSPF Hello packet.



Network Mask is the address mask of the interface from which the packet was sent. If this mask does
not match the mask of the interface on which the packet is received, the packet will be dropped. This
technique ensures that routers become neighbors only if they agree on the exact address of their shared
network.

Hello Interval, as discussed earlier, is the period, in seconds, between transmissions of Hello packets on
the interface. If the sending and receiving routers don't have the same value for this parameter, they do
not establish a neighbor relationship.

Options are described in "Options Field," later in this chapter. This field is included in the Hello packet to
ensure that neighbors have compatible capabilities. A router might reject a neighbor because of a
capabilities mismatch.

Router Priority is used in the election of the DR and BDR. If set to zero, the originating router is
ineligible to become the DR or BDR.

Router Dead Interval is the number of seconds the originating router will wait for a Hello from a neighbor
before declaring the neighbor dead. If a Hello is received in which this number does not match the
RouterDeadInterval of the receiving interface, the packet is dropped. This technique ensures that
neighbors agree on this parameter.

Designated Router is the IP address of the interface of the DR on the network (not its Router ID). During
the DR election process, this may only be the originating router's idea of the DR, not the finally elected
DR. If there is no DR (because one has not been elected or because the network type does not require
DRs), this field is set to 0.0.0.0.

Backup DR is the IP address of the interface of the BDR on the network. Again, during the DR election
process, this may only be the originating router's idea of the BDR. If there is no BDR, this field is set to
0.0.0.0.

Neighbor is a recurring field that lists all RIDs of all neighbors on the network from which the originating
router has received a valid Hello in the past RouterDeadInterval.

Database Description Packet

The Database Description packet (Figure 8-32) is used when an adjacency is being established (see "Building
an Adjacency," earlier in this chapter). The primary purpose of the DD packet is to describe some or all of the
LSAs in the originator's database so that the receiver can determine whether it has a matching LSA in its own
database. This is done by listing the headers of the LSAs; the LSA header contains enough information to
identify not only a particular LSA but also the most recent instance of that LSA. Because multiple DD packets
may be exchanged during the database description process, flags are included for managing the exchange via
a master/slave polling relationship.



Figure 8-32. The OSPF Database Description packet.

Interface MTU is the size, in octets, of the largest IP packet that can be sent out the originator's interface
without fragmentation. This field is set to 0x0000 when the packet is sent over virtual links.

Options are described in "Options Field," later in this chapter. The field is included in the Database
Description packet so that a router may choose not to forward certain LSAs to a neighbor that doesn't
support the necessary capabilities.

The first five bits of the next octet are unused and are always set to 00000b.

I-bit, or Initial bit, is set to 1 when the packet is the initial packet in series of DD packets. Subsequent DD
packets have I-bit = 0.

M-bit, or More bit, is set to 1 to indicate that the packet is not the last in a series of DD packets. The last
DD packet has M-bit = 0.

MS-bit, or Master/Slave bit, is set to 1 to indicate that the originator is the master (that is, is in control of
the polling process) during a database synchronization. The slave has MS-bit = 0.

DD Sequence Number ensures that the full sequence of DD packets is received in the database
synchronization process. The sequence number is set by the master to some unique value in the first DD
packet, and the sequence is incremented in subsequent packets.

LSA Headers list some or all of the headers of the LSAs in the originator's link-state database. See the
section "Link State Header," for a full description of the LSA header; the header contains enough
information to uniquely identify the LSA and the particular instance of the LSA.

Link State Request Packet

As Database Description packets are received during the database synchronization process, a router takes
note of any listed LSAs that are not in its database or are more recent than its own LSA. These LSAs are
recorded in the Link State Request list. The router then sends one or more Link State Request packets (Figure
8-33) asking the neighbor for its copy of the LSAs on the Link State Request list. Note that the packet uniquely
identifies the LSA by Type, ID, and Advertising Router fields of its header, but it does not request a specific
instance of the LSA (identified by the header's sequence number, checksum, and age). Therefore, the request
is for the most recent instance of the LSA, whether the requester is aware of that instance or not. This
procedure protects against a situation in which the neighbor might acquire or originate a more recent copy of
the LSA between the time it last described the LSA and the time a copy of it is requested.

Figure 8-33. The OSPF Link State Request packet.



Link State Type is the LS type number, which identifies the LSA as a Router LSA, Network LSA, and so
on. Type numbers are listed in Table 8-4.

Link State ID is a type-dependent field of the LSA header. See the section "Link State Header" and the
LSA-specific sections for a full description of how the various LSAs use this field.

Advertising Router is the Router ID of the router that originated the LSA.

Link State Update Packet

The Link State Update packet, shown in Figure 8-34, is used in the flooding of LSAs and to send LSAs in
response to Link State Requests. Recall that OSPF packets do not leave the network on which they were
originated. Consequently, a Link State Update packet, carrying one or many LSAs, carries the LSAs only to the
originating router's connected neighbors. The receiving neighbor is responsible for re-encapsulating the
appropriate LSAs in new LS Update packets for further flooding to its own neighbors.

Figure 8-34. The OSPF Link State Update packet.

Number of LSAs specifies the number of LSAs included in this packet.

LSAs are the full LSAs as described in OSPF LSA formats. Each update can carry multiple LSAs, up to
the maximum packet size allowed on the link.

Link State Acknowledgment Packet

Link State Acknowledgment packets are used to make the flooding of LSAs reliable. Each LSA received by a
router from a neighbor must be explicitly acknowledged in a Link State Acknowledgement packet. The LSA
being acknowledged is identified by including its header in the LS ACK packet, and multiple LSAs can be



acknowledged in a single packet. As Figure 8-35 shows, the LS ACK packet consists of nothing more than an
OSPF packet header and a list of LSA headers.

Figure 8-35. The OSPF Link State Acknowledgment packet.

OSPF LSA Formats

This section details the fields of LSA types 1-5 and 7. The Group Membership LSA (type 6) is not discussed
because MOSPF is not covered in this book. Similarly, LSA types 8 through 11 are not covered because they
either are not in general deployment (type 8) or because they are used to support capabilities that are outside
of the scope of this book.

LSA Header

The LSA header (Figure 8-36) begins all LSAs and is also used by itself in Database Description and Link
State Acknowledgment packets. Three fields in the header uniquely identify every LSA: the Type, Link State
ID, and Advertising Router. Additionally, three other fields uniquely identify the most recent instance of an LSA:
the Age, Sequence Number, and Checksum.

Figure 8-36. The OSPF LSA header.

Age is the time, in seconds, since the LSA was originated. As the LSA is flooded, the age is incremented
by InfTransDelay seconds at each router interface it exits. The age is also incremented in seconds as it
resides in a link-state database.

Options is described in the section "Options Field." In the LSA header, the Options field specifies the
optional capabilities supported by the portion of the OSPF domain described by the LSA.

Type is the LSA type. The type codes are shown in Table 8-4.

Link State ID identifies the portion of the OSPF domain being described by the LSA. The specific usage
of this field varies according to the LSA type; the descriptions of each LSA include a description of how
the LSA uses this field.

Advertising Router is the router ID of the router that originated the LSA.



Sequence Number is incremented each time a new instance of the LSA is originated, so that other
routers can identify the most recent instance of the LSA.

Checksum is the Fletcher checksum of the complete contents of the LSA except for the Age field. If the
Age field were included, the checksum would have to be recalculated every time the age was
incremented.

Length is the number of octets of the LSA, including the header.

Router LSA

A Router LSA (Figure 8-37) is produced by every router. It lists a router's links, or interfaces, along with the
state and the outgoing cost of each link and any known neighbors on the link. These LSAs are flooded only
within the area in which they are originated. The command show ip ospf database router (refer to Example
8-11) lists the Router LSAs in a database. Note that Router LSAs advertise host routes as stub networks; the
Link ID field carries the host IP address, and the Link Data field carries the host address mask of
255.255.255.255.

Figure 8-37. OSPF Router LSA.

Link State ID for Router LSAs is the originating router's Router ID.

V, or Virtual Link Endpoint bit, is set to one when the originating router is an endpoint of one or more
fully adjacent virtual links having the described area as the transit area.

E, or External bit, is set to one when the originating router is an ASBR.

B, or Border bit, is set to one when the originating router is an ABR.

Number of Links specifies the number of router links the LSA describes. The Router LSA must describe
all of the originating router's links, or interfaces, to the area in which the LSA is flooded.

Subsequent fields in the Router LSA describe each link and appear one or more times, corresponding to
the number in the Number of Links field. This discussion covers the Link Type field first, although that
field does not appear until after the Link Data field. Understanding link type first is important because the
descriptions of the Link ID and Link Data fields vary according to the value of the Link Type field.

Link Type describes the general type of connection the link provides. Table 8-9 lists the possible values
of the field and the associated connection types.

Table 8-9. Link type values.
Link Type Connection
1 Point-to-point connection to another router



2 Connection to a transit network
3 Connection to a stub network
4 Virtual link

Link ID identifies the object to which the link connects. This is dependent on the link type, as shown in
Table 8-10. Note that when the connected object is another router, the Link ID is the same as the Link
State ID in the header of the neighboring router's LSA. During the routing table calculation, this value is
used to find the neighbor's LSA in the link-state database.

Table 8-10. Link ID values.
Link Type Value of Link ID Field
1 Neighboring router's Router ID
2 IP address of the DR's interface
3 IP network or subnet address
4 Neighboring router's Router ID

Link Data also depends on the value of the Link Type field, as shown in Table 8-11.

Table 8-11. Link data values.
Link Type Value of Link Data Field
1 IP address of the originating router's

interface to the network[*]

2 IP address of the originating router's
interface to the network

3 Network's IP address or subnet mask
4 The MIB-II ifIndex value for the originating

router's interface

[*] If the point-to-point link is unnumbered, this field will instead carry the MIB-II ifIndex value of
the interface.

Number of TOS specifies the number of Type of Service metrics listed for this link. Although TOS is no
longer supported in RFC 2328, the TOS fields are still included for backward compatibility with earlier
OSPF implementations. If no TOS metrics are associated with a link, this field is set to 0x00.

Metric is the cost of the link (interface).

The next two fields are associated with a link corresponding to the number (#) of TOS field. For example,
if # of TOS = 3, there will be three 32-bit words containing three instances of these fields. If # of TOS =
0, there will be no instances of these fields.

Note that Cisco supports only TOS = 0.

TOS specifies the Type of Service to which the following metric refers.[24] Table 8-12 lists the TOS
values (as specified in RFC 1349), the bit values of the corresponding TOS field in the IP header, and the
corresponding value used in the OSPF TOS field.

[24] Philip Almquist, "Type of Service in the Internet Protocol Suite," RFC 1349, July 1992.

Table 8-12. OSPF TOS values.
RFC TOS Value IP Header TOS OSPF TOS



Field Encoding
Normal Service 0000 0
Minimize Monetary
Cost

0001 2

Maximize Reliability 0010 4
Maximize
Throughput

0100 8

Minimize Delay 1000 16

TOS Metric is the metric associated with the specified TOS value.

Network LSA

Network LSAs (Figure 8-38) are originated by DRs. These LSAs advertise the multi-access network, and all
routers (including the DR) attached to the network. Like Router LSAs, Network LSAs are flooded only within
the originating area. The command show ip ospf database network (Example 8-12) is used to observe a
Network LSA.

Figure 8-38. The OSPF Network LSA.

Link State ID for Network LSAs is the IP address of the DR's interface to the network.

Network Mask specifies the address or subnet mask used on this network.

Attached Router lists the Router IDs of all routers on the multi-access network that are fully adjacent
with the DR, and the Router ID of the DR itself. The number of instances of this field (and hence the
number of routers listed) can be deduced from the LSA header's Length field.

Network and ASBR Summary LSAs

The Network Summary LSA (type 3) and the ASBR Summary LSA (type 4) have an identical format, shown in
Figure 8-39. The only difference in field contents is the Type and the Link State ID. ABRs produce both types
of Summary LSA; Network Summary LSAs advertise networks external to an area (including default routes),
whereas ASBR Summary LSAs advertise ASBRs external to an area. Both types are flooded only into a single
area. The Network Summary LSAs in a router's database can be observed with the command show ip ospf
database summary (Example 8-13), and ASBR Summary LSAs can be observed with show ip ospf
database asbr-summary (Example 8-14).

Figure 8-39. The OSPF Summary LSA. The format is the same for both type 3 and type 4 Summary
LSAs.



Link State ID, for type 3 LSAs, is the IP address of the network or subnet being advertised. If the LSA is
type 4, the Link State ID is the Router ID of the ASBR being advertised.

Network Mask is the address or subnet mask of the network being advertised in type 3 LSAs. In type 4
LSAs, this field has no meaning and is set to 0.0.0.0.

If a type 3 LSA is advertising a default route, both the Link State ID and the Network Mask fields will be
0.0.0.0.

Metric is the cost of the route to this destination.

The TOS and TOS Metric fields are optional and are described in "Router LSA." Again, Cisco supports
only TOS = 0.

Autonomous System External LSA

Autonomous System External LSAs (Figure 8-40) are originated by ASBRs. These LSAs are used to advertise
destinations external to the OSPF autonomous system, including default routes to external destinations, and
are flooded into all nonstub areas of the OSPF domain. The command show ip ospf database external is
used to display AS External LSAs (Example 8-15).

Figure 8-40. The OSPF Autonomous System External LSA.

Link State ID for AS External LSAs is the IP address of the destination.



Network Mask is the address or subnet mask for the destination being advertised.

If the type 5 LSA is advertising a default route, the Link State ID and the Network Mask are both 0.0.0.0.

E, or External Metric bit, specifies the type of external metric to be used with this route. If the E-bit is set
to 1, the metric type is E2. If the E-bit = 0, the metric type is E1. See the section "Path Types," earlier in
this chapter, for more information on E1 and E2 external metrics.

Metric is the cost of the route, as set by the ASBR.

Forwarding Address is the address to which packets for the advertised destination should be forwarded.
If the forwarding address is 0.0.0.0, packets are forwarded to the originating ASBR.

External Route Tag is an arbitrary tag that may be applied to the external route. This field is not used by
the OSPF protocol itself, but is instead provided for external route management. The setting and use of
such tags are discussed in Chapter 14, "Route Maps."

Optionally, TOS fields may be associated with the destination. These fields are the same as discussed
previously, except each TOS metric also has its own E-bit, Forwarding Address, and External Route Tag.

NSSA External LSA

NSSA External LSAs are originated by ASBRs within an NSSA (not-so-stubby area). All fields of the NSSA
External LSA (Figure 8-41) are identical to an AS External LSA's fields, with the exception of the Forwarding
Address field. Unlike AS External LSAs, which are flooded throughout an OSPF autonomous system, NSSA
external LSAs are flooded only within the not-so-stubby area in which it was originated. The command show
ip ospf database nssa-external is used to display NSSA External LSAs (Example 8-16).

Figure 8-41. OSPF NSSA External LSA.

Forwarding Address , if the network between the NSSA ASBR and the adjacent autonomous system is
advertised as an internal route, is the next hop address on the network. If the network is not advertised as an
internal route, the forwarding address will be the NSSA ASBR's Router ID.

Options Field

The Options field (Figure 8-42) is present in every Hello and Database Description packet and in every LSA.
The Options field allows routers to communicate their optional capabilities to other routers.

Figure 8-42. The OSPF Options field.



DN is used with MPLS-based layer 3 Virtual Private Networks (VPN), commonly called RFC 2547 VPNs after
the RFC that specifies them. When a route is learned from a customer network via OSPF, is advertised across
the RFC 2547 VPN using Multiprotocol BGP, and then is advertised back to a customer network via OSPF, a
loop can occur in which the OSPF route is redistributed back to the VPN provider network in BGP. The DN bit
prevents this looping. When the DN bit is set in a type 3, 5, or 7 LSA, the receiving router cannot use that LSA
in its OSPF route calculations.

O is set to indicate that the originating router supports Opaque (type 9, 10, and 11) LSAs.

DC is set when the originating router is capable of supporting OSPF over demand circuits.

EA is set when the originating router is capable of receiving and forwarding External Attributes LSAs. These
LSAs are not in general usage and are not covered in this book.

N is used only in Hello packets. A router sets N-bit = 1 to indicate support for NSSA External LSAs. If N-bit = 0,
the router will not accept or send these LSAs. Neighboring routers with mismatched N-bits will not become
adjacent; this restriction ensures that all routers in an area support NSSA capabilities equally. If the N-bit = 1,
the E-bit must be 0.

P is used only in NSSA External LSA headers. (For this reason, the N- and P-bit can use the same position.)
This bit tells the ABR of a not-so-stubby area to translate type 7 LSAs into type 5 LSAs.

MC is set when the originating router is capable of forwarding IP multicast packets. This bit is used by MOSPF.

E is set when the originating router is capable of accepting AS External LSAs. It will be set to 1 in all AS
External LSAs and in all LSAs originated in the backbone and nonstub areas. E-bit = 0 in all LSAs originated
within a stub area. Additionally, the bit is used in the Hello packet to indicate an interface's capability of
sending and receiving type 5 LSAs. Neighboring routers with mismatched E-bits will not become adjacent; this
restriction ensures that all routers in an area support stub capabilities equally.

MT, when set, indicates that the originating router supports Multitopology OSPF (MT-OSPF). MT-OSPF, as of
this writing, is only a proposal and has not yet found general adoption.

Older OSPF standards specified that the options bit position now occupied by the MT bit was the T bit. T was
set when the originating router is capable of supporting TOS. However, because the TOS capability was never
deployed, the T bit was also never used.



Configuring OSPF

The many options and configuration variables available to OSPF frequently make it the IGP of choice in large IP
networks. However, the opinion is occasionally expressed that OSPF configuration is "too complex" to be a good
choice for small internets. This is nonsense. As the first case study shows, getting a basic OSPF configuration up
and running involves only a few extra keystrokes in the network command; if the operation of OSPF is
reasonably well understood, these extra keystrokes will be intuitive.

Case Study: A Basic OSPF Configuration

The three steps necessary to begin a basic OSPF process are

Step 1. Determine the area to which each router interface will be attached.

Step 2. Enable OSPF with the command router ospf process-id.

Step 3. Specify the interfaces on which to run OSPF, and their areas, with the network area command.

Unlike the process ID associated with IGRP and EIGRP, the OSPF process ID is not an autonomous system
number. The process ID can be any positive integer and has no significance outside the router on which it is
configured. Cisco IOS allows multiple OSPF processes to run on the same router;[25] the process ID merely
distinguishes one process from another within the device.

[25] Although the use of multiple processes on one router is possible, it is highly discouraged because
of the demands that the multiple databases will place on router resources.

The network command used with RIP allows only the specification of a major network address. If some
interfaces within the network should not run the routing protocol, the passive-interface command has to be used
with those protocols. As is the network command used with the wildcard mask for EIGRP, the network area
command is much more flexible then the network command used for RIP and EIGRP before the wildcard option
was introduced, reflecting the fully classless nature of OSPF. Any address range can be specified with an
(address, inverse mask) pair. The inverse mask is the same as the inverse mask used with access lists.[26] The
area can be specified in either decimal or dotted decimal.

[26] See Appendix B, "Tutorial: Access Lists," for a tutorial on the use of inverse masks.

Figure 8-43 shows an OSPF network. Note that each area has an assigned IP address from which its subnets are
derived. Limiting an area to a single address or subnet is not necessary, but doing so has significant advantages,
as will be seen in a later case study on address summarization. Note also that this example is designed to
demonstrate the configuration of multiple areas. In "real life," it would be much wiser to put such a small network
within a single area. Further, that single area does not have to be area 0. The rule is that all areas must connect
to the backbone; therefore, a backbone area is needed only if there is more than one area.

Figure 8-43. Chardin and Goya are ABRs; Rubens and Matisse are Internal Routers.



Each of the four routers in Figure 8-43 is configured differently to demonstrate the flexibility of the network area
command. The configurations are displayed in Example 8-19 through Example 8-22:

Example 8-19. Rubens's OSPF network area configuration.

router ospf 10
 network 0.0.0.0 255.255.255.255 area 1

Example 8-20. Chardin's OSPF network area configuration.

router ospf 20
 network 192.168.30.0 0.0.0.255 area 1
 network 192.168.20.0 0.0.0.255 area 0

Example 8-21. Goya's OSPF network area configuration.

router ospf 30
 network 192.168.20.0 0.0.0.3 area 0.0.0.0
 network 192.168.10.0 0.0.0.31 area 192.168.10.0

Example 8-22. Matisse's OSPF network area configuration.

router ospf 40
 network 192.168.10.2 0.0.0.0 area 192.168.10.0
 network 192.168.10.33 0.0.0.0 area 192.168.10.0

The first thing to note is that the process IDs are different for each router. Usually these numbers are the same
across an internet for consistency of configuration. Here the process IDs are configured differently merely to
demonstrate that they have no meaning outside of the router. These four differently numbered processes are able
to communicate.

The next thing to notice is the format of the network area command. Following the network portion is an IP
address and an inverse mask. When the OSPF process first becomes active, it will "run" the IP addresses of all
active interfaces against the (address, inverse mask) pair of the first network statement. All interfaces that match



will be assigned to the area specified by the area portion of the command. The process will then run the
addresses of any interfaces that did not match the first network statement against the second network statement.
The process of running IP addresses against network statements continues until all interfaces have been
matched or until all network statements have been used. It is important to note that this process is consecutive,
beginning with the first network statement. As a result, the order of the statements can be important, as is shown
in the troubleshooting section.

Rubens's network statement will match all interfaces on the router. The address 0.0.0.0 is really just a
placeholder; the inverse mask of 255.255.255.255 is the element that does all of the work here. With "don't care"
bits placed across the entire four octets, the mask will find a match with any address and place the corresponding
interface into area 1. This method provides the least precision in controlling which interfaces will run OSPF.

Chardin is an ABR between area 1 and area 0. This fact is reflected in its network statements. Here the (address,
inverse mask) pairs will place any interface that is connected to any subnet of major network 192.168.30.0 in
area 1 and any interface that is connected to any subnet of major network 192.168.20.0 in the backbone area.

Goya is also an ABR. Here the (address, inverse mask) pairs will match only the specific subnets configured on
the two interfaces. Notice also that the backbone area is specified in dotted decimal. Both this format and the
decimal format used at Chardin will cause the associated area fields of the OSPF packets to be 0x00000000, so
they are compatible.

Matisse has one interface, 192.168.10.65/26, which is not running OSPF. The network statements for this router
are configured to the individual interface addresses, and the inverse mask indicates that all 32 bits must match
exactly. This method provides the most precise control over which interfaces will run OSPF.

Finally, note that although Matisse's interface 192.168.10.65/26 is not running OSPF, that address is numerically
the highest on the router. As a result, Matisse's Router ID is 192.168.10.65 (Example 8-23).

Example 8-23. The command show ip ospf process-id  displays process-specific information.

Matisse#show ip ospf 40
 Routing Process "ospf 40" with ID 192.168.10.65
 Supports only single TOS(TOS0) routes
 Supports opaque LSA
 Supports Link-local Signaling (LLS)
 Initial SPF schedule delay 5000 msecs
 Minimum hold time between two consecutive SPFs 10000 msecs
 Maximum wait time between two consecutive SPFs 10000 msecs
 Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
 LSA group pacing timer 240 secs
 Interface flood pacing timer 33 msecs
 Retransmission pacing timer 66 msecs
 Number of external LSA 0. Checksum Sum 0x000000
 Number of opaque AS LSA 0. Checksum Sum 0x000000
 Number of DCbitless external and opaque AS LSA 0
 Number of DoNotAge external and opaque AS LSA 0
 Number of areas in this router is 1. 1 normal 0 stub 0 nssa
 External flood list length 0
    Area 192.168.10.0
        Number of interfaces in this area is 2
        Area has no authentication
        SPF algorithm last executed 00:47:42.792 ago
        SPF algorithm executed 4 times
        Area ranges are
        Number of LSA 5. Checksum Sum 0x02A444
        Number of opaque link LSA 0. Checksum Sum 0x000000
        Number of DCbitless LSA 0
        Number of indication LSA 0
        Number of DoNotAge LSA 0
        Flood list length 0

Case Study: Setting Router IDs with Loopback Interfaces



Suppose router Matisse from Figure 8-43 has been configured in a staging center and then sent to the field to be
installed. During the bootup, the router reports that it cannot allocate a Router ID, and it seems to report the
network area commands as configuration errors (Example 8-24). Worse, the OSPF commands are no longer in
the running configuration.

Example 8-24. OSPF will not boot if it cannot find an active IP address for its Router ID.

Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-J1S3-M), Version 12.3(6), RELEASE SOFTWARE (fc3)
Copyright (c) 1986-2004 by Cisco Systems, Inc.
Compiled Wed 11-Feb-04 19:24 by kellythw
Image text-base: 0x80008098, data-base: 0x8199F778

cisco 2621 (MPC860) processor (revision 0x200) with 61440K/4096K bytes of memory

Processor board ID JAD05090PW2 (1141326406)
M860 processor: part number 0, mask 49
Bridging software.
X.25 software, Version 3.0.0.
TN3270 Emulation software.
2 FastEthernet/IEEE 802.3 interface(s)
1 Serial network interface(s)
32K bytes of non-volatile configuration memory.
16384K bytes of processor board System flash (Read/Write)

 network 192.168.10.2 0.0.0.0 area 192.168.10.0
    ^
% Invalid input detected at '^' marker.
 network 192.168.10.33 0.0.0.0 area 192.168.10.0
    ^
% Invalid input detected at '^' marker.

Press RETURN to get started!

%OSPF-4-NORTRID: OSPF process 40 cannot start. There must
be at least one "up" IP interface, for OSPF to use as router ID

The problem here is that during bootup all the interfaces on the router were administratively shut down. If OSPF
cannot find an active IP address for its Router ID, it cannot start. And if the OSPF process isn't active, the
subsequent network area commands will be invalid.

The solution to this problem (assuming you have a valid reason for having all physical interfaces in shutdown) is
to use a loopback interface. The loopback interface, which is a virtual, software-only interface, is always up.
Therefore, its IP address is always available.

The more common reason for using loopback interfaces on OSPF routers is that the interfaces allow the network
administrator to control the Router IDs. When the OSPF process looks for a Router ID, OSPF will prefer the
address of a loopback interface over the addresses of all physical interfaces, regardless of the numerical order. If
there are multiple loopback interfaces with IP addresses, OSPF will choose the numerically highest loopback
address.

Controlling the Router IDs so that individual OSPF routers are more easily identified facilitates management and
troubleshooting. The Router IDs are usually managed by one of two methods:

Set aside a legitimate network or subnet address to be used strictly for Router IDs.

Use a "bogus" IP address range.

The first method has the disadvantage of using up the assigned network address space. The second method will



preserve the legitimate addresses, but one must remember that what is bogus in one internet is legitimate in
another. Using easily recognized addresses such as 1.1.1.1, 2.2.1.1, and so on is fine as long as you remember
that these are not public addresses. Care must be taken that the bogus addresses do not leak out to the public
Internet.

The configurations of the last section are modified to use loopback addresses as displayed in Example 8-25
through Example 8-28.

Example 8-25. A Loopback interface is added to Rubens's configuration.

interface Loopback0
 ip address 192.168.50.1 255.255.255.255
!
router ospf 10
 network 192.168.30.0 0.0.0.255 area 1

Example 8-26. A Loopback interface is added to Chardin's configuration.

interface Loopback0
 ip address 192.168.50.2 255.255.255.255
!
router ospf 20
 network 192.168.30.0 0.0.0.255 area 1
 network 192.168.20.0 0.0.0.255 area 0

Example 8-27. A Loopback interface is added to Goya's configuration.

interface Loopback0
 ip address 192.168.50.3 255.255.255.255
!
router ospf 30
 network 192.168.20.0 0.0.0.3 area 0.0.0.0
 network 192.168.10.0 0.0.0.31 area 192.168.10.0

Example 8-28. A Loopback interface is added to Matisse's configuration.

interface Loopback0
 ip address 192.168.50.4 255.255.255.255
!
router ospf 40
 network 192.168.10.2 0.0.0.0 area 192.168.10.0
 network 192.168.10.33 0.0.0.0 area 192.168.10.0

For this example, the network address 192.168.50.0 has been set aside for exclusive use as Router IDs. Router
IDs are thus easily distinguished from other IP addresses in this internet.

The first thing to note about this configuration is the address masks used with the loopback addresses: Each
mask is configured as a host address. This step is not really necessary, because OSPF treats a loopback
interface as a stub host; whatever (address, mask) pair is configured, the address of the loopback interface will
be advertised as a host route. The host mask is used merely to keep things neat, and to reflect the way in which
the address is advertised.

However, the second point of interest makes the first somewhat irrelevant. Remember that OSPF does not have
to be running on an interface for its IP address to be used as the Router ID. In fact, having OSPF advertise the



loopback addresses just creates unnecessary LSAs. In the example shown, notice that the network area
statements do not refer to the loopback addresses. In fact, the configuration at Rubens had to be changed.
Rubens's previous command, network 0.0.0.0 255.255.255.255 area 1, would have picked up the loopback
address.

In addition to aiding management and troubleshooting, using loopback interfaces will also make an OSPF internet
more stable. In some early versions of IOS, if a physical interface from which the Router ID was taken
experiences a hardware failure,[27] if the interface is administratively shut down, or if the IP address is
inadvertently deleted, the OSPF process must acquire a new Router ID. Therefore, the router must prematurely
age and flood its old LSAs and then flood LSAs containing the new ID. A loopback interface has no hardware
components to fail. The current IOS behavior is to obtain the Router ID; if the interface associated with the Router
ID fails or the IP address is deleted, the router retains the Router ID until the router is reloaded or the OSPF
process is reset.

[27] Merely disconnecting the interface will not cause the Router ID to change.

Another option is to manually assign a Router ID to the router with the OSPF command router-id. As with the
Router ID address assignment using loopback interfaces, you can arbitrarily choose an IP address to use as the
value of the router-id command. If a Router ID is configured using this command, this command's value will
become the router ID when the OSPF process is reset or the router is reloaded. When the router is reloaded,
however, there still has to be an interface with an IP address that comes up before the OSPF process can start.
After the OSPF process starts, the address assigned with the router-id command will become the Router ID.

Case Study: Domain Name Service Lookups

Loopback interfaces simplify the management and troubleshooting of OSPF internets by providing predictable
Router IDs. This simplification can be taken even further by recording the Router IDs in a Domain Name Service
(DNS) database. The router can then be configured to consult the server address-to-name mappings, or Reverse
DNS lookups, and then display the routers by name instead of by Router ID (Example 8-29).

Example 8-29. OSPF can be configured to use DNS to map Router IDs to names for use in some show
commands.

Goya#show ip ospf neighbor
Neighbor ID     Pri   State      Dead Time    Address       Interface
chardin           0   FULL/  -   00:00:36     192.168.20.1  Serial0/0.2
matisse           0   FULL/  -   00:00:34     192.168.10.2  Serial0/0.1
Goya#show ip ospf database

            OSPF Router with ID (192.168.50.3) (Process ID 30)

                Router Link States (Area 0.0.0.0)

Link ID         ADV Router      Age         Seq#       Checksum Link count
192.168.50.2    chardin         78          0x80000007 0x005A70 2
192.168.50.3    goya            78          0x80000008 0x004C7B 2

                Summary Net Link States (Area 0.0.0.0)

Link ID         ADV Router      Age         Seq#       Checksum
192.168.10.0    goya            74          0x80000001 0x00B356
192.168.10.32   goya            54          0x80000001 0x00DCFB
192.168.30.0    chardin         85          0x80000001 0x007766
192.168.30.8    chardin         100         0x80000001 0x001DB9

                Router Link States (Area 192.168.10.0)

Link ID         ADV Router      Age         Seq#       Checksum Link count
192.168.50.3    goya            68          0x80000007 0x0024D3 2
192.168.50.4    matisse         67          0x80000007 0x00E080 3
--More-



Goya was configured to perform DNS lookups as shown in Example 8-30.

Example 8-30. Goya is configured to perform DNS lookups.

ip name-server 172.19.35.2
!
ip ospf name-lookup

The first command specifies the address of the DNS server, and the second enables the OSPF process to
perform DNS lookups. In some cases, a router is identified by an interface address instead of a Router ID. Adding
entries to the DNS database for the router interfaces, such as rubens-e0, allows the interfaces to also be
identified by name while differentiating them from the Router IDs.

The address of the name server used in this example does not belong to one of the subnets shown in Figure 8-
43. The method by which this network is reached is the subject of the next case study.

Case Study: OSPF and Secondary Addresses

Two rules are related to the use of secondary addresses in an OSPF environment:

OSPF will advertise a secondary network or subnet only if it is also running on the primary network or
subnet.

OSPF sees secondary networks as stub networks (networks on which there are no OSPF neighbors) and
therefore will not send Hellos on them. Consequently, no adjacencies can be established on secondary
networks.

Figure 8-44 shows the DNS server and an additional router attached to the FA0/0 interface of Matisse. The
server and the new router have addresses in subnet 172.19.35.0/25, so Matisse's FA0/0 has been given a
secondary address of 172.19.35.15/25 (see Example 8-31).

Figure 8-44. Router Dali and the DNS server are not part of the OSPF domain and are attached to
Matisse via a secondary network address.

Example 8-31. Matisse is configured with a secondary address.

interface FastEthernet0/0



 ip address 172.19.35.15 255.255.255.128 secondary
 ip address 192.168.10.33 255.255.255.240
!
router ospf 40
 network 192.168.10.2 0.0.0.0 area 192.168.10.0
 network 192.168.10.33 0.0.0.0 area 192.168.10.0
 network 172.19.35.15 0.0.0.0 area 192.168.10.0

With this configuration, Matisse will advertise subnet 172.19.35.0/25 to its neighbors. However, if the network
area statement for 192.168.10.33 should be deleted, subnet 172.19.35.0/25 will no longer be advertised.
Because Matisse is attached to subnet 172.19.35.0/25 via a secondary address, it cannot establish an adjacency
with any routers on that subnet (Figure 8-45). However, the DNS server uses Dali as its default gateway.
Therefore Matisse and Dali must be able to route packets to each other.

Figure 8-45. This analyzer capture is from the network to which Matisse, Dali, and the DNS server are
attached. The smaller window shows that Hellos are only being sourced from Matisse's primary

address of 192.168.10.33. The larger window shows a decode of one of the Hellos.

[View full size image]

An assessment of the internet as described so far shows that

Subnet 172.19.35.0/25 is being advertised into the OSPF domain; a packet with a destination address of
172.19.35.2 will be routed to Matisse's FA0/0 interface and from there directly to the DNS server (Example 8-
32).

Because the DNS server must send replies to network addresses different than its own, it will send the
replies to Dali for routing.

Dali is not exchanging routing information with Matisse, so it does not know how to reach the networks
within the OSPF autonomous system.

Example 8-32. The MAC identifier of the DNS server is recorded in Matisse's ARP cache, indicating that
the server can be reached directly. If packets destined for the server had to be routed through Dali, the
MAC identifier for both the server and for Dali would be 0000.0c0a.2aa9 in this cache.

Matisse#show arp
Protocol  Address      Age (min)  Hardware Addr   Type  Interface
Internet  192.168.10.65       -   0005.5e6b.50a1  ARPA  FastEthernet0/1
Internet  192.168.10.33       -   0005.5e6b.50a0  ARPA  FastEthernet0/0
Internet  172.19.35.15        -   0005.5e6b.50a0  ARPA  FastEthernet0/0
Internet  172.19.35.1         1   0010.7b3c.6bd3  ARPA  FastEthernet0/0



Internet  172.19.35.2        22   0002.6779.0f4c  ARPA  FastEthernet0/0

So the one step needed to "close the circuit" is to tell Dali how to reach the OSPF networks. This is easily done
with a static route:

Dali(config)#ip route 192.168.0.0 255.255.0.0 172.19.35.15

Note that static routes are classless, so the one supernet entry can be used to match all addresses within the
OSPF autonomous system.

In this example, Matisse is not an ASBR. Although it sends packets to destinations outside of the autonomous
system, it is not accepting any information about exterior destinations and therefore is not originating any type 5
LSAs.

Figure 8-46 shows a new set of destinations reachable via Dali. Matisse must now become an ASBR and
advertise the routes into the OSPF domain. However, it must first learn the routes. This task can be done by
configuring static routes or by running a routing protocol that will communicate over the secondary network. In
either case, the routes must then be redistributed into OSPF.

Figure 8-46. The OSPF autonomous system must learn about the destinations reachable via Dali, but
Matisse's secondary address to Dali prevents the two routers from sharing information via OSPF.

[View full size image]

RIP, which has no difficulties with secondary addresses, is chosen to communicate with Dali. Matisse's
configuration is as shown in Example 8-33.

Example 8-33. RIP is added to Matisse's configuration.

interface FastEthernet0/0
 ip address 172.19.35.15 255.255.255.128 secondary
 ip address 192.168.10.33 255.255.255.240
!
router ospf 40
 redistribute rip metric 10 subnets
 network 192.168.10.2 0.0.0.0 area 192.168.10.0
 network 192.168.10.33 0.0.0.0 area 192.168.10.0
!
router rip
 network 172.19.0.0

This configuration enables RIP on the secondary network of FA0/0, allowing Matisse to learn routes from Dali
(Example 8-34). The routes are redistributed into OSPF (which is no longer running on the secondary address)
and assigned an OSPF cost of 10, with the command redistribute rip metric 10 subnets. See Chapter 11,



"Route Redistribution," for more details on redistribution. Example 8-35 shows that the routes are advertised into
the OSPF domain with default external type 2 (E2) metrics; notice that at Rubens the cost of these routes is still
10. Matisse advertises these external destinations with type 5 LSAs, making it an ASBR (Example 8-36).

Example 8-34. Dali has passed its routing information to Matisse via RIP.

Matisse#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

R    192.168.90.0/24 [120/1] via 172.19.35.1, 00:00:09, FastEthernet0/0
R    192.168.105.0/24 [120/1] via 172.19.35.1, 00:00:09, FastEthernet0/0
     192.168.30.0/29 is subnetted, 2 subnets
O IA    192.168.30.0 [110/193] via 192.168.10.1, 02:12:53, Serial0/0.1
O IA    192.168.30.8 [110/192] via 192.168.10.1, 02:12:53, Serial0/0.1
R    192.168.60.0/24 [120/1] via 172.19.35.1, 00:00:09, FastEthernet0/0
     192.168.10.0/24 is variably subnetted, 3 subnets, 3 masks
C       192.168.10.64/26 is directly connected, FastEthernet0/1
C       192.168.10.32/28 is directly connected, FastEthernet0/0
C       192.168.10.0/27 is directly connected, Serial0/0.1
     172.19.0.0/25 is subnetted, 1 subnets
C       172.19.35.0 is directly connected, FastEthernet0/0
R    192.168.80.0/24 [120/1] via 172.19.35.1, 00:00:10, FastEthernet0/0

     192.168.20.0/30 is subnetted, 1 subnets
O IA    192.168.20.0 [110/128] via 192.168.10.1, 02:13:06, Serial0/0.1
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.4 is directly connected, Loopback0
R    192.168.70.0/24 [120/1] via 172.19.35.1, 00:00:13, FastEthernet0/0
R    192.168.100.0/24 [120/1] via 172.19.35.1, 00:00:13, FastEthernet0/0
R    192.168.101.0/24 [120/1] via 172.19.35.1, 00:00:13, FastEthernet0/0

Example 8-35. The RIP-learned routes are redistributed into the OSPF autonomous system as path type
E2.

Rubens#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

O E2 192.168.90.0/24 [110/10] via 192.168.30.10, 02:25:59, Serial0/0.1
O E2 192.168.105.0/24 [110/10] via 192.168.30.10, 02:25:59, Serial0/0.1
     192.168.30.0/29 is subnetted, 2 subnets
C       192.168.30.0 is directly connected, FastEthernet0/0
C       192.168.30.8 is directly connected, Serial0/0.1
O E2 192.168.60.0/24 [110/10] via 192.168.30.10, 02:25:59, Serial0/0.1
     192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
O IA    192.168.10.32/28 [110/193] via 192.168.30.10, 02:26:04, Serial0/0.1
O IA    192.168.10.0/27 [110/192] via 192.168.30.10, 02:26:11, Serial0/0.1
     172.19.0.0/25 is subnetted, 1 subnets
O E2    172.19.35.0 [110/10] via 192.168.30.10, 00:00:27, Serial0/0.1



O E2 192.168.80.0/24 [110/10] via 192.168.30.10, 02:26:00, Serial0/0.1
     192.168.20.0/30 is subnetted, 1 subnets
O IA    192.168.20.0 [110/128] via 192.168.30.10, 02:26:17, Serial0/0.1
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.1 is directly connected, Loopback0O E2 192.168.70.0/24 [110/10]
via 192.168.30.10, 02:26:03, Serial0/0.1
O E2 192.168.100.0/24 [110/10] via 192.168.30.10, 02:26:03, Serial0/0.1
O E2 192.168.101.0/24 [110/10] via 192.168.30.10, 02:26:03, Serial0/0.

Example 8-36. Matisse (RID = 192.168.50.4) is now an ASBR because it is originating autonomous
system external LSAs to advertise the external routes.

Rubens#show ip ospf border-routers
OSPF Process 10 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route

i 192.168.50.2 [64] via 192.168.30.10, Serial0/0.1, ABR, Area 1, SPF 7
I 192.168.50.4 [192] via 192.168.30.10, Serial0/0.1, ASBR, Area 1, SPF 7

Case Study: Stub Areas

Because no type 5 LSAs are being originated within area 1 of Figure 8-46, it can be configured as a stub area.
Note that when an attached area is configured as a stub area, the Hellos originated by the router into that area
will have E = 0 in the Options field. Any router receiving these Hellos, which is not similarly configured, will drop
the packets, and an adjacency will not be established. If there is an existing adjacency, it will be broken.
Consequently, if an operational area is going to be reconfigured as a stub area, downtime should be scheduled;
routing will be disrupted until all routers are reconfigured.

A stub area is configured by adding the area stub command to the OSPF process as displayed in Example 8-37
and Example 8-38.

Example 8-37. Rubens is configured to make area 1 a stub area.

router ospf 10
 network 0.0.0.0 255.255.255.255 area 1
 area 1 stub

Example 8-38. Chardin is configured to make area 1 a stub area.

router ospf 20
 network 192.168.30.0 0.0.0.255 area 1
 network 192.168.20.0 0.0.0.255 area 0
 area 1 stub

Comparing the link-state database of Rubens before (Example 8-39) and after (Example 8-40) the configured
stub area shows that all autonomous system external LSAs and ASBR summary LSAs have been eliminated from
the database. In this case, the size of the database has been reduced by more than 50 percent.

Example 8-39. Rubens's database has a total of 14 LSAs before area 1 is configured as a stub area.

Rubens#show ip ospf database database-summary



            OSPF Router with ID (192.168.50.1) (Process ID 10)

Area 1 database summary
  LSA Type      Count    Delete   Maxage
  Router        2        0        0
  Network       0        0        0
  Summary Net   3        0        0
  Summary ASBR  1        0        0
  Type-7 Ext    0        0        0
  Opaque Link   0        0        0
  Opaque Area   0        0        0
  Subtotal      6        0        0

Process 10 database summary
  LSA Type      Count    Delete   Maxage
  Router        2        0        0
  Network       0        0        0
  Summary Net   3        0        0
  Summary ASBR  1        0        0
  Type-7 Ext    0        0        0
  Opaque Link   0        0        0
  Opaque Area   0        0        0
  Type-5 Ext    8        0        0

  Opaque AS     0        0        0
  Total         14       0        0

Example 8-40. The stub area configuration eliminates the eight type 5 LSAs and the single type 4 LSA
from Rubens's database. One type 3 LSA, which advertises the default route, has been added.

Rubens#show ip ospf database database-summary
            OSPF Router with ID (192.168.50.1) (Process ID 10)

Area 1 database summary
  LSA Type      Count    Delete   Maxage
  Router        2        0        0
  Network       0        0        0
  Summary Net   4        0        0
  Summary ASBR  0        0        0
  Type-7 Ext    0        0        0
  Opaque Link   0        0        0
  Opaque Area   0        0        0
  Subtotal      6        0        0

Process 10 database summary
  LSA Type      Count    Delete   Maxage
  Router        2        0        0
  Network       0        0        0
  Summary Net   4        0        0
  Summary ASBR  0        0        0
  Type-7 Ext    0        0        0
  Opaque Link   0        0        0
  Opaque Area   0        0        0

  Type-5 Ext    0        0        0
  Opaque AS     0        0        0
  Total         6        0        0

When a stub area is attached to an ABR, the router will automatically advertise a default route (destination
0.0.0.0) into the area via a Network Summary LSA. The database summary in Example 8-40 indicates this
additional type 3 LSA. The last entry in Rubens's route table (Example 8-41) shows the default route advertised



by Chardin.

Example 8-41. Rubens's route table shows that all external routes have been eliminated (compare this
to Example 8-35) and that a default route has been added.

Rubens#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is 192.168.30.10 to network 0.0.0.0

     192.168.30.0/29 is subnetted, 2 subnets
C       192.168.30.0 is directly connected, FastEthernet0/0
C       192.168.30.8 is directly connected, Serial0/0.1
     192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
O IA    192.168.10.32/28 [110/193] via 192.168.30.10, 00:05:24, Serial0/0.1
O IA    192.168.10.0/27 [110/192] via 192.168.30.10, 00:05:24, Serial0/0.1
     192.168.20.0/30 is subnetted, 1 subnets
O IA    192.168.20.0 [110/128] via 192.168.30.10, 00:05:24, Serial0/0.1
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.1 is directly connected, Loopback0
O*IA 0.0.0.0/0 [110/65] via 192.168.30.10, 00:05:25, Serial0/0.1

The ABR will advertise a default route with a cost of 1. The cost of the serial link between Rubens and Chardin is
64; Example 8-41 shows the total cost of the default route to be 64 + 1 = 65. This default cost can be changed
with the area default-cost command. For example, Chardin can be configured to advertise the default route with
a cost of 20 as shown in Example 8-42.

Example 8-42. Chardin's configuration sets the cost of the advertised default route.

router ospf 20
 network 192.168.30.0 0.0.0.255 area 1
 network 192.168.20.0 0.0.0.255 area 0
 area 1 stub
 area 1 default-cost 20

The resulting cost increase, 64 + 20 = 84, can be seen in Example 8-43. Changing the cost of the default route
has no real benefit here, but might be useful in stub areas with more than one ABR. Normally, each Internal
Router would merely choose the default route with the lowest cost. By manipulating the advertised cost, the
network administrator could cause all Internal Routers to use the same ABR. The second ABR, advertising a
higher cost, would be used only if the first were to fail.

Example 8-43. Rubens's route table reflects the results of changing the cost of the default route.

Rubens#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is 192.168.30.10 to network 0.0.0.0



     192.168.30.0/29 is subnetted, 2 subnets
C       192.168.30.0 is directly connected, FastEthernet0/0
C       192.168.30.8 is directly connected, Serial0/0.1
     192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
O IA    192.168.10.32/28 [110/193] via 192.168.30.10, 00:18:49, Serial0/0.1
O IA    192.168.10.0/27 [110/192] via 192.168.30.10, 00:18:49, Serial0/0.1
     192.168.20.0/30 is subnetted, 1 subnets
O IA    192.168.20.0 [110/128] via 192.168.30.10, 00:18:49, Serial0/0.1
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.1 is directly connected, Loopback0
O*IA 0.0.0.0/0 [110/84] via 192.168.30.10, 00:10:36, Serial0/0.1

Case Study: Totally Stubby Areas

Totally stubby areas are configured by placing the keyword no-summary at the end of the area stub command.
This step is necessary only at the ABR; the Internal Routers use the standard stub area configuration. To make
area 1 in Figure 8-46 a totally stubby area, Chardin's configuration would be as shown in Example 8-44.

Example 8-44. Chardin is configured to make area 1 a totally stubby area.

router ospf 20
 network 192.168.30.0 0.0.0.255 area 1
 network 192.168.20.0 0.0.0.255 area 0
 area 1 stub no-summary

Example 8-45 shows that the LSAs in Rubens's database have been reduced to three; Example 8-46 shows the
route table.

Example 8-45. Changing area 1 to a totally stubby area eliminates all but one of the type 3 LSAs (the
default route).

Rubens#show ip ospf database database-summary
            OSPF Router with ID (192.168.50.1) (Process ID 10)

Area 1 database summary
  LSA Type      Count    Delete   Maxage
  Router        2        0        0
  Network       0        0        0
  Summary Net   1        0        0
  Summary ASBR  0        0        0
  Type-7 Ext    0        0        0
  Opaque Link   0        0        0
  Opaque Area   0        0        0
  Subtotal      3        0        0

Process 10 database summary
  LSA Type      Count    Delete   Maxage
  Router        2        0        0
  Network       0        0        0
  Summary Net   1        0        0
  Summary ASBR  0        0        0
  Type-7 Ext    0        0        0
  Opaque Link   0        0        0
  Opaque Area   0        0        0

  Type-5 Ext    0        0        0
  Opaque AS     0        0        0
  Total         3        0        0



Example 8-46. A route table in a totally stubby area will contain only intra-area routes and the default
route.

Rubens#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is 192.168.30.10 to network 0.0.0.0

     192.168.30.0/29 is subnetted, 2 subnets
C       192.168.30.0 is directly connected, FastEthernet0/0
C       192.168.30.8 is directly connected, Serial0/0.1
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.1 is directly connected, Loopback0
O*IA 0.0.0.0/0 [110/84] via 192.168.30.10, 00:15:52, Serial0/0.1

Case Study: Not-So-Stubby Areas

The earlier case study, "OSPF and Secondary Addresses," left off with Matisse accepting routes from Dali via RIP
and redistributing them into the OSPF domain (see Figure 8-46). This step makes Matisse an ASBR, and by
extension makes area 192.168.10.0 ineligible to become a stub or totally stubby area. However, there is no need
for AS External LSAs to enter the area from the backbone area; therefore area 192.168.10.0 can be configured as
an NSSA. Example 8-47 shows the configuration at Matisse.

Example 8-47. Matisse is configured to make area 192.168.10.0 a not-so-stubby area.

router ospf 40
 redistribute rip metric 10
 network 192.168.10.2 0.0.0.0 area 192.168.10.0
 network 192.168.10.33 0.0.0.0 area 192.168.10.0
 area 192.168.10.0 nssa
!
router rip
 network 172.19.0.0

The same area nssa statement shown here is configured at Goya. Because Goya is an ABR, it will translate type
7 LSAs received on the NSSA-attached interface into type 5 LSAs. These translated LSAs will be flooded into the
backbone and hence to the other areas. Comparing the route tables of Goya and Chardin shows that Goya has
tagged the external routes as NSSA[28] (Example 8-48). Chardin has tagged the routes as E2 (Example 8-49),
indicating that they have been learned from type 5 LSAs.

[28] N2 indicates the same metric calculation as E2that is, only the external cost is used. A subsequent
example will demonstrate E1 and N1 metric types.

Example 8-48. The external routes learned from Matisse are tagged as NSSA routes at Goya.

Goya#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route



Gateway of last resort is not set

O N2 192.168.90.0/24 [110/10] via 192.168.10.2, 00:00:41, Serial0/0.1
O N2 192.168.105.0/24 [110/10] via 192.168.10.2, 00:00:41, Serial0/0.1
     192.168.30.0/29 is subnetted, 2 subnets
O IA    192.168.30.0 [110/129] via 192.168.20.1, 00:00:41, Serial0/0.2
O IA    192.168.30.8 [110/128] via 192.168.20.1, 00:00:41, Serial0/0.2
O N2 192.168.60.0/24 [110/10] via 192.168.10.2, 00:00:41, Serial0/0.1
     192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
O       192.168.10.32/28 [110/65] via 192.168.10.2, 00:00:43, Serial0/0.1
C       192.168.10.0/27 is directly connected, Serial0/0.1
     172.19.0.0/25 is subnetted, 1 subnets
O N2    172.19.35.0 [110/10] via 192.168.10.2, 00:00:43, Serial0/0.1
O N2 192.168.80.0/24 [110/10] via 192.168.10.2, 00:00:43, Serial0/0.1
     192.168.20.0/30 is subnetted, 1 subnets
C       192.168.20.0 is directly connected, Serial0/0.2
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.3 is directly connected, Loopback0
O N2 192.168.70.0/24 [110/10] via 192.168.10.2, 00:00:55, Serial0/0.1
O N2 192.168.100.0/24 [110/10] via 192.168.10.2, 00:00:56, Serial0/0.1
O N2 192.168.101.0/24 [110/10] via 192.168.10.2, 00:00:56, Serial0/0.1

Example 8-49. Chardin has tagged the same routes as E2, indicating they have been learned from
autonomous system external LSAs.

Chardin#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

O E2 192.168.90.0/24 [110/10] via 192.168.20.2, 00:02:49, Serial0/0.2
O E2 192.168.105.0/24 [110/10] via 192.168.20.2, 00:02:49, Serial0/0.2
     192.168.30.0/29 is subnetted, 2 subnets
O       192.168.30.0 [110/65] via 192.168.30.9, 00:08:41, Serial0/0.1
C       192.168.30.8 is directly connected, Serial0/0.1
O E2 192.168.60.0/24 [110/10] via 192.168.20.2, 00:02:49, Serial0/0.2
     192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
O IA    192.168.10.32/28 [110/129] via 192.168.20.2, 00:02:55, Serial0/0.2
O IA    192.168.10.0/27 [110/128] via 192.168.20.2, 00:03:16, Serial0/0.2
     172.19.0.0/25 is subnetted, 1 subnets
O E2    172.19.35.0 [110/10] via 192.168.20.2, 00:02:50, Serial0/0.2
O E2 192.168.80.0/24 [110/10] via 192.168.20.2, 00:02:50, Serial0/0.2
     192.168.20.0/30 is subnetted, 1 subnets
C       192.168.20.0 is directly connected, Serial0/0.2
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.2 is directly connected, Loopback0
O E2 192.168.70.0/24 [110/10] via 192.168.20.2, 00:02:52, Serial0/0.2
O E2 192.168.100.0/24 [110/10] via 192.168.20.2, 00:02:52, Serial0/0.2
O E2 192.168.101.0/24 [110/10] via 192.168.20.2, 00:02:52, Serial0/0.2

This translation can also be observed by examining Goya's database. Example 8-50 shows that the database
contains both type 7 and type 5 LSAs to the same external routes. The originating router for the type 7 LSAs is
Matisse, whereas the originating router for the type 5 LSAs is Goya.

Example 8-50. Goya's link-state database indicates that the type 7 LSAs from Matisse (192.168.50.4)



have been translated into type 5 LSAs by Goya (192.168.50.3).

                Type-7 AS External Link States (Area 192.168.10.0)

Link ID         ADV Router     Age          Seq#       Checksum Tag
172.19.35.0     192.168.50.4   371          0x80000001 0x00C444 0
192.168.60.0    192.168.50.4   371          0x80000001 0x00A521 0
192.168.70.0    192.168.50.4   371          0x80000001 0x003785 0
192.168.80.0    192.168.50.4   371          0x80000001 0x00C8E9 0
192.168.90.0    192.168.50.4   371          0x80000001 0x005A4E 0
192.168.100.0   192.168.50.4   371          0x80000001 0x00EBB2 0
192.168.101.0   192.168.50.4   371          0x80000001 0x00E0BC 0
192.168.105.0   192.168.50.4   371          0x80000001 0x00B4E4 0

                Type-5 AS External Link States

Link ID         ADV Router      Age         Seq#       Checksum Tag
172.19.35.0     192.168.50.3    305         0x80000001 0x005FB4 0
192.168.60.0    192.168.50.3    306         0x80000001 0x004091 0
192.168.70.0    192.168.50.3    306         0x80000001 0x00D1F5 0
192.168.80.0    192.168.50.3    306         0x80000001 0x00635A 0
192.168.90.0    192.168.50.3    390         0x80000001 0x00F4BE 0
192.168.100.0   192.168.50.3    390         0x80000001 0x008623 0
192.168.101.0   192.168.50.3    390         0x80000001 0x007B2D 0
192.168.105.0   192.168.50.3    390         0x80000001 0x004F55 0

Several configuration options are available for the ABR. First, the no-summary option can be used with the area
nssa command to block the flooding of type 3 and type 4 LSAs into the NSSA. To turn area 192.168.10.0 into a
somewhat schizophrenically named "totally stubby not-so-stubby" area, Goya's configuration would be as shown
in Example 8-51.

Example 8-51. Goya is configured to make area 192.168.10.0 a totally stubby not-so-stubby area.

router ospf 30
 network 192.168.20.0 0.0.0.3 area 0
 network 192.168.10.0 0.0.0.31 area 192.168.10.0
 area 192.168.10.0 nssa no-summary

Matisse's route table (Example 8-52) shows the elimination of all inter-area routes and the addition of a default
route advertised by Goya.

Example 8-52. All inter-area routes have been replaced with a default route to the ABR.

Matisse#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is 192.168.10.1 to network 0.0.0.0

R    192.168.90.0/24 [120/1] via 172.19.35.1, 00:00:20, FastEthernet0/0
R    192.168.105.0/24 [120/1] via 172.19.35.1, 00:00:20, FastEthernet0/0
R    192.168.60.0/24 [120/1] via 172.19.35.1, 00:00:20, FastEthernet0/0
     192.168.10.0/24 is variably subnetted, 3 subnets, 3 masks
C       192.168.10.64/26 is directly connected, FastEthernet0/1
C       192.168.10.32/28 is directly connected, FastEthernet0/0
C       192.168.10.0/27 is directly connected, Serial0/0.1



     172.19.0.0/25 is subnetted, 1 subnets
C       172.19.35.0 is directly connected, FastEthernet0/0
R    192.168.80.0/24 [120/1] via 172.19.35.1, 00:00:21, FastEthernet0/0
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.4 is directly connected, Loopback0
R    192.168.70.0/24 [120/1] via 172.19.35.1, 00:00:21, FastEthernet0/0

R    192.168.100.0/24 [120/1] via 172.19.35.1, 00:00:22, FastEthernet0/0
R    192.168.101.0/24 [120/1] via 172.19.35.1, 00:00:22, FastEthernet0/0
O*IA 0.0.0.0/0 [110/65] via 192.168.10.1, 00:11:40, Serial0/0.1

In Figure 8-47, the link to Dali has been moved from Matisse to Goya; the IP address has also moved. Goya is
now an ASBR redistributing RIP-learned routes into OSPF.

Figure 8-47. The link to Dali has moved to Goya, which now speaks RIP to Dali and redistributes the
learned routes into OSPF.
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When an ABR is also an ASBR and is connected to a not-so-stubby area, the default behavior is to advertise the
redistributed routes into the NSSA as shown in Example 8-53.

Example 8-53. An ABR that is also an ASBR will advertise the external routes into an NSSA with type 7
LSAs. In this example, Goya is advertising the external routes with an N1 metric type.

Matisse#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

O N1 192.168.90.0/24 [110/74] via 192.168.10.1, 00:00:07, Serial0/0.1
O N1 192.168.105.0/24 [110/74] via 192.168.10.1, 00:00:07, Serial0/0.1
     192.168.30.0/29 is subnetted, 2 subnets
O IA    192.168.30.0 [110/193] via 192.168.10.1, 00:03:11, Serial0/0.1
O IA    192.168.30.8 [110/192] via 192.168.10.1, 00:03:11, Serial0/0.1
O N1 192.168.60.0/24 [110/74] via 192.168.10.1, 00:00:07, Serial0/0.1
     192.168.10.0/24 is variably subnetted, 3 subnets, 3 masks
C       192.168.10.64/26 is directly connected, FastEthernet0/1
C       192.168.10.32/28 is directly connected, FastEthernet0/0
C       192.168.10.0/27 is directly connected, Serial0/0.1
     172.19.0.0/25 is subnetted, 1 subnets



O N1    172.19.35.0 [110/74] via 192.168.10.1, 00:03:07, Serial0/0.1
O N1 192.168.80.0/24 [110/74] via 192.168.10.1, 00:00:08, Serial0/0.1
     192.168.20.0/30 is subnetted, 1 subnets

O IA    192.168.20.0 [110/128] via 192.168.10.1, 00:03:14, Serial0/0.1
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.4 is directly connected, Loopback0
O N1 192.168.70.0/24 [110/74] via 192.168.10.1, 00:00:10, Serial0/0.1
O N1 192.168.100.0/24 [110/74] via 192.168.10.1, 00:00:10, Serial0/0.1
O N1 192.168.101.0/24 [110/74] via 192.168.10.1, 00:00:10, Serial0/0.1

The default redistribution may be turned off on an ABR/ASBR by adding the statement no-redistribution to the
area nssa command. In the sample internet, no types 3, 4, 5, or 7 LSAs should be sent into area 192.168.10.0
from the ABR. The desired redistribution is accomplished by the Example 8-54 configuration at Goya:[29]

[29] Note the metric-type 1 statement in the redistribution command. This statement causes the external
destinations to be advertised with an E1 metric; within the NSSA, the metric type becomes N1, as
shown in Example 8.53.

Example 8-54. Goya is configured to not redistribute RIP routes into the NSSA 192.168.10.0.

interface Ethernet0/0
 ip address 172.19.35.15 255.255.255.128
!
router ospf 30
 redistribute rip metric 10 metric-type 1 subnets
 network 192.168.20.0 0.0.0.3 area 0
 network 192.168.10.0 0.0.0.31 area 192.168.10.0
 area 192.168.10.0 nssa no-redistribution no-summary
!
router rip
 network 172.19.0.0

Here the area nssa command blocks type 5 LSAs from entering the area through Goya; no-redistribution
blocks type 7 LSAs, and no-summary blocks types 3 and 4. As before, the no-summary command also causes
Goya to send a single type 3 LSA into the area to advertise a default route. Example 8-55 shows Matisse's route
table after type 7 redistribution is disabled at Goya. Note that the external networks are still reachable, even
though they are not in the table, because of the default route.

Example 8-55. After no-redistribution is added to Goya's area nssa command, the route table of
Example 8-53 no longer contains routes learned from type 7 LSAs.

Matisse#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is 192.168.10.1 to network 0.0.0.0

     192.168.10.0/24 is variably subnetted, 3 subnets, 3 masks
C       192.168.10.64/26 is directly connected, FastEthernet0/1
C       192.168.10.32/28 is directly connected, FastEthernet0/0
C       192.168.10.0/27 is directly connected, Serial0/0.1
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.4 is directly connected, Loopback0
O*IA 0.0.0.0/0 [110/65] via 192.168.10.1, 00:00:51, Serial0/0.1



In the final example, Goya is to allow types 3 and 4 LSAs into the NSSA, but not types 5 and 7. The problem is
that when the no-summary statement is removed, the ABR will no longer originate a type 3 LSA advertising a
default route. Without a default route, the exterior destinations will not be reachable from within the NSSA. The
statement default-information-originate, added to the area nssa command, will cause the ABR to advertise a
default route into the NSSAthis time, with a type 7 LSA. Using this statement, Goya's OSPF configuration is
displayed in Example 8-56.

Example 8-56. Default route is originated at Goya with the default-information-originate command.

router ospf 30
 redistribute rip metric 10 metric-type 1 subnets
 network 192.168.20.0 0.0.0.3 area 0
 network 192.168.10.0 0.0.0.31 area 192.168.10.0
 area 192.168.10.0 nssa no-redistribution default-information-originate

Example 8-57 shows Matisse's route table after the reconfiguration. The table contains inter-area routes and a
default route with an N2 tag indicating that the route was learned from a type 7 LSA.

Example 8-57. Adding the default-information-originate statement to the area nssa command causes
the ABR to advertise a default route into an NSSA.

Matisse#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is 192.168.10.1 to network 0.0.0.0

     192.168.30.0/29 is subnetted, 2 subnets
O IA    192.168.30.0 [110/193] via 192.168.10.1, 00:00:26, Serial0/0.1
O IA    192.168.30.8 [110/192] via 192.168.10.1, 00:00:26, Serial0/0.1
     192.168.10.0/24 is variably subnetted, 3 subnets, 3 masks
C       192.168.10.64/26 is directly connected, FastEthernet0/1
C       192.168.10.32/28 is directly connected, FastEthernet0/0
C       192.168.10.0/27 is directly connected, Serial0/0.1
     192.168.20.0/30 is subnetted, 1 subnets
O IA    192.168.20.0 [110/128] via 192.168.10.1, 00:00:27, Serial0/0.1
     192.168.50.0/32 is subnetted, 1 subnets
C       192.168.50.4 is directly connected, Loopback0
O*N2 0.0.0.0/0 [110/1] via 192.168.10.1, 00:00:22, Serial0/0.1

Case Study: Address Summarization

Although stub areas conserve resources within non-backbone areas by preventing certain LSAs from entering,
these areas do nothing to conserve resources on the backbone. All addresses within an area are still advertised
out to the backbone. This situation is where address summarization can help. Like stub areas, address
summarization conserves resources by reducing the number of LSAs flooded. It also conserves resources by
hiding instabilities. For example, a "flapping" subnet will cause LSAs to be flooded throughout the network at each
state transition. However, if that subnet address is subsumed by a summary address, the individual subnet and its
instabilities are no longer advertised.

The Cisco OSPF can perform two types of address summarization: inter-area summarization and external route
summarization. Inter-area summarization is, as the name implies, the summarization of addresses between areas;



this type of summarization is always configured on ABRs. External route summarization allows a set of external
addresses to be redistributed into an OSPF domain as a summary address and is configured on ASBRs. Inter-
area summarization is covered in this section, and external route summarization is covered in Chapter 11.

In Figure 8-48, area 15 contains eight subnets: 10.0.0.0/16 through 10.7.0.0/16. Figure 8-49 shows that these
addresses can be represented with the single summary address 10.0.0.0/13.

Figure 8-48. The addresses in areas 15 and 25 can be summarized into the backbone area.

[View full size image]

Figure 8-49. The summary address 10.0.0.0/13 represents the range of addresses from 10.0.0.0/16 to
10.7.0.0/16.

               11111111111111110000000000000000 = 16-bit mask
               00001010000000000000000000000000 = 10.0.0.0/16
               00001010000000010000000000000000 = 10.1.0.0/16
               00001010000000100000000000000000 = 10.2.0.0/16
               00001010000000110000000000000000 = 10.3.0.0/16
               00001010000001000000000000000000 = 10.4.0.0/16
               00001010000001010000000000000000 = 10.5.0.0/16
               00001010000001100000000000000000 = 10.6.0.0/16
               00001010000001110000000000000000 = 10.7.0.0/16
               00001010000000000000000000000000 = 10.0.0.0/13

An ABR can be configured to advertise a summary address either into the backbone area or into a non-backbone
area. Best practice dictates that a non-backbone area's addresses should be summarized into the backbone by
its own ABR, as opposed to having all other ABRs summarize the area into their areas. Then, from the backbone
area, the summary will be advertised across the backbone and into the other areas. This both simplifies the router
configurations and reduces the size of the LS database in the backbone.

The area range command specifies the area to which the summary address belongs, the summary address, and
the address mask. Recall from Chapter 7, "Enhanced Interior Gateway Routing Protocol (EIGRP)," that when a
summary route is configured for EIGRP, a route to the null interface is automatically entered into the route table to
prevent black holes and route loops.[30] OSPF also enters this route automatically. In the IOS mainline versions
earlier then 12.1, however, the route to the null interface will not be entered automatically. In addition, in IOS
releases that have the capability of creating this route, the router can be configured to not install it in the route
table using the command no discard-route. Therefore, whenever you are configuring summary routes within an
OSPF domain, be sure to verify that the route for the summary address, pointing to the null interface, is created. If
it is not automatically created, be sure to add it or to issue the discard-route command.

[30] The reasons for this route are discussed in more detail, with examples, in Chapters 11, "Route



Redistribution," and 12, "Default Routes and On-Demand Routing."

Example 8-58 shows Pena's OSPF configuration.

Example 8-58. Pena's OSPF configuration.

router ospf 1
 network 10.0.0.0 0.7.255.255 area 15
 network 10.8.0.0 0.7.255.255 area 0
 area 15 range 10.0.0.0 255.248.0.0
!
ip route 10.0.0.0 255.248.0.0 Null0

Figure 8-49 shows that the range of addresses represented by 10.0.0.0/13 is contiguousthat is, the three bits that
are summarized constitute every combination from 000 to 111. The addresses in area 25 are different. These do
not form a contiguous range. They may, however, still be summarized with the Example 8-59 configuration at
Hurd.

Example 8-59. Hurd's OSPF configuration.

router ospf 1
 network 10.8.0.0 0.0.255.255 area 0
 network 172.20.0.0 0.0.255.255 area 25
 area 25 range 172.16.0.0 255.240.0.0
!
ip route 172.16.0.0 255.240.0.0 Null0

This summary will work, even if some of the addresses in the range appear elsewhere in the network. In Figure 8-
48, network 172.17.0.0/16 is in area 15, although it belongs to the set of addresses being summarized from area
25. Pena advertises this address into the backbone area, where Hurd learns it and advertises it into area 25. The
accompanying mask is more specific (that is, longer) than the mask of the summary address 172.16.0.0/12;
because OSPF is classless, it will route destination addresses belonging to 172.17.0.0 to the correct destination.

Although the address configuration of Figure 8-48 will work, it is an undesirable design practice. The point of
summarization is to conserve resources; network 172.17.1.0/24 must be advertised across the backbone
independently of 172.16.0.0/12. Such a design also creates the potential for route loops if default addresses are
used. This problem is discussed in Chapter 12.

Notice also in Figure 8-48 that subnets 172.16.27.0/25 (at Gorman) and 172.16.27.192/29 (at Okeeffe) are
discontiguous. Again because OSPF is a classless routing protocol, Gorman and Okeeffe do not act as network
border routers. The subnets and their masks are advertised into network 172.20.0.0, and no routing ambiguities
will occur.

The default behavior of the area range command is to advertise the range specified. It might be desirable to
suppress the advertisement of a range of addresses. The area range command with the keyword not-advertise
causes prefixes in the specified range to be suppressed. They are not advertised in LSAs.

Pena is configured to suppress the range 172.17.0.0/16. Pena's configuration becomes as displayed in Example
8-60.

Example 8-60. Pena is configured to suppress the advertisement of a range of addresses.

router ospf 1
 area 15 range 10.0.0.0 255.248.0.0
 area 15 range 172.17.0.0 255.255.0.0 not-advertise
 network 10.0.0.0 0.7.255.255 area 15
 network 10.8.0.0 0.7.255.255 area 0
 network 172.17.0.0 0.0.255.255 area 15



This command has the desired affect of suppressing the 172.17.0.0/16 range, but it has an undesirable
consequence. Look at the route table on Hurd before (Example 8-61) and after (Example 8-62) entering the
command.

Example 8-61. Hurd's route table before Pena suppressed an address range shows two external routes.

Hurd#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

     172.17.0.0/16 is variably subnetted, 2 subnets, 2 masks
O IA    172.17.1.0/24 [110/11] via 10.8.1.2, 00:03:29, Ethernet0/0
O IA    172.17.0.1/32 [110/12] via 10.8.1.2, 00:03:29, Ethernet0/0
     172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
O       172.16.27.192/29 [110/65] via 172.20.1.6, 00:03:29, Serial0/0.2
O       172.16.27.0/25 [110/65] via 172.20.1.2, 00:03:29, Serial0/0.1
     172.20.0.0/30 is subnetted, 2 subnets
C       172.20.1.0 is directly connected, Serial0/0.1
C       172.20.1.4 is directly connected, Serial0/0.2
     10.0.0.0/8 is variably subnetted, 4 subnets, 3 masks
C       10.8.1.0/24 is directly connected, Ethernet0/0
O IA    10.0.0.0/13 [110/11] via 10.8.1.2, 00:03:30, Ethernet0/0
O E2    10.100.0.0/16 [110/10] via 10.8.1.2, 00:03:30, Ethernet0/0
O E2    10.101.0.0/16 [110/10] via 10.8.1.2, 00:03:32, Ethernet0/0
S    172.16.0.0/12 is directly connected, Null0

Example 8-62. Hurd's route table after Pena suppresses a range shows the external routes are no
longer in the route table.

Hurd#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

     172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
O       172.16.27.192/29 [110/65] via 172.20.1.6, 00:06:11, Serial0/0.2
O       172.16.27.0/25 [110/65] via 172.20.1.2, 00:06:11, Serial0/0.1
     172.20.0.0/30 is subnetted, 2 subnets
C       172.20.1.0 is directly connected, Serial0/0.1
C       172.20.1.4 is directly connected, Serial0/0.2
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C       10.8.1.0/24 is directly connected, Ethernet0/0
O IA    10.0.0.0/13 [110/11] via 10.8.1.2, 00:06:12, Ethernet0/0
S    172.16.0.0/12 is directly connected, Null0

The external routes learned via RIP on Wyeth, 10.100.0.0 and 10.101.0.0, are no longer in Hurd's route table.
Example 8-63 displays the OSPF database for 10.100.0.0 on Hurd. Notice the specified forwarding address.



Example 8-63. The type 5 external link state shows the forwarding address to be the address of the
router that originated the external route.

Hurd#show ip ospf data external
            OSPF Router with ID (172.20.1.5) (Process ID 1)

                Type-5 AS External Link States

  Routing Bit Set on this LSA
  LS age: 421
  Options: (No TOS-capability, DC)
  LS Type: AS External Link
  Link State ID: 10.100.0.0 (External Network Number )
  Advertising Router: 172.17.0.1
  LS Seq Number: 80000001
  Checksum: 0xF1CC
  Length: 36
  Network Mask: /16
        Metric Type: 2 (Larger than any link state path)
        TOS: 0
        Metric: 10
        Forward Address: 172.17.0.1
        External Route Tag: 0

The forwarding address is the loopback interface of Wyeth. If the forwarding address in an external LSA is
specified, and this address is not reachable, the address contained in the LSA is not inserted into the route table.
When Pena translates type 7 NSSA LSAs into type 5 LSAs, by default the forwarding address is transferred from
the type 7 to the type 5. The ABR can be configured to suppress the forwarding address during the translation,
replacing the specified address with the address 0.0.0.0. When another router receives the type 5 external LSA
with the forwarding address suppressed, instead of trying to direct traffic for the external address to the
forwarding address, the receiving router will attempt to direct the traffic to the type 7 to type 5 translating ABR
router.

Example 8-64 has Pena's new configuration.

Example 8-64. Pena's configuration suppresses the inclusion of a forwarding address in translated type
5 LSAs.

router ospf 1
 area 15 range 10.0.0.0 255.248.0.0
 area 15 range 172.17.0.0 255.255.0.0 not-advertise
 network 10.0.0.0 0.7.255.255 area 15
 network 10.8.0.0 0.7.255.255 area 0
 network 172.17.0.0 0.0.255.255 area 15
 area 15 nssa translate type7 suppress-fa

Example 8-65 shows Hurd's external database entry for 10.100.0.0, and Example 8-66 shows Hurd's new route
table.

Example 8-65. The external OSPF database entry shows a suppressed forwarding address.

Hurd#show ip ospf data external
            OSPF Router with ID (172.20.1.5) (Process ID 1)

                Type-5 AS External Link States

  Routing Bit Set on this LSA



  LS age: 13
  Options: (No TOS-capability, DC)
  LS Type: AS External Link
  Link State ID: 10.100.0.0 (External Network Number )
  Advertising Router: 172.17.0.1
  LS Seq Number: 80000002
  Checksum: 0xA9D2
  Length: 36
  Network Mask: /16
        Metric Type: 2 (Larger than any link state path)
        TOS: 0
        Metric: 10
        Forward Address: 0.0.0.0
        External Route Tag: 0

Example 8-66. The external routes for 10.100.0.0 and 10.101.0.0 are inserted into the route table after
suppressing the forwarding address.

Hurd#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

     172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
O       172.16.27.192/29 [110/65] via 172.20.1.6, 00:09:32, Serial0/0.2
O       172.16.27.0/25 [110/65] via 172.20.1.2, 00:09:32, Serial0/0.1
     172.20.0.0/30 is subnetted, 2 subnets
C       172.20.1.0 is directly connected, Serial0/0.1
C       172.20.1.4 is directly connected, Serial0/0.2
     10.0.0.0/8 is variably subnetted, 4 subnets, 3 masks
C       10.8.1.0/24 is directly connected, Ethernet0/0
O IA    10.0.0.0/13 [110/11] via 10.8.1.2, 00:09:33, Ethernet0/0
O E2    10.100.0.0/16 [110/10] via 10.8.1.2, 00:00:46, Ethernet0/0
O E2    10.101.0.0/16 [110/10] via 10.8.1.2, 00:00:46, Ethernet0/0
S    172.16.0.0/12 is directly connected, Null0

The forwarding address displayed in Hurd's database is now 0.0.0.0 and the two external routes are back in the
route table.

Case Study: Filtering Between Areas

Another LAN is added to Okeeffe. Devices on the LAN are to be accessed by other devices within area 25, but
not from the rest of the network. Another way to limit and control the addresses that are exchanged between
areas is to configure LSA type 3 filtering on ABRs. The ABRs can filter network addresses being advertised by
type 3 LSAs either into or out of an area.

A LAN with address 192.168.1.0/24 is added to Okeeffe in area 25. This address is advertised in LSAs
throughout the network even though it is only to be accessed by other devices in area 25. To prevent the address
from being advertised outside area 25, type 3 LSA filtering is configured on Hurd as shown in Example 8-67.

Example 8-67. Hurd uses type 3 LSA filtering.

router ospf 1
 area 25 filter-list prefix area25outbound out
!



ip prefix-list area25outbound seq 10 deny 192.168.1.0/24
ip prefix-list area25outbound seq 20 permit 0.0.0.0/0 le 32

The OSPF command area PID filter-list prefix specifies the name of a filter list to apply to outbound or inbound
LSAs. Outbound lists filter LSAs sent into areas other then the one specified by the command. In our example, the
list filters LSAs with addresses originating in area 25 and being sent into non-area 25 areas, such as area 0.
Inbound lists filter LSAs as they are sent into area 25.

The first line of the prefix list is clear. The statement denies address 192.168.1.0/24 from being advertised in a
type 3 LSA. The second line permits everything else: every address with a mask from length 0 to length 32 bits.
This second line is required because there is a implicit "deny all" statement at the end of the prefix list.
192.168.1.0/24 is prevented from being sent in type 3 LSAs outside of area 25. Every other address is permitted.

Case Study: Authentication

OSPF packets can be authenticated to prevent inadvertent or intentional introduction of bad routing information.
Table 8-8 lists the types of authentication available. Null authentication (type 0), which means no authentication
information is included in the packet header, is the default. Authentication using simple clear-text passwords (type
1) or MD5 cryptographic checksums (type 2) can be configured. When authentication is configured, it must be
configured for an entire area.

If increased network security is the objective, type 1 authentication should be used only when devices within an
area cannot support the more secure type 2 authentication. Clear-text authentication leaves the network
vulnerable to a "sniffer attack," in which packets are captured by a protocol analyzer and the passwords are read
(see Chapter 6 and especially Figure 6.8). However, type 1 authentication can be useful when performing OSPF
reconfigurations. For example, separate passwords can be used on "old" OSPF routers and "new" OSPF routers
sharing a common broadcast network to prevent them from talking to each other.

To configure type 1 authentication for an area, the command ip ospf authentication-key  is used to assign a
password of up to eight octets to each interface attached to the area. The passwords do not have to be the same
throughout the area, but must be the same between neighbors. Type 1 authentication is then enabled by entering
the area authentication command to the OSPF configuration.

Referring to Figure 8-48, type 1 authentication is enabled for areas 0 and 25. Example 8-68 displays Hurd's
configuration.

Example 8-68. Hurd is configured to use clear text authentication.

interface Ethernet 0/0
 ip address 10.8.1.1 255.255.255.0
 ip ospf authentication-key santafe
interface Serial 0/0.1
 ip address 172.20.1.1 255.255.255.252
 ip ospf authentication-key taos
interface Serial 0/0.2
 ip address 172.20.1.5 255.255.255.252
 ip ospf authentication-key abiquiu
router ospf 1
 network 10.8.0.0 0.0.255.255 area 0
 network 172.20.0.0 0.0.255.255 area 25
 area 25 range 172.16.0.0 255.240.0.0
 area 0 authentication
 area 25 authentication
ip route 172.16.0.0 255.240.0.0 null0

The password "santafe" is used between Hurd and Pena; "taos" is used between Hurd and Gorman, and



"abiquiu" is used between Hurd and Okeeffe.

The MD5 algorithm, used by type 2 authentication, computes a hash value from the OSPF packet contents and a
password (or key). This hash value is transmitted in the packet, along with a key ID and a non-decreasing
sequence number. The receiver, knowing the same password, will calculate its own hash value. If nothing in the
message has changed, the receiver's hash value should match the sender's value transmitted with the message.
The key ID allows routers to reference multiple passwords, making password changes easier and more secure.
An example of password migration is included in this case study. The sequence number prevents "replay attacks,"
in which OSPF packets are captured, modified, and retransmitted to a router.

To configure type 2 authentication for an area, the command ip ospf message-digest-key md5 assigns a
password of up to 16 bytes and key ID between 1 and 255 to each interface attached to the area. Like type 1, the
passwords do not have to be the same throughout the area, but both the key ID and the password must be the
same between neighbors. Type 2 authentication is then enabled by entering the area authentication message-
digest command to the OSPF configuration.

Hurd is configured to use type 2 authentication as shown in Example 8-69.

Example 8-69. Hurd is configured to use MD5 authentication.

interface Ethernet 0/0
 ip address 10.8.1.1 255.255.255.0
 ip ospf message-digest-key 5 md5 santafe
interface Serial 0/0.1
 ip address 172.20.1.1 255.255.255.252
 ip ospf message-digest-key 10 md5 taos
interface Serial 0/0.2
 ip address 172.20.1.5 255.255.255.252
 ip ospf message-digest-key 15 md5 abiquiu
router ospf 1
 network 10.8.0.0 0.0.255.255 area 0
 network 172.20.0.0 0.0.255.255 area 25
 area 25 range 172.16.0.0 255.240.0.0
 area 0 authentication message-digest
 area 25 authentication message-digest
ip route 172.16.0.0 255.240.0.0 null0

The key allows the password to be changed without having to disable authentication. For example, to change the
password between Hurd and Okeeffe, the new password would be configured with a different key. Example 8-70
shows Hurd's configuration.

Example 8-70. Hurd is configured with a new MD5 key.

interface Serial0/0.2
 ip address 172.20.1.5 255.255.255.252
 ip ospf message-digest-key 15 md5 abiquiu
 ip ospf message-digest-key 20 md5 steiglitz

Hurd will now send duplicate copies of each OSPF packet out S0/0.2; one will be authenticated with key 15, the
other with key 20. When Hurd begins receiving OSPF packets from Okeeffe authenticated with key 20, it will stop
sending packets with key 15. Once the new key is in use, the old key can be removed from both routers with the
command no ip ospf message-digest-key 15 md5 abiquiu.

The passwords in an operational network should never be as predictable as the ones used in these examples.
Adding the command service password-encryption to the configuration file of all routers using authentication is



also wise. This change will cause the router to encrypt the passwords in any display of the configuration file,
thereby guarding against the password being learned by simply observing a text copy of the router's
configuration. With encryption, Example 8-71 is a display of what Hurd's configuration would include.

Example 8-71. Password encryption is configured on Hurd to encrypt the password in the display of the
configuration file.

service password-encryption
!
interface Ethernet0/0
 ip address 10.8.1.1 255.255.255.0
 ip ospf message-digest-key 5 md5 7 001712008105A0D03
!
interface Serial0/0.1
 ip address 172.20.1.1 255.255.255.252
 ip ospf message-digest-key 10 md5 7 03105A0415
!
interface Serial0/0.2
 ip address 172.20.1.5 255.255.255.252
 ip ospf message-digest-key 20 md5 7 070E23455F1C1010

In the authentication configuration of the other protocols discussed in this book, key-chains were used to
configure the passwords, or key-strings as they are called. OSPF does not support key-chain configuration at the
time of this writing.

Case Study: Virtual Links

Figure 8-50 shows an network with a poorly designed backbone area. If the link between routers Hokusai and
Hiroshige fails, the backbone will be partitioned. As a result, routers Sesshiu and Okyo will be unable to
communicate with each other. If these two routers are ABRs to separate areas, inter-area traffic between those
areas will also be blocked.

Figure 8-50. A failure of the link between Hokusai and Hiroshige will partition the backbone area.

The best solution to this vulnerability is to add another link to the backbone areabetween Sesshiu and Okyo, for
instance. An interim solution, until the backbone can be improved, is to create a virtual link between Hokusai and
Hiroshige through area 100.

Virtual links are always created between ABRs, at least one of which must be connected to area 0.[31] At each
ABR, the area virtual-link command, added to the OSPF configuration, specifies the area through which the
virtual link will transit and the Router ID of the ABR at the far end of the link. A virtual link is configured between
Hokusai and Hiroshige as shown in Example 8-72 and Example 8-73.

[31] When a virtual link is used to connect an area to the backbone through a non-backbone area, one



of the ABRs will be between the two non-backbone areas.

Example 8-72. Hokusai's virtual link configuration.

router ospf 10
 network 192.168.100.1 0.0.0.0 area 0
 network 192.168.100.29 0.0.0.0 area 0
 network 192.168.100.21 0.0.0.0 area 100
 area 100 virtual-link 192.168.100.33

Example 8-73. Hiroshige's virtual link configuration.

router ospf 10
 network 192.168.100.2 0.0.0.0 area 0
 network 192.168.100.33 0.0.0.0 area 0
 network 192.168.100.25 0.0.0.0 area 100
 area 100 virtual-link 192.168.100.29

Packets will normally travel between Sesshiu and Okyo on the backbone link between Hokusai and Hiroshige. If
that link fails, the virtual link will be used. Although each router sees the link as an unnumbered point-to-point
network (Example 8-74), in reality the packets are being routed via Kujomoto.[32]

[32] The output of the show ip ospf virtual-link command might be slightly different, depending upon
which IOS version you are using.

Example 8-74. The state of a virtual link can be observed with the command show ip ospf virtual-link.

Hokusai#show ip ospf virtual-link
Virtual Link OSPF_VL1 to router 192.168.100.33 is up
   Run as demand circuit
   DoNotAge LSA not allowed (Number of DCbitless LSA is 2).
   Transit area 100, via interface Serial0, Cost of using 128
   Transmit Delay is 1 sec, State POINT_TO_POINT,
   Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
      Hello due in 00:00:00
      Adjacency State FULL (Hello suppressed)
Hokusai#

Case Study: OSPF on NBMA Networks

Nonbroadcast multiaccess networks such as X.25, Frame Relay, and ATM present a problem for OSPF.
Multiaccess means that the NBMA "cloud" is a single network to which multiple devices are attached, the same
as Ethernet or Token Ring networks (Figure 8-51). But unlike Ethernet and Token Ring, which are broadcast
networks, non-broadcast means a packet sent into the network might not be seen by all other routers attached to
the network. Because an NBMA network is multi-access, OSPF will want to elect a DR and BDR. But because an
NBMA network is non-broadcast, there is no guarantee that all attached routers will receive the Hellos of all other
routers. Therefore, all routers might not automatically learn about all its neighbors, and DR election would not
function correctly.

Figure 8-51. Routing protocols view NBMA networks as a single subnet to which multiple devices are
connected. But when an NBMA network is partially meshed, as it is here, not all attached routers have

direct connectivity with all other attached routers.



This section examines several solutions to the NBMA problem. The selection of a particular solution depends on
the characteristics of the network upon which the solution is to be implemented.

The oldest solution, pertinent to pre-10.0 versions of the Cisco IOS, is to manually identify each router's
neighbors and establish the DR, using the neighbor command. Figure 8-52 shows a Frame Relay network with
four attached routers.

Figure 8-52. Several options exist for configuring OSPF on this NBMA network.

Because of the partially meshed hub-and-spoke configuration of the PVCs in Figure 8-52, Rembrandt must
become the DR. As the hub, it is the only router directly connected to all the other routers. The configurations of
the four routers are shown in Example 8-75 through Example 8-78.

Example 8-75. Rembrandt's configuration.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.1 255.255.255.0
 frame-relay map ip 172.16.2.2 100
 frame-realy map ip 172.16.2.3 300
 frame-relay map ip 172.16.2.4 500
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0
 neighbor 172.16.2.2
 neighbor 172.16.2.3
 neighbor 172.16.2.4

Example 8-76. Hals's configuration specifying a neighbor priority.



interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.2 255.255.255.0
 frame-relay map ip 172.16.2.1 600
 frame-relay map ip 172.16.2.3 600
 frame-relay map ip 172.16.2.4 600
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0
 neighbor 172.16.2.1 priority 10

Example 8-77. Vandyck's configuration specifying a neighbor priority.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.3 255.255.255.0
 frame-relay map ip 172.16.2.1 400
 frame-relay map ip 172.16.2.2 400
 frame-relay map ip 172.16.2.4 400
!
router ospf 1
 network 172.16.0.0 0.0.255.255 are a 0
 neighbor 172.16.2.1 priority 10

Example 8-78. Brueghel's configuration specifying a neighbor priority.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.4 255.255.255.0
 frame-relay map ip 172.16.2.1 200
 frame-relay map ip 172.16.2.2 200
 frame-relay map ip 172.16.2.3 200
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0
 neighbor 172.16.2.1 priority 10

The neighbor command configures Rembrandt with the IP addresses of the interfaces of its three neighbors.
The default priority is zero; by not changing the default at Rembrandt, none of its neighbors is eligible to become
the DR or BDR.

The other three routers are configured with only Rembrandt as a neighbor; the priority is set to 10, which means
Rembrandt will become the DR. By making Rembrandt the DR, the PVCs exactly emulate the adjacencies that
would have formed if the four routers had been connected to a broadcast multi-access network. OSPF packets
will now be unicast to the configured neighbor addresses.

To repeat, the neighbor command is necessary only with old (pre-10.0) versions of IOS. A newer solution is to
use the ip ospf network command to change the default OSPF network type.

One option with this command is to change the network type to broadcast, with ip ospf network broadcast
entered at every Frame Relay interface. This change will cause the NBMA cloud to be viewed as a broadcast
network; the configurations of the four routers are shown in Example 8-79 through Example 8-82.

Example 8-79. Rembrandt's Frame Relay interface is configured as an OSPF broadcast network.



interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.1 255.255.255.0
 ip ospf network broadcast
 ip ospf priority 10
 frame-relay map ip 172.16.2.2 100 broadcast
 frame-realy map ip 172.16.2.3 300 broadcast
 frame-relay map ip 172.16.2.4 500 broadcast
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Example 8-80. Hals's Frame Relay interface is configured as an OSPF broadcast network.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.2 255.255.255.0
 ip ospf network broadcast
 ip ospf priority 0
 frame-relay map ip 172.16.2.1 600 broadcast
 frame-relay map ip 172.16.2.3 600 broadcast
 frame-relay map ip 172.16.2.4 600 broadcast
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Example 8-81. Vandyck's Frame Relay interface is configured as an OSPF broadcast network.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.3 255.255.255.0
 ip ospf network broadcast
 ip ospf priority 0
 frame-relay map ip 172.16.2.1 400 broadcast
 frame-relay map ip 172.16.2.2 400 broadcast
 frame-relay map ip 172.16.2.4 400 broadcast
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Example 8-82. Brueghel's Frame Relay interface is configured as an OSPF broadcast network.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.4 255.255.255.0
 ip ospf network broadcast
 ip ospf priority 0
 frame-relay map ip 172.16.2.1 200 broadcast
 frame-relay map ip 172.16.2.2 200 broadcast
 frame-relay map ip 172.16.2.3 200 broadcast
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Note in this example that the priority of Rembrandt's interface is set to 10, and the priority of the other interfaces



is set to 0. This will, again, ensure that Rembrandt is the DR. Note also that the static Frame Relay mapping
commands are set to forward broadcast and multicast addresses.

An alternative to influencing the DR election is to implement a fully meshed topology in which every router has a
PVC to every other router. From the standpoint of the router, this solution is actually the most efficient of all the
NBMA implementation alternatives. The obvious drawback of this approach is monetary cost. If there are n
routers, n(n 1)/2 PVCs will be necessary to create a fully meshed topology. For example, the 4 routers of Figure
8-52 would need 6 PVCs for a full mesh; 16 routers would require 120 PVCs.

Another option is to avoid the DR/BDR election process altogether, by changing the network type to point-to-
multipoint. Point-to-multipoint networks treat the PVCs as a collection of point-to-point links; therefore, no
DR/BDR election takes place. In multivendor environments, point-to-multipoint might be the only alternative to
broadcast networks.

In the configurations in Example 8-83 through Example 8-86, the OSPF network type associated with each
interface is changed to point-to-multipoint.

Example 8-83. Rembrandt's Frame Relay interface is configured as an OSPF point-to-multipoint
network.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.1 255.255.255.0
 ip ospf network point-to-multipoint
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Example 8-84. Hals's Frame Relay interface is configured as an OSPF point-to-multipoint network.

interface Serial0
encapsulation frame-relay
ip address 172.16.2.2 255.255.255.0
ip ospf network point-to-multipoint
!
router ospf 1
network 172.16.0.0 0.0.255.255 area 0

Example 8-85. Vandyck's Frame Relay interface is configured as an OSPF point-to-multipoint network.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.3 255.255.255.0
 ip ospf network point-to-multipoint
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Example 8-86. Brueghel's Frame Relay interface is configured as an OSPF point-to-multipoint network.

interface Serial0
 encapsulation frame-relay
 ip address 172.16.2.4 255.255.255.0
 ip ospf network point-to-multipoint
!
router ospf 1



router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

These configurations take advantage of the Frame Relay inverse ARP function to dynamically map network-level
addresses to the DLCIs, instead of using the static map commands shown in the previous examples. Static maps
can still be used if desired.

The OSPF point-to-multipoint network type treats the underlying network as a collection of point-to-point links
rather than a multi-access network, and OSPF packets are multicast to the neighbors. This situation can be
problematic for networks whose connections are dynamic, such as Frame Relay SVCs or ATM SVCs. Beginning
with IOS 11.3AA, this problem can be solved by declaring a network to be both point-to-multipoint and non-
broadcast, as in the configurations in Example 8-87 through Example 8-90.

Example 8-87. Rembrandt's Frame Relay interface is configured as an OSPF point-to-multipoint, non-
broadcast network.

interface Serial0
 ip address 172.16.2.1 255.255.255.0
 encapsulation frame-relay
 ip ospf network point-to-multipoint non-broadcast
 map-group Leiden
 frame-relay lmi-type q933a
 frame-relay svc
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0
 neighbor 172.16.2.2 cost 30
 neighbor 172.16.2.3 cost 20
 neighbor 172.16.2.4 cost 50

Example 8-88. Hals's Frame Relay interface is configured as an OSPF point-to-multipoint, non-
broadcast network.

interface Serial0
 ip address 172.16.2.2 255.255.255.0
 encapsulation frame-relay
 ip ospf network point-to-multipoint non-broadcast
 map-group Haarlem
 frame-relay lmi-type q933a
 frame-relay svc
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0
 neighbor 172.16.2.1 priority 10

Example 8-89. Vandyck's Frame Relay interface is configured as an OSPF point-to-multipoint, non-
broadcast network.

interface Serial0
 ip address 172.16.2.3 255.255.255.0
 encapsulation frame-relay
 ip ospf network point-to-multipoint non-broadcast
 map-group Antwerp
 frame-relay lmi-type q933a
 frame-relay svc
!
router ospf 1



 network 172.16.0.0 0.0.255.255 area 0
 neighbor 172.16.2.1 priority 10

Example 8-90. Brueghel's Frame Relay interface is configured as an OSPF point-to-multipoint, non-
broadcast network.

interface Serial0
 ip address 172.16.2.4 255.255.255.0
 encapsulation frame-relay
 ip ospf network point-to-multipoint non-broadcast
 map-group Brussels
 frame-relay lmi-type q933a
 frame-relay svc
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0
 neighbor 172.16.2.1 priority 10

Because the network is non-broadcast, neighbors are not discovered automatically and must be manually
configured. Another feature introduced in IOS 11.3AA can be seen in Rembrandt's configuration: Cost can be
assigned on a per VC basis with the neighbor command.

The last solution is to establish each PVC as an individual point-to-point network with its own subnet (Figure 8-
53). This solution is accomplished with subinterfaces as shown in Example 8-91 though Example 8-94.

Figure 8-53. Point-to-point subinterfaces allow each PVC to be configured as an individual subnet and
eliminate the problem of DR/BDR election on NBMA networks.

Example 8-91. Rembrandt is configured with point-to-point subinterfaces.

interface Serial0
 no ip address
 encapsulation frame-relay
 interface Serial0.100 point-to-point
  description -------------------------- to Hals
  ip address 172.16.2.1 255.255.255.252
  frame-relay interface-dlci 100
 interface Serial0.300 point-to-point
  description -------------------------- to Vandyck
  ip address 172.16.2.5 255.255.255.252
  frame-relay interface-dlci 300



 interface Serial0.500 point-to-point
  description -------------------------- to Brueghels
  ip address 172.16.2.9 255.255.255.252
  frame-relay interface-dlci 500
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Example 8-92. Hals is configured with point-to-point subinterfaces.

interface Serial0
 no ip address
 encapsulation frame-relay
 interface Serial0.600
  description --------------------------- to Rembrandt
  ip address 172.16.2.2 255.255.255.252
  frame-relay interface-dlci 600
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Example 8-93. Vandyck is configured with point-to-point subinterfaces.

interface Serial0
 no ip address
 encapsulation frame-relay
 interface Serial0.400
  description ---------------------------- to Rembrandt
  ip address 172.16.2.6 255.255.255.252
  frame-relay interface-dlci 400
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

Example 8-94. Brueghel is configured with point-to-point subinterfaces.

interface Serial0
 no ip address
 encapsulation frame-relay
 interface Serial0.200
  description ---------------------------- to Rembrandt
  ip address 172.16.2.10 255.255.255.252
  frame-relay interface-dlci 200
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0

This configuration is the most easily managed of all the configurations of OSPF over NBMA networks. Some of
the advantages are evident in the configuration code, such as the ability to use an interface number that
corresponds to the DLCI and the inclusion of a description line. The major advantage, however, is the simple one-
to-one relationship between routers.

An occasional objection to the use of subinterfaces is that each PVC must have its own subnet address. In most
cases, this requirement should not be a problem, because OSPF supports VLSM. As the example shows, creating
sub-subnets from the subnet address that was assigned to the cloud is an easy matter. And because the PVCs



are now point-to-point links, IP unnumbered may be used as an alternative to subnet addresses. Another
significant advantage is in the router's failure detection. On point-to-point subinterfaces, the routers on both ends
of the point-to-point network can detect a failed virtual circuit (if the Frame Relay cloud provides sufficient
signaling), and the routing protocol can converge to an alternate route, if one exists.

A more serious concern with subinterfaces is that they require more memory. The burden can be significant on
small routers with limited memory.

Case Study: OSPF over Demand Circuits

OSPF over demand circuits is easily configured by adding the command ip ospf demand-circuit to the interface
connected to the demand circuit. Only one end of a point-to-point circuit, or the multipoint side of a point-to-
multipoint circuit, needs to be declared a demand circuit. In most cases, OSPF over demand circuits should not
be implemented across a broadcast medium. On such a network, the Hello packets cannot be suppressed, and
the link will stay up.

If the virtual circuits in Figure 8-52 are Frame Relay SVCs, Rembrandt's configuration might be as shown in
Example 8-95.

Example 8-95. Rembrandt's OSPF demand-circuit configuration.

interface Serial0/0
 ip address 172.16.2.1 255.255.255.0
 encapsulation frame-relay
 ip ospf network point-to-multipoint non-broadcast
 ip ospf demand-circuit
 map-group Leiden
 frame-relay lmi-type q933a
 frame-relay svc
!
router ospf 1
 network 172.16.0.0 0.0.255.255 area 0
 neighbor 172.16.2.2 cost 30
 neighbor 172.16.2.3 cost 20
 neighbor 172.16.2.4 cost 50

Keep the following points in mind when implementing OSPF over demand circuits:

LSAs with the DoNotAge bit set will be allowed into an area only if all LSAs in the area's link-state database
have the DC-bit set. This setting ensures that all routers in the area are capable of understanding the
DoNotAge bit.

All routers of an area in which OSPF over demand circuits is implemented must be capable of supporting it.

If OSPF over demand circuits is implemented in a non-stub area, the routers in all non-stub areas must
support it. The reason is that the DC-bit in type 5 LSAs will be set, and these LSAs are flooded into all non-
stub areas.

An effort should be made to implement demand circuits only within stub, totally stubby, or NSSA areas. Such
an implementation negates the need for all routers within the OSPF domain to support OSPF over demand
circuits. It also minimizes the number of changed LSAs received as the result of topology changes in other
areas, and hence prevents excess uptime of the demand circuit.

If OSPF over demand circuits is configured and a virtual link is configured to cross the demand circuit, the
virtual link will also be treated as a demand circuit. Otherwise, the virtual link traffic would keep the circuit up.

OSPF refreshes its LSAs every 30 minutes to guard against an LSA becoming corrupted while it resides in
the link-state database. Because DoNotAge LSAs are not refreshed across a demand circuit, this robustness
feature is lost.

The refresh process occurs on each side of a demand circuit out all other interfaces, but LSAs are not
refreshed across the link. As a result, the sequence numbers of otherwise identical LSAs on each side of the



link might be different. Network management stations may use certain MIB variables[33] to verify database
synchronization; if the sequence numbers do not match across the databases, an error might be falsely
reported.

[33] Specifically, ospfExternLSACksumSum and ospfAreaLSACksumSum. These are sums of the
individual LSA checksum fields. Because the checksum calculation includes the sequence
number, and because the sequence numbers might be different, the checksums will also be
different.



Troubleshooting OSPF

Troubleshooting OSPF can sometimes be daunting, especially in a large network. However, a routing problem with
OSPF is no different than a routing problem with any other routing protocol; the cause will be one of the following:

Missing route information

Inaccurate route information

An examination of the route table is still the primary source of troubleshooting information. Using the show ip ospf
database command to examine the various LSAs will also yield important information. For example, if a link is
unstable, the LSA advertising will change frequently. This condition is reflected in a sequence number that is
conspicuously higher than that of the other LSAs. Another sign of instability is an LSA whose age never gets very
high.

Keep in mind that the link-state database of every router within an area is the same. So unless you suspect that
the database itself is being corrupted on some routers, you can examine the link-state database for the entire area
by examining a single router's link-state database. Another good practice is to keep a copy (hard or soft) of the link-
state database for each area.

When examining an individual router's configuration, consider the following:

Do all interfaces have the correct addresses and masks?

Do the network area statements have the correct inverse masks to match the correct interfaces?

Do the network area statements put all interfaces into the correct areas?

Are the network area statements in the correct order?

When examining adjacencies (or the lack thereof), consider these questions:

Are Hellos being sent from both neighbors?

Are the timers set the same between neighbors?

Are the optional capabilities set the same between neighbors?

Are the interfaces configured on the same subnet (that is, do the address/mask pairs belong to the same
subnet)?

Are the neighboring interfaces of the same network type?

Is a router attempting to form an adjacency with a neighbor's secondary address?

If authentication is being used, is the authentication type the same between neighbors? Are the passwords
and (in the case of MD5) the keys the same? Is authentication enabled on all routers within the area?

Are any access lists blocking OSPF?

If the adjacency is across a virtual link, is the link configured within a stub area?

If a neighbor or adjacency is suspected of being unstable, adjacencies can be monitored with the command debug
ip ospf adj. However, this command can often present more information than you want, as Example 8-96 shows.
The state changes of a neighbor are recorded in great detail. If monitoring is to be performed over an extended
period, this wealth of information can overflow a router's internal logging buffers. Beginning with IOS 11.2,
adjacencies can be monitored by adding the command log-adjacency-changes [detail] under a router's OSPF
configuration. This command will keep a simpler log of adjacency changes, as shown in Example 8-97 and
Example 8-98.

Example 8-96. This debug output from debug ip ospf adj  shows the result of temporarily disconnecting
and then reconnecting a neighbor's Ethernet interface.

%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0/0, changed state to down



OSPF: Interface Ethernet0/0 going Down
OSPF: 172.16.2.2 address 10.8.1.1 on Ethernet0/0 is dead, state DOWN
OSPF: Neighbor change Event on interface Ethernet0/0
OSPF: DR/BDR election on Ethernet0/0
OSPF: Elect BDR 0.0.0.0
OSPF: Elect DR 172.16.2.3
OSPF: Elect BDR 0.0.0.0
OSPF: Elect DR 172.16.2.3
        DR: 172.16.2.3 (Id) BDR: none
OSPF: 172.16.2.3 address 10.8.1.2 on Ethernet0/0 is dead, state DOWN
OSPF: Neighbor change Event on interface Ethernet0/0
OSPF: DR/BDR election on Ethernet0/0
OSPF: Elect BDR 0.0.0.0
OSPF: Elect DR 0.0.0.0
        DR: none BDR: none
OSPF: Remember old DR 172.16.2.3 (id)
OSPF: Build router LSA for area 0, router ID 172.16.2.2, seq 0x80000035
OSPF: Build router LSA for area 25, router ID 172.16.2.2,
seq 0x80000005
%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0/0, changed state to up
OSPF: Interface Ethernet0/0 going Up
OSPF: Send with youngest Key 5
OSPF: Build router LSA for area 0, router ID 172.16.2.2, seq 0x80000036
OSPF: Build router LSA for area 25, router ID 172.16.2.2, seq 0x80000006
OSPF: Send with youngest Key 5
OSPF: Send with youngest Key 5
OSPF: Send with youngest Key 5
OSPF: Rcv DBD from 172.16.2.3 on Ethernet0/0 seq 0x728 opt 0x52 flag 0x7 len 32 mtu
1500 state INIT
OSPF: 2 Way Communication to 172.16.2.3 on Ethernet0/0, st ate 2WAY
OSPF: Nbr state is 2WAY
OSPF: Rcv DBD from 172.16.2.3 on Ethernet0/0 seq 0x728 opt 0x52 flag 0x7 len 32 mtu
1500 state 2WAY
OSPF: Nbr state is 2WAY
OSPF: end of Wait on interface Ethernet0/0
OSPF: DR/BDR election on Ethernet0/0
OSPF: Elect BDR 172.16.2.2
OSPF: Elect DR 172.16.2.3
OSPF: Elect BDR 172.16.2.2
OSPF: Elect DR 172.16.2.3
        DR: 172.16.2.3 (Id) BDR: 172.16.2.2 (Id)
OSPF: Send DBD to 172.16.2.3 on Ethernet0/0 seq 0x1B85 opt 0x52 flag 0x7 len 32
OSPF: Send with youngest Key 5
OSPF: Send with youngest Key 5
OSPF: Rcv DBD from 172.16.2.3 on Ethernet0/0 seq 0x728 opt 0x52 flag 0x7 len 32 mtu
1500 state EXSTART
OSPF: NBR Negotiation Done. We are the SLAVE
OSPF: Send DBD to 172.16.2.3 on Ethernet0/0 seq 0x728 opt 0x52 flag 0x2 len 292
OSPF: Send with youngest Key 5
OSPF: Rcv DBD from 172.16.2.3 on Ethernet0/0 seq 0x729 opt 0x52 flag 0x3 len 272
mtu 1500 state EXCHANGE
OSPF: Send DBD to 172.16.2.3 on Ethernet0/0 seq 0x729 opt 0x52 flag 0x0 len 32
OSPF: Send with youngest Key 5
OSPF: Send with youngest Key 5
OSPF: Database request to 172.16.2.3
OSPF: sent LS REQ packet to 10.8.1.2, length 12
OSPF: Send with youngest Key 5
OSPF: Rcv DBD from 172.16.2.3 on Ethernet0/0 seq 0x72A opt 0x52 flag 0x1 len 32 mtu
1500 state EXCHANGE
OSPF: Exchange Done with 172.16.2.3 on Ethernet0/0
OSPF: Send DBD to 172.16.2.3 on Ethernet0/0 seq 0x72A opt 0x52 flag 0x0 len 32
OSPF: Send with youngest Key 5
OSPF: Synchronized with 172.16.2.3 on Ethernet0/0, state FULL
OSPF: Build router LSA for area 0, router ID 172.16.2.2, seq 0x80000037

Example 8-97. These logging messages, resulting from the OSPF configuration command log-adjacency-
changes, show the same neighbor failure as depicted in Example 8-96, but with much less detail.



Hurd#show logging
Syslog logging: enabled (0 messages dropped, 1 messages rate-limited, 0 flushes,

 0 overruns, xml disabled)
    Console logging: level debugging, 248 messages logged, xml disabled
    Monitor logging: level debugging, 0 messages logged, xml disabled
    Buffer logging: level debugging, 5 messages logged, xml disabled
    Logging Exception size (4096 bytes)
    Count and timestamp logging messages: disabled
    Trap logging: level informational, 99 message lines logged

Log Buffer (4096 bytes):

%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from FULL to DOWN,
 Neighbor Down: Interface down or detached
%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from LOADING to FULL,
 Loading Done

Example 8-98. These logging messages, resulting from the OSPF configuration command log-adjacency-
changes also show the same neighbor failure as depicted in Example 8-96, but have more detail than the
log in Example 8-97.

Hurd#show logging
Syslog logging: enabled (0 messages dropped, 1 messages rate-limited, 0 flushes,

 0 overruns, xml disabled)
    Console logging: level debugging, 248 messages logged, xml disabled
    Monitor logging: level debugging, 0 messages logged, xml disabled
    Buffer logging: level debugging, 5 messages logged, xml disabled
    Logging Exception size (4096 bytes)
    Count and timestamp logging messages: disabled
    Trap logging: level informational, 99 message lines logged

Log Buffer (4096 bytes):

%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from FULL to DOWN,
 Neighbor Down: Interface down or detached
%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from DOWN to INIT,
 Received Hello
%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from INIT to 2WAY,
 2-Way Received
%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from 2WAY to EXSTART,
 AdjOK?
%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from EXSTART to
 EXCHANGE, Negotiation Done
%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from EXCHANGE to
 LOADING, Exchange Done
%OSPF-5-ADJCHG: Process 1, Nbr 172.16.2.3 on Ethernet0/0 from LOADING to FULL,
 Loading Done

If you suspect that a link-state database is corrupted or that two databases are not synchronized, you can use the
show ip ospf database database-summary  command to observe the number of LSAs in each router's
database. For a given area, the number of each LSA type should be the same in all routers. Next, the command
show ip ospf database  will show the checksums for every LSA in a router's database. Within a given area, each
LSA's checksum should be the same in every router's database. Verifying this status can be excruciatingly tedious
for all but the smallest databases. Luckily, there are MIBs,[34] which can report the sum of a database's
checksums to an SNMP management platform. If all databases in an area are synchronized, this sum should be
the same for each database.

[34] Namely, ospfExternLsaCksumSum and ospfAreaLsaCksumSum.



When examining an area-wide problem, consider the following issues:

Is the ABR configured correctly?

Are all routers configured for the same area type? For example, if the area is a stub area, all routers must
have the area stub command.

If address summarization is configured, is it correct?

If performance is a problem, check the memory and CPU utilization on the routers. If memory utilization is above 70
percent, the link-state database might be too large; if CPU utilization is consistently above 60 percent, instabilities
could exist in the topology. If memory or CPU surpasses the 50 percent mark, the network administrator should
analyze the cause of the performance stress and, based on the results of the analysis, should begin planning
corrective upgrades.

Stub areas and address summarization can help to both reduce the size of the link-state database and to contain
instabilities. The processing of LSAs, not the SPF algorithm, puts the most burden on an OSPF router. Taken
individually, type 1 and type 2 LSAs would be more processor-intensive than summary LSAs. However, type 1 and
2 LSAs tend to be grouped, whereas summary LSAs are sent in individual packets. As a result, in reality, summary
LSAs are more processor-intensive.

The following case studies demonstrate the most frequently used techniques and tools for troubleshooting OSPF.

Case Study: An Isolated Area

Intra-area packets can be routed within area 1 of Figure 8-54, but all attempts at inter-area communications fail.
Suspicion should immediately fall on area 1's ABR. This suspicion is reinforced by the fact that the Internal Routers
have no router entry for an ABR (Example 8-99).

Figure 8-54. The end systems and routers within area 1 can communicate, but no traffic is being passed
to or from area 0.

Example 8-99. The command show ip ospf border-routers  checks the internal route table of the Internal
Routers. No router entry for an ABR is shown.

National#show ip ospf border-routers
OSPF Process 8 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route



National#

The next step is to verify that the physical link to the ABR is operational and that OSPF is working properly. The
same Internal Router's neighbor table (Example 8-100) shows that the neighbor state of the ABR is full, indicating
that an adjacency exists. In fact, the ABR is the DR for the Token Ring network. The existence of an adjacency
confirms that the link is good and that OSPF Hellos are being exchanged with the proper parameters.

Example 8-100. The neighbor table of router National indicates that the ABR (1.1.1.1) is fully adjacent.

National#show ip ospf neighbor
Neighbor ID  Pri   State     Dead Time   Address        Interface
1.1.1.1        1   FULL/DR   00:00:33    172.16.192.6   TokenRing0
1.1.1.3        1   FULL/BDR  00:00:34    172.16.192.4   TokenRing0
1.1.1.4        1   FULL/ -   00:00:30    172.16.192.3   TokenRing0
National#

Other evidence relevant to the problem can be found in National's database and its route table. The database
(Example 8-101) contains only Router (type 1) and Network (type 2) LSAs. No Network Summary (type 3) LSAs,
which advertise destinations outside of the area, are recorded. At the same time, there are LSAs originated by
Whitney (1.1.1.1). This information again indicates that Whitney is adjacent but is not passing information from
area 0 into area 1.

Example 8-101. National's link-state database also shows that Whitney is adjacent, but is not advertising
inter-area destinations.

National#show ip ospf database
        OSPF Router with ID (1.1.1.2) (Process ID 8)

                     Router Link States (Area 1)

Link ID         ADV Router  Age   Seq#         Checksum  Link count
172.16.192.6    1.1.1.1     132   0x80000034   0xAC4D    3
172.16.219.120  1.1.1.2 1   458   0x8000002B   0x6B46    2

                     Net Link States (Area 1)

Link ID         ADV Router  Age   Seq#         Checksum
172.16.192.6    1.1.1.1     132   0x8000002E   0x2078
National#

The only destinations outside of area 1 in National's route table (Example 8-102) are the serial links attached to
Whitney. Yet another clue is revealed here: The route entries are tagged as intra-area routes (O); if they were in
area 0, as Figure 8-54 shows they should be, they would be tagged as inter-area routes (O IA). The problem is
apparently on the area 0 side of the ABR.

Example 8-102. Whitney is advertising the subnets of its serial interfaces, but they are being advertised
as intra-area destinations.

National#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set



     172.16.0.0/16 is variably subnetted, 4 subnets, 3 masks
C       172.16.219.112/28 is directly connected, Serial0
C       172.16.192.0/29 is directly connected, TokenRing0
O       172.16.113.12/30 [110/70] via 172.16.192.6, 09:32:15, TokenRing0

O       172.16.113.16/30 [110/70] via 172.16.192.6, 09:32:15, TokenRing0
National#

An examination of Whitney's serial interfaces (Example 8-103) reveals the problem, if not the cause of the problem.
Both interfaces, which should be in area 0, are instead in area 1. Both interfaces are connected to topological
neighbors (Louvre and Hermitage), but no OSPF neighbors are recorded. Error messages are being displayed
regularly, indicating that Whitney is receiving Hellos from Louvre and Hermitage; those Hellos have their Area fields
set to zero, causing a mismatch.

Example 8-103. Whitney's serial interfaces are configured in area 1 instead of area 0; this configuration
is causing error messages when area 0 Hellos are received.

Whitney#show ip ospf interface serial 0
Serial0 is up, line protocol is up
  Internet Address 172.16.113.18/30, Area 1

  Process ID 8, Router ID 1.1.1.1, Network Type POINT_TO_POINT, Cost: 64
  Transmit Delay is 1 sec, State POINT_TO_POINT,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:03
  Index 1/3, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 2, maximum is 2
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 0, Adjacent neighbor count is 0
  Suppress hello for 0 neighbor(s)

Whitney#show ip ospf interface serial 1
Serial0 is up, line protocol is up
  Internet Address 172.16.113.14/30, Area 1

  Process ID 8, Router ID 1.1.1.1, Network Type POINT_TO_POINT, Cost: 64
  Transmit Delay is 1 sec, State POINT_TO_POINT,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:06
  Index 1/3, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 2, maximum is 2
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 0, Adjacent neighbor count is 0
  Suppress hello for 0 neighbor(s)
Whitney#

%OSPF-4-ERRRCV: Received invalid packet: mismatch area ID,

 from backbone area must be virtual-link but not found from 172.16.113.13, Serial1

%OSPF-4-ERRRCV: Received invalid packet: mismatch area ID,

from backbone area must be virtual-link but not found from 172.16.113.17, Serial0

Whitney's OSPF configuration is shown in Example 8-104.

Example 8-104. Whitney's OSPF configuration.



router ospf 8
 network 172.16.0.0 0.0.255.255 area 1
 network 172.16.113.0 0.0.0.255 area 0

At first glance, this configuration might appear to be fine. However, recall from the first configuration case study that
the network area commands are executed consecutively. The second network area command affects only
interfaces that do not match the first command. With this configuration, all interfaces match the first network area
command and are placed into area 1. The second command is never applied.

A correct configuration is shown in Example 8-105.

Example 8-105. Whitney's corrected OSPF configuration.

router ospf 8
 network 172.16.192.0 0.0.0.255 area 1
 network 172.16.113.0 0.0.0.255 area 0

There are, of course, several valid configurations. The important point is that the first network area command
must be specific enough to match only the address of the area 1 interface, and not the addresses of the area 0
interfaces.

Case Study: Misconfigured Summarization

Figure 8-55 shows a backbone area and three attached areas. To reduce the size of the link- state database and
to increase the stability of the network, summarization will be used between areas.

Figure 8-55. The summary addresses shown for each area will be advertised into area 0. Area 0 will also
be summarized into the other areas.

The individual subnets of the three nonbackbone areas are summarized with the addresses shown in Figure 8-55.
For example, a few of the subnets of area 1 may be

    172.16.192.0/29
    172.16.192.160/29
    172.16.192.248/30
    172.16.217.0/24
    172.16.199.160/29
    172.16.210.248/30

Figure 8-56 shows that these subnet addresses can all be summarized with 172.16.192.0/19.



Figure 8-56. A few of the subnet addresses that are summarized with 172.16.192.0/19. The bold type
indicates the network bits of each address.

               10101100000100001100000000000000 = 172.16.192.0/29
               10101100000100001100000011111000 = 172.16.192.248/30
               10101100000100001101100100000000 = 172.16.217.0/24
               10101100000100001100011110100000 = 172.16.199.160/29
               10101100000100001101001011111000 = 172.16.210.248/30
               10101100000100001100000000000000 = 172.16.192.0/19

Whitney's configuration is shown in Example 8-106

Example 8-106. Whitney's OSPF configuration with address summarization.

router ospf 8
 network 172.16.192.0 0.0.0.255 area 1
 network 172.16.113.0 0.0.0.255 area 0
 area 1 range 172.16.192.0 255.255.224.0
 area 0 range 172.16.113.0 255.255.224.0

The other three ABRs are configured similarly. Each ABR will advertise the summary address of its attached non-
backbone area into area 0 and will also summarize area 0 into the non-backbone area.

Example 8-107 shows that there is a problem. When the route table of one of area 1's Internal Routers is
examined, area 0 is not being summarized properly (area 1's internal subnets are not shown, for clarity). Although
the summary addresses for areas 2 and 3 are present, the individual subnets of area 0 are in the table instead of
its summary address.

Example 8-107. The individual subnets of area 0, instead of the expected summary address, are
recorded in the route table of one of area 1's internal routers.

National#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

     172.16.0.0/16 is variably subnetted, 7 subnets, 4 masks
O IA    172.16.160.0/19 [110/80] via 172.16.192.6, 09:32:15, TokenRing0
O IA    172.16.128.0/19 [110/80] via 172.16.192.6, 09:32:15, TokenRing0

C       172.16.192.0/29 is directly connected, TokenRing0
O IA    172.16.113.12/30 [110/70] via 172.16.192.6, 09:32:15, TokenRing0
O IA    172.16.113.8/30 [110/134] via 172.16.192.6, 09:32:15, TokenRing0
O IA    172.16.113.16/30 [110/70] via 172.16.192.6, 09:32:15, TokenRing0
National#

You can see that the area range command for area 0 is the problem when you examine the three subnets of area
0 in binary (Figure 8-57).

Figure 8-57. The subnets of area 0, the configured summary mask, and the correct summary address.



               10101100000100000111000100001000 = 172.16.113.8/30
               10101100000100000111000100001100 = 172.16.113.12/30
               10101100000100000111000100010000 = 172.16.113.16/30
               11111111111111111110000000000000 = 255.255.224.0
               10101100000100000110000000000000 = 172.16.96.0

The problem is that the summary address specified in the area range command (172.16.113.0) is more specific
than the accompanying mask (255.255.224.0). The correct address to use with the 19-bit mask is 172.16.96.0 (see
Example 8-108).

Example 8-108. Whitney's OSPF configuration with corrected address summarization.

router ospf 8
 network 172.16.192.0 0.0.0.255 area 1
 network 172.16.113.0 0.0.0.255 area 0
 area 1 range 172.16.192.0 255.255.224.0
 area 0 range 172.16.96.0 255.255.224.0

Example 8-109 shows the resulting route table. There are other options for area 0's summary address. For
example, 172.16.113.0/24 and 172.16.113.0/27 are both legitimate. The most appropriate summary address
depends on the priorities of the network design. In the case of the network of Example 8-101, 172.16.96.0/19 might
be selected for consistencyall summary addresses have a 19-bit mask. On the other hand, 172.16.113.0/27 might
be selected for better scalability; five more subnets can be added to the backbone under this summary address,
leaving a wider range of addresses to be used elsewhere in the network.

Example 8-109. Area 0 is now being summarized correctly.

National#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

     172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
O IA    172.16.160.0/19 [110/80] via 172.16.192.6, 00:25:09, TokenRing0
O IA    172.16.128.0/19 [110/80] via 172.16.192.6, 09:32:15, TokenRing0

C       172.16.192.0/29 is directly connected, TokenRing0
O IA    172.16.96.0/19 [110/70] via 172.16.192.6, 00:00:10, TokenRing0
National#



Looking Ahead

When link-state routing protocols are mentioned, most people first think of OSPF. However, it is not the
only link-state protocol for IP. The ISO's Intermediate-System to Intermediate-System (IS-IS), although
designed to route other protocols, can route IP. Chapter 10, "Integrated IS-IS," examines this lesser
known link-state routing protocol.



Summary Table: Chapter 8 Command Review

Command Description
area area-id
authentication
[message-digest]

Enables type 1 or type 2 authentication for an
area.

area area-id
default-cost cost

Specifies a cost for the default route sent into
a stub area by an ABR.

area area-id filter-
list prefix
prefix_list_name
[out | in]

Defines an LSA type 3 filter list.

area area-id nssa
[no-redistribution]
[default-
information-
originate] [no-
summary]
[translate type7
suppress-fa]

Configures an area as not-so-stubby (NSSA).

area area-id range
address
mask[advertise |
not-advertise]
[cost]

Summarizes addresses into or out of an area.
The cost of the summary address can be
specified.

area area-id stub
[no-summary]

Configures an area as a stub or totally stubby
area.

area area-id
virtual-link router-id

Defines a virtual link between ABRs.

debug ip ospf adj Shows the events involved in the building or
breaking of an OSPF adjacency.

[no] discard-route
{internal | external}

No discard-route removes the automatically
created static route to the Null interface.

ip ospf
authentication-key
password

Assigns a password to an OSPF interface for
use with type 1 authentication.

ip ospf cost cost Specifies the outgoing cost of an OSPF
interface.

ip ospf dead-
interval seconds

Specifies the OSPF RouterDeadInterval for
an interface.

ip ospf demand-
circuit

Configures an interface as an OSPF demand
circuit.

ip ospf hello-
interval seconds

Specifies the OSPF HelloInterval for an
interface.

ip ospf message-
digest-key key-id
md5 key

Specifies an interface's key ID and key
(password) for use with type 2 authentication.



ip ospf name-
lookup

Enables the reverse DNS lookup of names to
match Router IDs in certain show commands.

ip ospf network
[broadcast]
[nonbroadcast]
[point-to-
multipoint]

Configures the OSPF network type.

ip ospf priority
number

Sets the router priority of an interface for use
in the DR/BDR election process.

ip ospf retransmit-
interval seconds

Sets an interface's OSPF RxmtInterval.

ip ospf transmit-
delay seconds

Sets an interface's OSPF InfTransDelay.

ip prefix-list
prefix_list_name
[seq num] {deny |
permit}
address/length

Defines which addresses to permit or deny in
a prefix list.

log-adjacency-
changes [detail]

Logs neighbor state changes.

maximum-paths Sets the number of paths over which OSPF
performs load balancing.

neighbor ip-
address[priority
number ] [poll-
interval seconds]
[cost cost]

Manually informs a router of its neighbors on
a non-broadcast network.

network address
inverse-mask area
area-id

Specifies the interfaces on which OSPF is to
run and specifies the area to which the
interface is connected.

ospf auto-cost
reference-
bandwidth
reference-bandwidth

Changes the default OSPF reference
bandwidth used for the calculation of link
costs.

router ospf
process-id

Enables an OSPF routing process.

show ip ospf
[process-id]

Displays general information about an OSPF
routing process.

show ip ospf
border-routers

Displays a router's internal OSPF route table.

show ip ospf
[process-id area-id]
database

Displays all entries in the OSPF link-state
database.

show ip ospf
[process-id area-id]
database router
[link state-id]

Displays type 1 LSAs in the OSPF link-state
database.

show ip ospf
[process-id area-id]
database network

Displays type 2 LSAs in the OSPF link-state
database.



[link state-id]

show ip ospf
[process-id area-id]
database
summary [link
state-id]

Displays type 3 LSAs in the OSPF link-state
database.

show ip ospf
[process-id area-id]
database asbr-
summary [link
state-id]

Displays type 4 LSAs in the OSPF link-state
database.

show ip ospf
[process-id area-id]
database nssa-
external [link state-
id]

Displays type 7 LSAs in the OSPF link-state
database.

show ip ospf
[process-id]
database external
[link state-id]

Displays type 5 LSAs in the OSPF link-state
database.

show ip ospf
[process-id area-id]
database
database-
summary

Displays the number of LSAs in the OSPF
link-state database by type and by area ID.

show ip ospf
interface [type
number ]

Displays OSPF-specific information about an
interface.

show ip ospf
neighbor [type
number ] [neighbor-
id] [detail]

Displays information from the OSPF neighbor
table.

show ip ospf
virtual-links

Displays information about OSPF virtual links.

timer lsa-group-
pacing seconds or
timer pacing lsa-
group seconds

Sets the minimum pacing time between two
groups of LSAs whose refresh timers have
expired.
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1998. Written by one of the original designers of OSPF and the author of the RFCs, this book is good
reading not only for its excellent coverage of the protocol but also for its historic perspective. Chapter 3
is especially interesting, with its insider's perspective on the design, testing, and standardization of a
routing protocol.



Review Questions

1 What is an OSPF neighbor?

2 What is an OSPF adjacency?

3 What are the five OSPF packet types? What is the purpose of each type?

4 What is an LSA? How does an LSA differ from an OSPF Update packet?

5 What are LSA types 1 to 5 and LSA type 7? What is the purpose of each type?

6 What is a link-state database? What is link-state database synchronization?

7 What is the default HelloInterval?

8 What is the default RouterDeadInterval?

9 What is a Router ID? How is a Router ID determined?

10 What is an area?

11 What is the significance of area 0?

12 What is MaxAge?

13 What are the four OSPF router types?

14 What are the four OSPF path types?

15 What are the five OSPF network types?

16 What is a Designated Router?

17 How does a Cisco router calculate the outgoing cost of an interface?

18 What is a partitioned area?

19 What is a virtual link?

20 What is the difference between a stub area, a totally stubby area, and a not-so-stubby
area?

21 What is the difference between OSPF network entries and OSPF router entries?

22 Why is type 2 authentication preferable over type 1 authentication?

23 Which three fields in the LSA header distinguish different LSAs? Which three fields in the
LSA header distinguish different instances of the same LSA?



Configuration Exercises

1 Table 8-13 shows the interfaces and addresses of 14 routers. Also shown is the OSPF
area to which each interface is connected. The following facts apply:

All interfaces of each router are shown in the table.

If no area is shown (-), OSPF should not be running on the associated interface.

The second octet of the subnet address is the same as the area ID.

The first 16 bits of the address of every OSPF interface are specific to the area. For
example, addresses with the prefix 10.30.x.x will be found only within area 30.

Write OSPF configurations for the routers in Table 8-13. (Tip: Draw a picture of the routers
and subnets first.)

Table 8-13. The router information for Configuration
Exercises 1 through 6

Router Interface Address/Mask Area ID

A L0 10.100.100.1/32 -

 E0 10.0.1.1/24 0

 E1 10.0.2.1/24 0

 E2 10.0.3.1/24 0

 E3 10.0.4.1/24 0

B L0 10.100.100.2/32 -

 E0 10.0.1.2/24 0

 E1 10.5.1.1/24 5

 S0 10.5.255.13/30 5

 S1 10.5.255.129/30 5

C L0 10.100.100.3/32 -

 E0 10.0.2.2/24 0

 E1 10.10.1.1/24 10

 S0 10.30.255.249/30 30

D L0 10.100.100.4/32 -

 E0 10.0.3.2/24 0

 E1 10.20.1.1/24 20

E L0 10.100.100.5/32 -

 E0 10.0.4.2/24 0

 S0 10.15.255.1/30 15

F L0 10.100.100.6/32 -

 E0 10.5.5.1/24 5

 S0 10.5.255.130/30 5

 S1 10.5.255.65/30 5



G L0 10.100.100.7/32 -

 E0 10.10.1.58/24 10

 S0 10.10.255.5/30 -

H L0 10.100.100.8/32 -

 E0 10.20.1.2/24 20

 E1 10.20.100.100/27 20

 S0 10.20.255.225/30 -

I L0 10.100.100.9/32 -

 E0 10.35.1.1/24 35

 S0 10.5.255.66/30 5

J L0 10.100.100.10/32 -

 E0 10.15.227.50/24 15

 S0 10.15.225.2 15

K L0 10.100.100.11/32 -

 E0 10.30.1.1/24 30

 S0[*] 10.30.254.193/26 30

L L0 10.100.100.12/32 -

 E0 10.30.2.1/24 30

 S0[*] 10.30.254.194/26 30

M L0 10.100.100.13/32 -

 E0 10.30.3.1/24 30

 S0[*] 10.30.254.195/26 30

 S1 10.30.255.250/30 30

N L0 10.100.100.14/32 -

 E0 10.30.4.1/24 30

 S0[*] 10.30.254.196/26 30

2 Configure summarization on all ABRs in Table 8-13.

3 Modify the configurations to make area 15 a stub area.

4 Modify the configurations to make area 30 a totally stubby area.

5 Interface S0 of router H is connected to a router running another routing protocol, and the
routes learned from that protocol are being redistributed into OSPF. Modify the
configurations as necessary to allow these redistributed routes to be advertised throughout
the OSPF domain, but do not allow any type 5 LSAs to enter area 20.

6 The serial link between routers C and M is a very low bandwidth link. Modify the
configurations so that OSPF treats this link as a demand circuit.



Troubleshooting Exercises

1 OSPF is not working between two routers. When debugging is turned on, the messages shown in Example 8-110
are received every 10 seconds. What is the problem?

Example 8-110. The debug messages for Troubleshooting Exercise 1.

RTR_EX1#debug ip ospf adj
OSPF adjacency events debugging is on
RTR_EX1#
OSPF: Rcv pkt from 172.16.27.1, TokenRing0, area 0.0.0.25 : src not on the same
  network
OSPF: Rcv pkt from 172.16.27.1, TokenRing0, area 0.0.0.25 : src not on the same
  network
OSPF: Rcv pkt from 172.16.27.1, TokenRing0, area 0.0.0.25 : src not on the same
  network
OSPF: Rcv pkt from 172.16.27.1, TokenRing0, area 0.0.0.25 : src not on the same
  network
OSPF: Rcv pkt from 172.16.27.1, TokenRing0, area 0.0.0.25 : src not on the same
  network

2 Explain what problem is indicated by the debug messages in Example 8-111.

Example 8-111. The debug messages for Troubleshooting Exercise 2.

RTR_EX2#debug ip ospf adj
OSPF adjacency events debugging is on
RTR_EX2#
OSPF: Hello from 172.16.27.195 with mismatched Stub/Transit area option bit
OSPF: Hello from 172.20.1.1 with mismatched Stub/Transit area option bit
OSPF: Hello from 172.16.27.195 with mismatched Stub/Transit area option bit
OSPF: Hello from 172.20.1.1 with mismatched Stub/Transit area option bit
OSPF: Hello from 172.16.27.195 with mismatched Stub/Transit area option bit
OSPF: Hello from 172.20.1.1 with mismatched Stub/Transit area option bit
OSPF: Hello from 172.16.27.195 with mismatched Stub/Transit area option bit
OSPF: Hello from 172.20.1.1 with mismatched Stub/Transit area option bit

3 Explain what problem is indicated by the error messages in Example 8-112.

Example 8-112. The error messages for Troubleshooting Exercise 3.

RTR_EX3#
OSPF: Send with youngest Key 10
OSPF: Rcv pkt from 10.8.1.1, Ethernet0 : Mismatch Authentication type. Input
packet specified type 0, we use type 2
OSPF: Send with youngest Key 10
OSPF: Rcv pkt from 10.8.1.1, Ethernet0 : Mismatch Authentication type. Input
packet specified type 0, we use type 2
RTR_EX3#

4 Explain what problem is indicated by the error messages in Example 8-113.

Example 8-113. The error messages for Troubleshooting Exercise 4.

RTR_EX4#
OSPF: Send with youngest Key 10
OSPF: Rcv pkt from 10.8.1.1, Ethernet0 : Mismatch Authentication Key - Message D
igest Key 10
OSPF: Send with youngest Key 10



OSPF: Rcv pkt from 10.8.1.1, Ethernet0 : Mismatch Authentication Key - Message D
igest Key 10
RTR_EX4#

5 Explain what problem is indicated by the error messages in Example 8-114.

Example 8-114. The error messages for Troubleshooting Exercise 5.

RTR_EX5#
%OSPF-4-ERRRCV: Received invalid packet: mismatch area ID, from backbone area must
be virtual-link
but not found from 10.8.1.1, Ethernet0
%OSPF-4-ERRRCV: Received invalid packet: mismatch area ID, from backbone area must
be virtual-link
but not found from 10.8.1.1, Ethernet0
RTR_EX5#

6 The configurations for the routers in Figure 8-58 follow.

A:

router ospf 15
network 192.168.50.224 0.0.0.31 area 192.168.50.0
network 192.168.50.240 0.0.0.15 area 0.0.0.0
area 192.168.50.0 authentication message-digest

B:

router ospf 51
network 192.168.50.0 0.0.0.255 area 0

Routers A and B are not forming an adjacency. What is wrong?

Figure 8-58. The network for Troubleshooting Exercise 6.

7 Example 8-115 shows a link-state database from an area in which an unstable link exists. Based on the
information shown, which link is the likely culprit?

Example 8-115. The link-state database for Troubleshooting Exercise 7.

RTR_EX7#show ip ospf database
OSPF Router with ID (10.8.20.1) (Process ID 1)

Router Link States (Area 0)

Link ID    ADV Router   Age   Seq#         Checksum   Link count
10.3.0.1   10.3.0.1     18    0x8000001B   0x6AF8     5
10.8.5.1   10.8.5.1     15    0x80000267   0xFDA0     6
10.8.20.1  10.8.20.1    478   0x8000001E  0xD451     4

Net Link States (Area 0)



Link ID    ADV Router   Age   Seq#         Checksum
10.8.1.2   10.3.0.1     18    0x80000013   0xA747
RTR_EX2#



Chapter 9. OSPFv3
This chapter covers the following subjects:

Operation of OSPFv3

Configuring OSPFv3

Troubleshooting OSPFv3

As you have seen in previous chapters, routing IPv6 requires modifications to a protocol; primarily, the
protocol messages must be modified to carry addresses four times as long as IPv4 addresses. In
theory, this also could be done with Open Shortest Path First (OSPF), either by modifying the existing
Link State Advertisements (LSA) or by defining new LSAs. But development of OSPF began in the very
late 1980s, when router performance was low, latency was high, and memory was expensive. None of
these are valid now, and several characteristics of OSPFv2 that were intended to accommodate or
compensate for those early networking realities are now irrelevant. Further, extensive operational
experience with OSPFv2 revealed several areas of inefficiency.

So when extension of OSPF to support IPv6 was first considered, it was recognized that there was an
opportunity to improve the protocol itself. The result is that rather than just extending OSPFv2 for IPv6,
a new and improved version of OSPFOSPF version 3has been created.



Operation of OSPFv3

OSPFv3 is specified in RFC 2740. There are some high-level similarities between the relationships of
RIPng to RIPv2 and OSPFv3 to OSPFv2. Most important, OSPFv3 uses the same fundamental
mechanisms as OSPFv2the SPF algorithm, flooding, DR election, areas, and so on. Constants and
variables such as timers and metrics are also the same.

Another similarity to the relationship of RIPng to RIPv2 is that OSPFv3 is not backward-compatible with
OSPFv2. So if you want to use OSPF to route both IPv4 and IPv6, you must run both OSPFv2 and
OSPFv3. As this chapter is being written, there is discussion of adding IPv4 support to OSPFv3, but no
specifications have yet been completed. I, for one, hope this support is added, because OSPFv3 is a
significantly improved protocol.

It is assumed that you have read the previous chapter and understand the operation of OSPFv2. This
section does not repeat that information, but presents the significant differencesprimarily operational
and LSA formatsof OSPFv3.

OSPFv3 Differences from OSPFv2

In addition to the changes in LSAs, described in the next section, there are several changes to OSPF
procedures themselves. This section describes the most important of those changes:

Per link protocol processing You have already seen that an interface to a link can have more
than one IPv6 address. In fact, a single link can belong to multiple subnets, and two interfaces
attached to the same link but belonging to different IPv6 subnets can still communicate. OSPFv3
changes the OSPFv2 language of "subnet" to "link," and allows the exchange of packets between
two neighbors on the same link but belonging to different IPv6 subnets.

Removal of addressing semantics As you will see in the subsequent sections, OSPFv3 Router
and Network LSAs do not carry IP addresses. A new LSA is defined for that purpose. This has
some scaling advantages. However, 32-bit RIDs, AIDs, and LSA IDs are maintained in IPv6. Keep
in mind that although these IDs are written in dotted decimal, and are often derived in OSPFv2
networks from working IPv4 addresses, they are not IPv4 addresses. These OSPFv3 IDs are still
expressed in dotted decimal, allowing easy overlay of an OSPFv3 network on an existing OSPFv2
network.

Neighbors are always identified by Router ID OSPFv2 neighbors on broadcast and NBMA
links are identified by their interface addresses, whereas neighbors on other types of links are
identified by RID. OSPFv3 removes this inconsistency, so that all neighbors on all link types are
identified by RID.

Addition of a link-local flooding scope  OSPFv3 retains the domain (or AS) and area flooding
scopes of OSPFv2, but adds a link-local flooding scope. You already knowparticularly from
Chapter 2, "IPv6 Overview"that IPv6 makes much use of the link-local scope. As you will see in the
subsequent sections, a new LSAthe Link LSAhas been added, for carrying information that is only
relevant to neighbors on a single link. This LSA has link-local flooding scope, meaning it cannot be
flooded beyond any attached router.

Use of link-local addresses You already know that OSPFv2 packets have a link-local scope;
they are not forwarded by any router. OSPFv3 uses a router's link-local IPv6 address (recall from
Chapter 2 that these addresses always begin with FF80::/10) as the source address, and as next-
hop addresses.

Support for multiple instances per link There are applications in which multiple OSPF routers
can be attached to a single broadcast link but should not form a single adjacency among them. An
example of this is a shared Network Access Point (NAP). For example, suppose four routers are



attached to an Ethernet link. Routers 1 and 2 belong to one OSPF domain, and routers 3 and 4
belong to a different OSPF domain. There should be adjacencies between 1 and 2 and between 3
and 4, but not, for instance, between 1 and 3. You can accomplish this kind of separation of
adjacencies with OSPFv2 by manipulating authentication, but it is not ideal. Among other things,
the routers belonging to one adjacency will be continuously logging authentication failures from
the rejected Hellos of the other adjacency. OSPFv3 allows for multiple instances per link by
adding an Instance ID to the OSPF packet header to distinguish instances. An interface assigned
to a given Instance ID will drop OSPF packets whose Instance ID does not match.

Removal of OSPF-specific authentication IPv6 has, using the Authentication extension header,
a standard authentication procedure. Because of this, OSPFv3 has no need for its own
authentication of OSPFv3 packets; it just uses IPv6 authentication.

More flexible handling of unknown LSA types  Where OSPFv2 always discards unknown LSA
types, OSPFv3 can either treat them as having link-local flooding scope, or store and flood them
as if they are understood, while ignoring them in their own SPF algorithms. This can result in
easier network changes and easier integration of new capabilities in OSPFv3 than in OSPFv2.

OSPFv3 Messages

OSPFv2 and OSPFv3 both have the same protocol number of 89, although OSPFv3, being an IPv6
protocol, more accurately has a Next Header  value of 89. And like OSPFv2, OSPFv3 uses multicast
whenever possible. The IPv6 AllSPFRouters multicast address is FF02::5, and the AllDRouters
multicast address is FF02::6. Both have link-local scope. You can easily see the similarity in the last bits
with the OSPFv2 addresses of 224.0.0.5 and 224.0.0.6.

OSPFv3 uses the same five message typesHello, DD, LS Database Request, LS Database Update,
and LS Acknowledgmentas OSPFv2, and numbers them the same. The message header, shown in
Figure 9-1, is somewhat different from the OSPFv2 message header. The version number, of course, is
3 rather than 2. But more important, there are no fields for authentication. As discussed in the previous
section, OSPFv3 uses the Authentication extension header of the IPv6 packet itself rather than its own
authentication process. And there is an Instance ID, which allows multiple OSPFv3 instances to run on
the same link. The Instance ID has local link significance only, because the OSPFv3 message is not
forwarded beyond the link on which it is originated.

Figure 9-1. OSPFv3 packet header.

Aside from the message header, the format of only two of the OSPFv3 messages is different from their
OSPFv2 counterparts: Hellos and Database Description messages.

Figure 9-2 shows the format of the OSPFv3 Hello message. Unlike OSPFv2, there is no Network Mask
field because IPv6 has no need for it. Beyond that, the same fields (below the header) appear in both
packets. The Options field increases in size to 24 bits, and the Router Dead Interval is decreased from
32 bits to 16 bits. The implication of this second field is that the theoretical maximum Router Dead
interval is decreased from 4.3 billion seconds to 65,535 seconds. This change has little or no bearing



on operational networks. The maximum configurable Router Dead interval on the most common OSPF
implementations has long been 65,535 anyway, and intelligent OSPF designs do not approach even
this maximum; so the change in the field size is only for conservation of unused space.

Figure 9-2. OSPFv3 Hello message.

[View full size image]

Figure 9-3 shows the format of the OSPFv3 Database Description packet. It differs from its OSPFv2
counterpart only in the larger Options field.

Figure 9-3. OSPFv3 Database Description message.

[View full size image]



The other three message typesLink State Request, Link State Update, and Link State
Acknowledgmenthave formats that do not differ from those of OSPFv2, and so are not shown in this
chapter.

An Overview of OSPFv3 LSAs

The OSPFv3 LSA header is shown in Figure 9-4. Comparing it with the OSPFv2 LSA header in Figure
8-54, you can see that it is almost identical, except that there is no Options field, and the Link State
Type field is 16 bits rather than the 8-bit Type field of OSPFv2.

Figure 9-4. OSPFv3 LSA header.

[View full size image]

The reason that the Link State Type field is longer is that it includes three preceding bits, as shown in
Figure 9-5.

Figure 9-5. Link State Type field of the OSPFv3 LSA header.

U indicates how a router should handle the LSA if it does not recognize the LSA's Function Code. If the
bit is cleared, the unknown LSA is to be treated as if it had link-local flooding scope. If the U bit is set,
the unknown LSA is to be stored and flooded as if it is understood.

S2 and S1 indicate the LSA's flooding scope. Table 9-1 shows the possible values of these two bits
and the associated flooding scopes.

Table 9-1. S bits in the OSPFv3 LSA Link State
Type field and their associated flooding

scopes.
S2 S1 Flooding Scope
0 0 Link-Local
0 1 Area
1 0 AS (Routing Domain)



1 1 Reserved

LSA Function Code, the last 13 bits of the LS Type field, corresponds to the OSPFv2 Type field. Table
9-2 shows the common LSA types used by OSPFv3 and the values of their corresponding LS Types. If
you decode the hex values, you will see that the default U bit of all of them is 0. The S bits of all LSAs
except two indicate area scope. Of the remaining two, AS External LSAs have an AS flooding scope
and Link LSAs have a link-local flooding scope. Most of the OSPFv3 LSAs have functional counterparts
in OSPFv2; these OSPFv2 LSAs and their types are also shown in Table 9-2.

Table 9-2. OSPFv3 LSA types and their OSPFv2 counterparts.
OSPFv3 LSAs OSPFv2 LSAs

LS Type Name Type Name
0x2001 Router LSA 1 Router LSA
0x2002 Network LSA 2 Network LSA
0x2003 Inter-Area Prefix LSA 3 Network Summary LSA
0x2004 Inter-Area Router LSA 4 ASBR Summary LSA
0x4005 AS-External LSA 5 AS-External LSA
0x2006 Group Membership LSA 6 Group Membership LSA
0x2007 Type-7 LSA 7 NSSA External LSA
0x0008 Link LSA  No Corresponding LSA
0x2009 Intra-Area Prefix LSA  No Corresponding LSA

Although Router and Network LSAs have the same names, there is a significant difference in how the
OSPFv3 and OSPFv2 Router and Network LSAs function. Specifically, OSPFv3 Router and Network
LSAs do not advertise prefixes. This is an important improvement in the scaling of the protocol. These
LSAs are, as you know from Chapter 8, "OSPFv2," primarily to represent the router as a node on the
SPF tree. So when a Router or Network LSA is flooded, there is an assumption that a topological
change has taken place and all routers in the area, on receipt of the LSA, rerun SPF. But because
OSPFv2 routers also use these LSAs to advertise their connected subnets, if a subnet changes, the
LSA must also be flooded to advertise the change. Even though something like an address change
does not affect the SPF topology, the reception of a Router or Network LSA triggers an SPF run
anyway. This can be particularly problematic for edge or access routers that have many stub links that
change regularly.

OSPFv3 removes the prefix advertisement function from Router and Network LSAs, and puts it in the
new Intra-Area Prefix LSA. Now Router and Network LSAs only represent the router's node information
for SPF and are only flooded if information pertinent to the SPF algorithm changes. If a prefix changes,
or the state of a stub link changes, that information is flooded in an Intra-Area Prefix LSA that does not
trigger an SPF run.

Another difference between Router and Network LSAs between OSPFv2 and OSPFv3 is in the
exchange of some information that is only relevant to directly connected neighbors. OSPFv2 puts this
information in Router or Network LSAs; and although only the directly connected neighbors care about
the information, it is flooded with the LSAs throughout the area. OSPFv3 takes this neighbor-specific
information and puts it in the new Link LSA, which has link-local flooding scope. Although minor, the
introduction of the Link LSA does add an efficiency improvement over OSPFv2.

Inter-Area Prefix, Inter-Area Router, and Type-7 LSAs, although their names have changed, have the
same function as OSPFv2 Network Summary, ASBR Summary, and NSSA LSAs, respectively. AS-
External and Group Membership LSAs have both the same names and the same functions in both



OSPFv2 and OSPFv3.

OSPFv3 LSA Formats

This section details the formats of the first five OSPFv3 LSA types, and the two new LSA types shown
in Table 9-2. Although there is a specified Group Membership LSA for Multicast OSPF (MOSPF), that
protocol is not covered in this book, and so the LSA is also not detailed. In most cases, only fields that
differ from their OSPFv2 counterparts are discussed; you are encouraged to compare those LSAs that
have corresponding OSPFv2 LSAs with the figures in Chapter 8.

The Router LSA

Figure 9-6 shows the format of the OSPFv3 Router LSA. As discussed in the previous section, prefix
information is not included in the Router LSA as it is in its OSPFv2 counterpart. The OSPFv3 Router
LSA only describes the originating router and its links to neighbors, for use in SPF calculations. Prefix
information is carried in the Intra-Area Prefix LSA.

Figure 9-6. OSPFv3 Router LSA.

[View full size image]

Also notice that the ToS metric fields, obsolete already in OSPFv2, are not included in this LSA.

Options, although in a different position within the LSA format and a longer length (24 bits) than the
OSPFv2 Options field, performs the same function of identifying optional capabilities. The Options field,
carried in several packets and LSAs, is described separately in a later section.



Following the Options field is a set of fields that can appear multiple times, to describe each of the
attached interfaces:

Type specifies the interface type. Table 9-3 lists the possible interface type values.

Table 9-3. Interface types specified in
the Type field of the Router LSA.

Type Description
1 Point-to-point connection to another

router
2 Connection to a transit network
3 Reserved
4 Virtual link

Metric specifies the outbound cost of the interface.

Interface ID is a 32-bit value distinguishing the interface from other interfaces on the originating
router.

Neighbor Interface ID is the Interface ID advertised by neighbors on the link in their Hellos or, in
the case of type 2 links, the Interface ID of the link's DR.

Neighbor Router ID is the neighbor's RID or, in the case of type 2 links, the DR's RID.

Network LSA

The OSPFv3 Network LSA is shown in Figure 9-7. Functionally it is identical to the OSPFv2 Network
LSA (originated by the DR to represent a pseudonode, 0 cost to attached neighbors is assumed, and
so on). The only significant differences are the location of the Options field and the elimination of the
Network Mask field, which has no meaning in IPv6.

Figure 9-7. OSPFv3 Network LSA.

[View full size image]



Inter-Area Prefix LSA

The Inter-Area Prefix LSA (Figure 9-8) performs the same function as the OSPFv2 type 3 Summary
LSAABRs originate them into an area to advertise networks that are outside the area but inside the
OSPF domain. Only the name, more descriptive in OSPFv3, has changed. An ABR originates a
separate Inter-Area Prefix LSA for each IPv6 prefix that must be advertised into an area. An ABR can
also originate an Inter-Area Prefix LSA to advertise a default route into a stub area.

Figure 9-8. OSPFv3 Inter-Area Prefix LSA.

[View full size image]

Inter-Area Router LSA

The Inter-Area Router LSA performs the same duties for OSPFv3 as the type 4 Summary LSA performs
for OSPFv2. An ABR originates an Inter-Area Router LSA into an area to advertise an ASBR that
resides outside of the area. The ABR originates a separate Inter-Area Router LSA for each ASBR it
advertises.

Figure 9-9 shows the format of the Inter-Area Router LSA. Even though the OSPFv2 type 3 and type 4
Summary LSAs have the same formats, you can see by comparing Figure 9-8 and Figure 9-9 that the
Inter-Area Network and Inter-Area Router LSAs are different. The fields are self-descriptive:

Options specifies optional capabilities of the ASBR.

Metric specifies the cost to the ASBR.

Destination Router ID is the ASBR RID.

Figure 9-9. OSPFv3 Inter-Area Router LSA.

[View full size image]



AS-External LSA

As with OSPFv2, the AS-External LSA advertises prefixes external to the OSPF routing domain; one
LSA is required for each external prefix advertised. However, the format of the OSPFv3 As-External
LSA (Figure 9-10) is different from its OSPFv2 counterpart.

Figure 9-10. OSPFv3 AS-External LSA.

[View full size image]



The E flag performs the same function in the OSPFv3 LSA as in the OSPFv2 LSA. If set, the metric is a
type 2 external metric. If the bit is cleared, the metric is a type 1 external metric.

The F flag indicates, when set, that a forwarding address is included in the LSA.

The T flag indicates, when set, that an external route tag is included in the LSA.

Metric, of course, specifies the cost of the route. Whether it is type 1 or type 2 depends on the value of
the E flag.

Prefix Length, Prefix Options, and Address Prefix completely describe the enclosed prefix.

Forwarding Address , if included, is a fully specified 128-bit IPv6 address representing the next-hop
address to the destination prefix. It is included only if the F flag is set.

External Route Tag , if included, performs the same function as the External Route Tag field in the
OSPFv2 AS-External LSA. It is included only if the T flag is set.

Referenced Link State ID and Referenced Link State Type, if included, allow additional information
about the prefix to be included in another LSA. If used, these two fields describe the link state ID and
the type of the LSA carrying the additional information. The Advertising Router field of the referenced
LSA must also match the value of the Advertising Router field in the AS-External LSA. The additional
information has, as with the External Route Tag, no relevance to OSPFv3 itself, but is used to
communicate information across the OSPF domain between border routers. If this function is not used,
the Referenced Link State Type field is set to all zeroes.

Link LSA

The Link LSA is used for communicating information that is significant only to two directly connected
neighbors. The format of the Link LSA is shown in Figure 9-11. A separate Link LSA is originated on
each of a router's attached links belonging to an OSPFv3 domain, and a receiving router, because of
the link-local flooding scope, never forwards the LSA to any other link.

Figure 9-11. OSPFv3 Link LSA.

[View full size image]



The LSA performs three functions:

It provides the originating router's link-local address to all other routers attached to the link.

It provides a list of IPv6 prefixes associated with the link.

It provides a set of Option bits to associate with Network LSAs originated on the link.

Router Priority  specifies the router priority assigned to the interface of the originating router.

Options specifies the options bits that the originating router would like to set in the Network LSA that
will be originated for the link. This is the same 24-bit Options field carried in OSPFv3 Hello and DD
packets, in a number of OSPFv3 LSAs. The Options field is detailed in the later section, "The Options
Field."

Link-Local Prefix Address  specifies the 128-bit link-local prefix of the originating router's interface
attached to the link.

Number of Prefixes  specifies the number of IPv6 prefixes contained in the LSA, as described by the
following Prefix Length, Prefix Options, and Address Prefix fields.

Prefix Length, Prefix Options, and Address Prefix describe one or more IPv6 prefixes associated with
the link by the originating router. This set of fields is used not only in the Link LSA, but also the Intra-
Area-Prefix, Inter-Area-Prefix, and AS-External LSAs. The advertised prefix can be any length between
0 and 128. When the prefix is not an even multiple of 32 bits, it is padded out with zeroes to fit the 32-
bit boundaries of the Address Prefix field. The Prefix Length field specifies the length of the unpadded
prefix, in bits. The Prefix Options field, shown in Figure 9-12, specifies optional handling of the prefix



prefix, in bits. The Prefix Options field, shown in Figure 9-12, specifies optional handling of the prefix
during routing calculations.

Figure 9-12. Prefix Options field.

The Propagate (P) bit is set on NSSA area prefixes that should be re-advertised at the NSSA area
border.

The Multicast (MC) bit, when set, specifies that the prefix should be included in multicast routing
calculations.

The Local Address (LA) bit, when set, specifies that the prefix is an interface address of the advertising
router.

The No Unicast (NU) bit, when set, specifies that the prefix should be excluded from unicast route
calculations.

Intra-Area Prefix LSA

The Intra-Area Prefix LSA is shown in Figure 9-13. Recall from the previous discussion of this LSA that
attached prefixes, which in OSPFv2 are carried in Router and Network LSAs, in OSPFv3 are carried in
Intra-Area Prefix LSAs. Prefix changesincluding additions and deletionsdo not influence the branches of
the SPF tree in any way. But OSPFv2 advertises prefixes in Router and Network LSAs, causing an
SPF calculation in all routers in the area whenever a prefix change occurs. With OSPFv3, however,
when a link or its prefix changes, the connected router originates an Intra-Area Prefix LSA to flood the
information throughout the area. This LSA does not trigger an SPF calculation; the receiving routers
simply associate the new prefix information with the originating router. Router and Network LSAs, in
OSPFv3, serve only to provide topological information. As a result, this new LSA should make OSPFv3
significantly more scalable for networks with large numbers of frequently changing prefixes.

Figure 9-13. Intra-Area Prefix LSA.

[View full size image]



Number of Prefixes specifies the number of prefixes contained in the LSA.

Referenced Link State Type, Referenced Link State ID, and Referenced Advertising
Router identify the Router or Network LSA with which the contained prefixes should be
associated.

If the prefixes are associated with a Router LSA, the Referenced Link State Type is 1, the Referenced
Link State ID is 0, and the Referenced Advertising Router is the RID of the originating router. If the
prefixes should be associated with a network LSA, the Referenced Link State Type is 2, the
Referenced Link State ID is the interface ID[1] of the link's DR, and the Referenced Advertising Router
is the RID of the DR.

[1] The interface ID used in this and other OSPFv3 LSAs should not be confused with the 64-
bit Interface ID portion of an IPv6 address. This field is a 32-bit value distinguishing this
interface from other interfaces on the originating router. RFC 2740 suggests using the MIB-II
If Index for the interface ID value.

Each prefix is then represented by a Prefix Length, Prefix Options, and Address Prefix field, as
described previously for the Link LSA. Added to these three fields is the Metric field, which is the cost
of the prefix.

Options Field

The 24-bit Options field, specifying optional capabilities of the originating router, is carried in Router,
Network, Inter-Area Router, and Link LSAs. This field is also carried in the Hello and Database
Description packets. Figure 9-14 shows the format of the Options field. As of this writing, only the six



rightmost bits are defined as options flags, and most of those are the same flags you are familiar with
from OSPFv2. OSPFv3 routers ignore unrecognized options flags.

Figure 9-14. Options field.

DC specifies support for demand circuits capability.

R indicates whether the originator is an active router. When cleared, routes transiting the
originating node cannot be computed. The R flag therefore adds a capability similar to the IS-IS
Overload bit, described in Chapter 10, "Integrated IS-IS."

N specifies support for NSSA LSAs.

MC specifies support for MOSPF.

E specifies how AS-External LSAs are flooded, for the formation of stub areas.

V6, if clear, specifies that the router or link should be excluded from IPv6 routing calculations.



Configuring OSPFv3

The configuration options of OSPFv3 are the same as those for OSPFv2. Process IDs and areas need to be
specified. Interfaces and addresses need to be included in the process. Areas can be defined as stubs, totally
stubby or not so stubby area (NSSA). Prefixes can be summarized between areas. OSPFv3 can be configured
over demand circuits and on NBMA networks. Much of the configuration for OSPFv3 is the same as for
OSPFv2. An IPv6 keyword is added in some cases, and an IPv6 prefix or address is used in place of the IPv4
subnet or address. This section contains case studies that show the OSPFv3 configurations that are different
from OSPFv2 and some that are very similar, but need to be emphasized.

Case Study: A Basic OSPFv3 Configuration

The configuration of OSPFv3 is similar to OSPFv2 with two exceptions. Recall from Chapter 8 that to configure
OSPFv2 on a router and an interface, you first create the OSPF process using the router ospf command.
Then, you specify address ranges that encompass interface addresses that are to participate in OSPF, using
the network area command. The interfaces configured with IPv4 addresses that fall within the address range
specified with the network area command participate in OSPFv2. If an interface has an IPv4 address that is
not part of the address range, that interface, or that address (if there is more then one IPv4 address on an
interface) will not participate in the OSPFv2 process. OSPFv3 for IPv6 is enabled by specifying an OSPF
process ID and an area at the interface configuration level. If an OSPFv3 process has not yet been created, it
is created automatically. All IPv6 addresses configured on the interface are included in the specified OSPF
process. Figure 9-15 displays an OSPFv3 network.

Figure 9-15. Example of an OSPFv3 network.

[View full size image]

Hedwig's and Pigwidgeon's configurations are displayed in Example 9-1 and Example 9-2.

Example 9-1. OSPFv3 is configured on Hedwig with the interface command ipv6 ospf 1 area 1 .

interface Serial 0/0
 ipv6 address 2001:db8:0:8::1/64
 ipv6 ospf 1 area 1
interface Ethernet0/0
 ipv6 address 2001:db8:0:4::1/64
 ipv6 ospf 1 area 0

Example 9-2. Pigwidgeon is configured for OSPFv3.

interface Ethernet 0/0
 ipv6 address 2001:db8:0:5::3/64
 ipv6 ospf 1 area 0
interface Serial 0/0



 ipv6 address 2001:db8:0:10::1/64
 ipv6 ospf 1 area 0

The command ipv6 ospf area enables OSPFv3 on Serial0/0 and Ethernet0/0, places Hedwig's serial interface
in area 1 and the Ethernet interface in area 0, and creates the OSPFv3 process with ID '1' on the router, as
shown in Example 9-3. With OSPFv2, two commands are required to accomplish the same tasks: the router
ospf 1 command creates the OSPF process, then the network area command enables OSPFv2 on
interfaces. One thing to note, though, is that the network area command can enable OSPFv2 on multiple
interfaces with the single command, whereas the ipv6 ospf area command has to be configured on each
interface that will be running OSPFv3.

Example 9-3. show ipv6 protocol  displays the OSPF for IPv6 process ID and the interfaces configured
in each area on the router.

Hedwig#show ipv6 protocol
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "static"
IPv6 Routing Protocol is "ospf 1"
  Interfaces (Area 0):
    Ethernet0/0
  Interfaces (Area 1):
    Serial0/0
  Redistribution:
    None
Hedwig#

All IPv6 addresses on an interface are included in the OSPF process that is created on the interface. For
example, a second IPv6 address is added to Hedwig's Ethernet port in Example 9-4.

Example 9-4. A second IPv6 address is added to Hedwig's Ethernet0/0. Both IPv6 addresses are
included in the OSPFv3 process because OSPFv3 is configured on that interface.

interface Ethernet0/0
 ipv6 address 2001:db8:0:4::1/64
 ipv6 address 2001:db8:0:5::1/64
 ipv6 ospf 1 area 0

This second address is included automatically in the OSPFv3 process that is configured on the interface. No
additional OSPFv3 commands need to be entered to make the new address part of the routing process. IPv6
addresses on an interface cannot be selectively included in OSPFv3. Either all the addresses are included, by
configuring the interface with OSPFv3, or OSPFV3 is not configured on the interface and none of the
addresses are included.

OSPFv3 routers use their link-local addresses as the source of hello packets. No IPv6 prefix information is
contained in hello packets. Multiple IPv6 addresses can be configured on a link. None of the addresses are
defined as secondary addresses, as is done with IPv4 to configure multiple addresses on a single link. Two
routers will become adjacent even if no IPv6 prefix is common between the neighbors except the link-local
address. This is different from OSPFv2 for IPv4. OSPFv2 neighbors will only become adjacent if the neighbors
belong to the same IP subnet, and the common subnet is configured as the primary IP address on the
neighboring interfaces. In Figure 9-15, Hedwig is configured with both 2001:db8:0:4::/64 and 2001:db8:0:5::/64
on its Ethernet interface. Pigwidgeon is configured with 2001:db8:0:5::/64 and Crookshanks is configured with
2001:db8:0:4::/64 on their Ethernet interfaces. Example 9-5 shows that Crookshanks is adjacent to both
Hedwig (10.1.1.1) and Pigwidgeon (10.1.3.1). Pigwidgeon is the backup designated router.

Example 9-5. show ipv6 ospf neighbor  shows Crookshanks's neighbors are all in the FULL state,



even though they don't share a common IPv6 prefix, other then the link-local address.

Crookshanks#show ipv6 ospf neighbor
Neighbor ID     Pri   State           Dead Time    Interface ID    Interface
10.1.1.1          1   FULL/DROTHER    00:00:30     3               Ethernet0/0
10.1.3.1          1   FULL/BDR        00:00:37     3               Ethernet0/0
Crookshanks#

Other parameters must match between two neighbors before they will become adjacent. These parameters are
the same as IPv4: The neighbors must share the same area id, they must have the same Hello interval and
dead time, and they both must have the same value in the E-bit, indicating whether the area is a stub area or
not. An OSPFv3 packet must also have the same Instance ID as the receiving interface, or the OSPFv3
packets will be dropped. Instance ID will be discussed later in this chapter, in the case study, Multiple Instances
on a Link.

OSPFv3 uses a 32-bit number for a Router ID. If IPv4 is configured on the router, by default, the RID is chosen
in the same way it is by OSPFv2 for IPv4. The highest IPv4 address configured on a loopback interface will
become the RID, or if no loopback interfaces are configured, the highest address on any other interface will
become the RID.

IPv6 neighbors are always known by their RIDs, unlike IPv4, where point-to-point network neighbors are
known by RIDs and broadcast, NBMA and point-to-multipoint network neighbors are known by their interface
IP addresses. The neighbor IDs shown in Example 9-5 show that the router IDs are obtained from configured
IPv4 addresses.

If IPv4 is not configured in the network, and you don't want to configure IPv4 just to establish a router ID, the
router ID must be configured using the IPv6 OSPF routing process command router-id before the OSPF
process will start.

When OSPFv3 is configured on an interface, the routing process is created. Interface parameters, such as the
cost of a link, are modified at the interface configuration, but global parameters are modified at the OSPF
process level.

Case Study: Stub Areas

The ipv6 router ospf command takes you into the global process configuration mode, just as router ospf
does for IPv4. The same configuration customization can be done with IPv6 as with IPv4. Stub, NSSA, and
totally stubby are supported and configured in the exact same way as for OSPFv2 for IPv4, using the area
stub, area nssa, and area stub no-summary commands. Area 1 in Figure 9-15 is configured as a totally
stubby area with the configurations in Example 9-6 and Example 9-7 at Hedwig and Scabbers.

Example 9-6. On Hedwig, area 1 is configured as a totally stubby area. no-summary is only
configured on the ABR.

ipv6 router ospf 1
 area 1 stub no-summary

Example 9-7. Area 1 on Scabbers is also configured as a stub because all routers in the stub area
must be configured as a stub.

ipv6 router ospf 1
 area 1 stub

Example 9-8 shows Scabbers's IPv6 route table before area 1 becomes totally stubby, and Example 9-9 shows



the route table of Scabbers as part of the totally stubby area.

Example 9-8. The IPv6 route table at Scabbers contains 10 OSPF entries, all known via Hedwig.

Scabbers#show ipv6 route
IPv6 Routing Table - 16 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
OI  2001:DB8:0:4::/64 [110/74]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
OI  2001:DB8:0:5::/64 [110/74]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
C   2001:DB8:0:8::/64 [0/0]
     via ::, Serial0/0
L   2001:DB8:0:8::2/128 [0/0]
     via ::, Serial0/0
C   2001:DB8:0:9::/64 [0/0]
     via ::, Ethernet0/0
L   2001:DB8:0:9::2/128 [0/0]
     via ::, Ethernet0/0
OI  2001:DB8:0:10::/64 [110/138]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
OI  2001:DB8:0:11::/64 [110/138]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
OI  2001:DB8:0:12::/64 [110/138]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
OI  2001:DB8:0:13::/64 [110/138]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
OI  2001:DB8:0:200::/64 [110/138]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
OI  2001:DB8:0:201::/64 [110/138]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
OI  2001:DB8:0:202::/64 [110/138]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
OI  2001:DB8:0:203::/64 [110/138]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Scabbers#

Example 9-9. As part of a totally stubby area, Scabbers now has only a single OSPF entry, the default
route.

Scabbers#show ipv6 route
IPv6 Routing Table - 7 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
OI  ::/0 [110/65]
     via FE80::202:FDFF:FE5A:E40, Serial0/0
C   2001:DB8:0:8::/64 [0/0]
     via ::, Serial0/0
L   2001:DB8:0:8::2/128 [0/0]
     via ::, Serial0/0
C   2001:DB8:0:9::/64 [0/0]



     via ::, Ethernet0/0
L   2001:DB8:0:9::2/128 [0/0]
     via ::, Ethernet0/0
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Scabbers#

Case Study: Multiple Instances on a Link

A new router, Hermes, has been added to the Ethernet segment in Figure 9-16. The desired OSPF design is to
separate Pigwidgeon's and Hermes's OSPFv3 traffic from Hedwig's and Crookshanks's traffic. As the
configuration stands, the DR and BDR are chosen among the four routers, and each router becomes adjacent
with the DR and BDR. OSPFv3 Hellos contain a field for an Instance ID. The Instance ID can be used to
segment the two OSPF processes running on the LAN segment. The Instance ID received in a Hello packet
must match the Instance ID configured on the receiving interface or the Hello packet will be discarded. Instance
ID 0 is used when none other is specified. By configuring Pigwidgeon and Hermes with a different Instance ID
than is configured on Hedwig and Crookshanks, the desired adjacencies will be established.

Figure 9-16. A new router is added to the network of Figure 9-15.
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Pigwidgeon's configuration is modified as displayed in Example 9-10.

Example 9-10. Pigwidgeon's Instance ID is modified from the default of 0 to create a distinct OSPF
process on the Ethernet.

interface Ethernet 0/0
 ipv6 address 2001:db8:0:5::3/64
 ipv6 ospf 1 area 0 instance 1

Pigwidgeon's Instance ID is changed from the default of 0 to 1. Hedwig and Crookshanks continue to use the
default Instance ID of zero. Hermes is configured similarly to Pigwidgeon to use instance ID 1. Looking at the
IPv6 OSPF configuration running on Hermes's Ethernet0/0 interface, shown in Example 9-11, only Pigwidgeon
(10.1.3.1) is adjacent.

Although multiple OSPFv3 processes can run on a router, only a single process or instance can run on an
interface.

Example 9-11. Hermes's IPv6 OSPF Ethernet interface configuration shows that Pigwidgeon, the only



other router on the Ethernet segment using instance ID 1, is adjacent.

Hermes#show ipv6 ospf interface ethernet 0/0
Ethernet0/0 is up, line protocol is up
  Link Local Address FE80::206:28FF:FEB6:5BC0, Interface ID 3
  Area 0, Process ID 1, Instance ID 1, Router ID 10.1.5.1
  Network Type BROADCAST, Cost: 10
  Transmit Delay is 1 sec, State DR, Priority 1
  Designated Router (ID) 10.1.5.1, local address FE80::206:28FF:FEB6:5BC0
  Backup Designated router (ID) 10.1.3.1, local address FE80::201:42FF:FE79:E500
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:09
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 4
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 10.1.3.1  (Backup Designated Router)
  Suppress hello for 0 neighbor(s)
Hermes#

Case Study: OSPFv3 on NBMA Networks

OSPFv3 on NBMA networks has the same configuration options as does OSPFv2, that is, the network, from
OSPF's point of view, can remain NBMA, can be configured as broadcast or point-to-multipoint, or point-to-
point networks can be configured using subinterfaces. Point-to-point links are straightforward to configure.
They are configured the same way as routers connected directly via serial links. Hedwig and Scabbers, in the
first case study in this chapter, called "A basic OSPFv3 configuration," are configured with directly connected
serial links. If these two routers were connected with point-to-point Frame-relay subinterfaces, the OSPFv3
configuration would remain the same. The NBMA, broadcast, and point-to-multipoint networks will be
discussed in this section.

Before OSPFv3 can learn about neighbors, the neighbor addresses that OSPF will use must be associated
with specific virtual circuits traversing the NBMA network. Frame Relay maps are created to identify a remote
IPv6 address with one of the PVCs connected to the local router.[2] Because IPv6 can have multiple addresses
configured on a single interface, many map statements for each PVC might be required. All OSPFv3 packets
use the Link-local address as the source address. It is also the link-local address that is used as the
destination address for unicast OSPFv3 packets, and as the next-hop to which to forward a packet when
routing. At a minimum, therefore, the link-local addresses must be mapped. Figure 9-17 shows a Frame Relay
network with four attached routers.

[2] IPv4 uses Frame Relay inverse ARP to dynamically map addresses. IPv6's functionality to
dynamically map addresses to Frame Relay PVCs is not supported in IOS at the time of this writing.

Figure 9-17. Several options exist for configuring OSPFv3 for IPv6 on this Frame Relay network.

[View full size image]



The first method of configuring the routers for OSPFv3 is to manually configure OSPFv3 neighbors. The
remote routers' link-local addresses are mapped to the correct DLCI, and the IPv6 OSPFv3 neighbors are
defined, both as part of the interface's configuration. Skrewt's configuration is shown in Example 9-12.

Example 9-12. OSPFv3 neighbors are configured on Skrewt manually.

interface Serial 0/0
 encapsulation frame-relay
 ipv6 address 2001:DB8:0:1::1/64
 ipv6 ospf 1 area 1
 frame-relay map ipv6 fe80::206:28ff:feb6:5bc0 201
 frame-relay map ipv6 fe80::202:fdff:fe5a:e40 202
 frame-relay map ipv6 fe80::201:42ff:fe79:e500 203
 ipv6 ospf neighbor fe80::206:28ff:feb6:5bc0 priority 5
 ipv6 ospf neighbor fe80::202:fdff:fe5a:e40 priority 10
 ipv6 ospf neighbor fe80::201:42ff:fe79:e500

Notice that the Link-local addresses are used in the frame-relay map statements and in the ospf neighbor
statements. To specify which routers are to become the DR and BDR, assign priorities using an optional
keyword with ipv6 ospf neighbor command.

Another configuration option is to enable OSPFv3 to dynamically discover neighbors. Two configuration items
are required: The OSPF network gets defined as a broadcast network using the command ipv6 ospf network
broadcast, and the frame-relay map statements are configured to forward broadcasts over the PVC using
the broadcast keyword on the map statement. Skrewt's configuration changes to Example 9-13.

Example 9-13. Skrewt's PVCs are configured as broadcast PVCs, and the OSPFv3 network running
over the Frame Relay link is configured as a broadcast network.

interface Serial 0/0
 encapsulation frame-relay
 ipv6 address 2001:DB8:0:1::1/64
 ipv6 ospf network broadcast
 ipv6 ospf 1 area 1
 ipv6 ospf priority 20
 frame-relay map ipv6 fe80::206:28ff:feb6:5bc0 201 broadcast
 frame-relay map ipv6 fe80::202:fdff:fe5a:e40 202 broadcast
 frame-relay map ipv6 fe80::201:42ff:fe79:e500 203 broadcast

The other routers on the multiaccess network are configured similarly. Notice that there is no longer any need



to define IPv6 OSPF neighbors. If the underlying NBMA network is not fully meshed (a PVC from every router
to every other router), the DR and BDR must be carefully selected. Both the DR and BDRs must have full
virtual circuit connectivity to every other router so the correct adjacencies are formed. Use the interface
command ipv6 ospf priority  to specify a high priority on the router you wish to be the DR. This method of
assigning the DR is discussed in the case study, OSPF on NBMA Networks, in Chapter 8. Example 9-14
shows Skrewt's IPv6 OSPF configuration on serial 0/0.

Example 9-14. An interface's OSPFv3 for IPv6 configuration is displayed using the show ipv6 ospf
interface command.

Skrewt#show ipv6 ospf interface serial 0/0
Serial0/0 is up, line protocol is up
  Link Local Address FE80::207:85FF:FE6B:EA20, Interface ID 4
  Area 1, Process ID 1, Instance ID 0, Router ID 1.1.1.1
  Network Type BROADCAST, Cost: 64
  Transmit Delay is 1 sec, State DR, Priority 20
  Designated Router (ID) 1.1.1.1, local address FE80::207:85FF:FE6B:EA20
  Backup Designated router (ID) 10.1.3.1, local address FE80::202:FDFF:FE5A:E40
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:08
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 4
  Last flood scan time is 0 msec, maximum is 4 msec
  Neighbor Count is 3, Adjacent neighbor count is 3
    Adjacent with neighbor 10.1.1.23
    Adjacent with neighbor 10.1.3.1  (Backup Designated Router)
    Adjacent with neighbor 192.2.2.9
  Suppress hello for 0 neighbor(s)
Skrewt#

Note that the network type is BROADCAST. Also note that the neighbor count is 3, and there are 3 adjacent
neighbors. This router is the DR, so it has become adjacent to all other routers on the network. The neighbors
that are not DR or BDR, such as Flobberworm, have three neighbors, but only two adjacent neighbors, as
shown in Example 9-15, because routers on broadcast networks become adjacent to the DR and BDR only.

Example 9-15. With four routers on a broadcast network, a non-DR or BDR router will have three
neighbors, but only be fully adjacent to two of the neighbors.

Flobberworm#show ipv6 ospf neighbor
Neighbor ID     Pri   State           Dead Time    Interface ID    Interface
1.1.1.1          20   FULL/DR         00:00:36     3               Ethernet0/0
10.1.1.23         1   2WAY/DROTHER    00:00:36     3               Ethernet0/0
10.1.3.1         15   FULL/BDR        00:00:37     3               Ethernet0/0
Flobberworm#

To avoid the DR/BDR election process, the OSPF network type can be changed to point-to-multipoint, as can
be seen in Skrewt's modified configuration in Example 9-16.

Example 9-16. Skrewt's configuration shows that the PVCs continue to broadcast, and that the
OSPFv3 network type has been changed to point-to-multipoint.

Interface Serial 0/0
 encapsulation frame-relay
 ipv6 address 2001:DB8:0:1::1/64
 ipv6 ospf network point-to-multipoint
 ipv6 ospf 1 area 1



 ipv6 ospf priority 20
 frame-relay map ipv6 fe80::206:28ff:feb6:5bc0 201 broadcast
 frame-relay map ipv6 fe80::202:fdff:fe5a:e40 202 broadcast
 frame-relay map ipv6 fe80::201:42ff:fe79:e500 203 broadcast

Skrewt's IPv6 OSPF interface configuration (Example 9-17) shows that the default timers are different for point-
to-multipoint networks then they are for broadcast networks. Hellos are sent every 30 seconds on point-to-
multipoint networks and every 10 seconds on broadcast networks. The OSPFv3 interface configuration also
does not show any DR, and the router is adjacent with all three neighbors.

Example 9-17. The IPv6 OSPF interface configuration of an OSPF point-to-multipoint network is
displayed with the command show ipv6 ospf interface .

Skrewt#show ipv6 ospf interface serial 0/0
Serial0/0 is up, line protocol is up
  Link Local Address FE80::207:85FF:FE6B:EA20, Interface ID 4
  Area 1, Process ID 1, Instance ID 0, Router ID 1.1.1.1
  Network Type POINT_TO_MULTIPOINT, Cost: 64
  Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT,
  Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5
    Hello due in 00:00:13
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 2, maximum is 4
  Last flood scan time is 0 msec, maximum is 4 msec
  Neighbor Count is 3, Adjacent neighbor count is 3
    Adjacent with neighbor 10.1.1.23
    Adjacent with neighbor 10.1.3.1
    Adjacent with neighbor 192.2.2.9
  Suppress hello for 0 neighbor(s)
Skrewt#

An NBMA network configured as an OSPF point-to-multipoint network need not have a full mesh of underlying
PVCs. Figure 9-18 shows that some PVCs have been removed from the network in Figure 9-17. The map
statement for DLCI 202 has been removed from Skrewt in Example 9-18.

Figure 9-18. The network of Figure 9-17, with some PVCs removed.

[View full size image]



Example 9-18. Skrewt's Frame Relay configuration maps IPv6 addresses to the remaining two PVCs.

interface Serial0/0
 no ip address
 encapsulation frame-relay
 ipv6 address 2001:DB8:0:1::1/64
 ipv6 ospf network point-to-multipoint
 ipv6 ospf priority 20
 ipv6 ospf 1 area 1
 frame-relay map ipv6 FE80::201:42FF:FE79:E500 203 broadcast
 frame-relay map ipv6 FE80::206:28FF:FEB6:5BC0 201 broadcast

Hippogriff and the IPv6 prefixes known to Hippogriff are all accessible from Skrewt, as can be seen in Skrewt's
IPv6 route table shown in Example 9-19. Skrewt and Hippogriff are both adjacent to both Thestral and
Flobberworm, and Hippogriff's IPv6 serial0/0 IPv6 address, 2001:db8:0:1::3, in addition to the IPv6 prefixes
advertised by Hippogriff, are routed to via Skrewt's serial0/0 interface, and to the next-hop link-local addresses
FE80::206:28FF:FEB6:5BC0 and FE80::201:42FF:FE79:E500.

Example 9-19. Skrewt's route table shows that even the router that does not have a connected PVC
to Skrewt is still accessible via the routers that do have connected PVCs in the point-to-multipoint
network.

Skrewt#show ipv6 route
IPv6 Routing Table - 16 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
C   2001:DB8:0:1::/64 [0/0]
     via ::, Serial0/0
L   2001:DB8:0:1::1/128 [0/0]
     via ::, Serial0/0
O   2001:DB8:0:1::2/128 [110/64]
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
O   2001:DB8:0:1::3/128 [110/128]
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
     via FE80::201:42FF:FE79:E500, Serial0/0
O   2001:DB8:0:1::4/128 [110/64]
     via FE80::201:42FF:FE79:E500, Serial0/0
O   2001:DB8:0:5::/64 [110/74]
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
O   2001:DB8:0:A::/64 [110/138]
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
     via FE80::201:42FF:FE79:E500, Serial0/0
O   2001:DB8:0:B::/64 [110/138]  
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
     via FE80::201:42FF:FE79:E500, Serial0/0
O   2001:DB8:0:C::/64 [110/138]  
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
     via FE80::201:42FF:FE79:E500, Serial0/0
O   2001:DB8:0:D::/64 [110/138]  
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
     via FE80::201:42FF:FE79:E500, Serial0/0
O   2001:DB8:0:50::/64 [110/74]
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
O   2001:DB8:0:51::/64 [110/74]
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
O   2001:DB8:0:52::/64 [110/74]
     via FE80::206:28FF:FEB6:5BC0, Serial0/0
O   2001:DB8:0:53::/64 [110/74]
     via FE80::206:28FF:FEB6:5BC0, Serial0/0



L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Skrewt#

The IPv6 addresses 2001:db8:0:1::2/64, 2001:db8:0:1::3/64, and 2001:db8:0:1::4/64, that have been
configured on the Frame Relay point-to-multipoint interfaces are all advertised by OSPF with 128-bit prefix
lengths. These addresses, along with the other IPv6 prefixes advertised by Hippogriff into OSPF, are
reachable via the link-local addresses of Skrewt's two adjacent routers.



Troubleshooting OSPFv3

Troubleshooting OSPFv3 for IPv6 should be handled in the same way as OSPFv2 for IPv4. The major
difference will be the addressing: OSPFv3 uses the link-local addresses as the source and, when sending
directly to a neighbor, destination of packets.

Case Study: Frame Relay Mapping

Upon initial configuration of Figure 9-17, Skrewt and Hippogriff are configured with the configurations in
Example 9-20 and Example 9-21.

Example 9-20. Skrewt's initial Frame Relay mapping configuration.

interface Serial 0/0
 encapsulation frame-relay
 ipv6 address 2001:DB8:0:1::1/64
 ipv6 ospf network broadcast
 ipv6 ospf 1 area 1
 frame-relay map ipv6 2001:db8:0:1::2 201 broadcast
 frame-relay map ipv6 2001:db8:0:1::3  202 broadcast
 frame-relay map ipv6 2001:db8:0:1::4 203 broadcast
 ipv6 ospf 1 area 1

Example 9-21. Hippogriff's initial Frame Relay mapping configuration.

interface Serial0/0
 no ip address
 encapsulation frame-relay
 ipv6 address 2001:DB8:0:1::3/64
 ipv6 ospf network broadcast
 ipv6 ospf 1 area 1
 frame-relay map ipv6 2001:DB8:0:1::1 220 broadcast
 frame-relay map ipv6 2001:DB8:0:1::2 221 broadcast
 frame-relay map ipv6 2001:DB8:0:1::4 223 broadcast

The other routers are configured similarly.

The routers are not becoming adjacent, as shown in Skrewt's OSPFv3 neighbor table in Example 9-22.

Example 9-22. Skrewt is not becoming adjacent to the DR or BDR.

Skrewt#show ipv6 ospf neighbor
Neighbor ID     Pri   State          Dead Time    Interface ID    Interface
10.1.3.1          1   EXSTART/DR     00:00:34     4               Serial0/0
10.1.1.23         1   EXSTART/BDR    00:00:31     4               Serial0/0
192.2.2.9         1   2WAY/DROTHER   00:00:36     4               Serial0/0
Skrewt#

Debugging IPv6 OSPF Hellos and adjacencies, Example 9-23, show that Hellos are being received and two-
way communication is established. The DR and BDR are elected. Database synchronization is attempted to
complete the adjacencies with the DR and BDR. Skrewt attempts to send database description packets (DBD)
to the potential DR, but never receives an acknowledgment, although Skrewt does continue to receive Hellos



from the potential DR. The neighbor state EXSTART with the DR and BDR indicates that a master/slave
relationship is being established and an initial DBD packet has been sent.

Example 9-23. debug ipv6 ospf hello  and debug ipv6 ospf adj  show Hellos, two-way communication
establishment, DR/BDR election, and the sending of DBD packets.

Skrewt#debug ipv6 ospf hello
Skrewt#debug ipv6 ospf adj
OSPFv3: Rcv hello from 10.1.1.23 area 1 from Serial0/0 FE80::202:FDFF:FE5A:E40
interface ID 4
OSPFv3: 2 Way Communication to 10.1.1.23 on Serial0/0, state 2WAY
OSPFv3: Neighbor change Event on interface Serial0/0
OSPFv3: DR/BDR election on Serial0/0
OSPFv3: Elect BDR 10.1.1.23
OSPFv3: Elect DR 10.1.1.23
        DR: 10.1.1.23 (Id) BDR: 10.1.1.23 (Id)
OSPFv3: Send DBD to 10.1.1.23 on Serial0/0 seq 0xF78 opt 0x0013 flag 0x7 len 28
OSPFv3: Rcv hello from 10.1.3.1 area 1 from Serial0/0 FE80::201:42FF:FE79:E500
interface ID 4
OSPFv3: 2 Way Communication to 10.1.3.1 on Serial0/0, state 2WAY
OSPFv3: Neighbor change Event on interface Serial0/0
OSPFv3: DR/BDR election on Serial0/0
OSPFv3: Elect BDR 10.1.1.23
OSPFv3: Elect DR 10.1.3.1
        DR: 10.1.3.1 (Id) BDR: 10.1.1.23 (Id)
OSPFv3: Send DBD to 10.1.3.1 on Serial0/0 seq 0x1C93 opt 0x0013 flag 0x7 len 28
OSPFv3: Remember old DR 10.1.1.23 (id)
OSPFv3: End of hello processing
OSPFv3: Send DBD to 10.1.1.23 on Serial0/0 seq 0xF78 opt 0x0013 flag 0x7 len 28
OSPFv3: Retransmitting DBD to 10.1.1.23 on Serial0/0 [1]
OSPFv3: Send DBD to 10.1.3.1 on Serial0/0 seq 0x1C93 opt 0x0013 flag 0x7 len 28
OSPFv3: Retransmitting DBD to 10.1.3.1 on Serial0/0 [1]
OSPFv3: Send DBD to 10.1.1.23 on Serial0/0 seq 0xF78 opt 0x0013 flag 0x7 len 28
OSPFv3: Retransmitting DBD to 10.1.1.23 on Serial0/0 [2]
OSPFv3: Rcv hello from 10.1.1.23 area 1 from Serial0/0 FE80::202:FDFF:FE5A:E40
interface ID 4
OSPFv3: End of hello processing
Skrewt#

No acknowledgments are being received. Adding a debug of IPv6 OSPF packets shows additional information
about the DBD packets being sent[3] (Example 9-24).

[3] Debugging IPv6 packets in a live network is not recommended.

Example 9-24. Adding debug ipv6 ospf packet  shows packet encapsulation failures.

Skrewt#debug ipv6 ospf packet
OSPFv3: Send DBD to 10.1.1.23 on Serial0/0 seq 0x2422 opt 0x0013 flag 0x7 len 28
IPV6: source FE80::207:85FF:FE6B:EA20 (local)
       dest FE80::202:FDFF:FE5A:E40 (Serial0/0)
       traffic class 224, flow 0x0, len 68+0, prot 89, hops 1, originating
 IPv6: Encapsulation failed
OSPFv3: Retransmitting DBD to 10.1.1.23 on Serial0/0 [4]

The DBD packets are not multicast, as Hellos are. They are sent to the IPv6 address of the neighbor router.
Recall that OSPFv3 uses the link-local addresses for packet exchange, as can be seen in the output of the
IPv6 packet debug. Skrewt does not have a Frame Relay map to FE80::202:FDFF:FE5A:E40 on interface
Serial0/0. This is why the encapsulation failed. Frame Relay maps must be configured mapping the link-local
address of the neighbor routers to the local DLCI.



To easily obtain the link-local addresses of an IPv6 interface, use show ipv6 interface serial0/0, as shown in
Example 9-25 .

Example 9-25. IPv6 information pertinent to an interface can be viewed with the command show ipv6
interface.

Skrewt#show ipv6 interface serial0/0
Serial0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::207:85FF:FE6B:EA20
  Global unicast address(es):
    2001:DB8:0:1::1, subnet is 2001:DB8:0:1::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::5
    FF02::1:FF00:1
    FF02::1:FF6B:EA20
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
  ND DAD is not supported
  ND reachable time is 30000 milliseconds
  Hosts use stateless autoconfig for addresses.
Skrewt#

Skrewt's and Hippogriff's configurations are changed as displayed in Example 9-26 and Example 9-27.

Example 9-26. Skrewt's Frame Relay mapping statements are changed to the link-local IPv6
addresses.

interface Serial0/0
 encapsulation frame-relay
 ipv6 address 2001:DB8:0:1::1/64
 ipv6 ospf network broadcast
 ipv6 ospf 1 area 1
 frame-relay map ipv6 fe80::206:28ff:feb6:5bc0 201 broadcast
 frame-relay map ipv6 fe80::202:fdff:fe5a:e40 202 broadcast
 frame-relay map ipv6 fe80::201:42ff:fe79:e500 203 broadcast

Example 9-27. Hippogriff's Frame Relay mapping statements are changed to the IPv6 link-local
addresses.

interface Serial0/0
 no ip address
 encapsulation frame-relay
 ipv6 address 2001:DB8:0:1::3/64
 ipv6 ospf network broadcast
 ipv6 ospf 1 area 1
frame-relay map ipv6 fe80::207:85ff:fe6b:ea20 220 broadcast
frame-relay map ipv6 fe80::206:28ff:feb6:5bc0 221 broadcast
frame-relay map ipv6 fe80::201:42ff:fe79:e500 223 broadcast

The IPv6 address that must be mapped to the DLCI is the neighbor's link-local address. Skrewt's correct IPv6
OSPF neighbor table is shown in Example 9-28 .



Example 9-28. After mapping the neighbors' link-local addresses to the local DLCIs, Skrewt is fully
adjacent to the DR and BDR.

Skrewt#show ipv6 ospf neighbor
Neighbor ID     Pri   State           Dead Time    Interface ID    Interface
192.2.2.9         1   FULL/DR         00:00:32     4               Serial0/0
10.1.1.23         1   2WAY/DROTHER    00:00:37     4               Serial0/0
10.1.3.1          1   FULL/BDR        00:00:38     4               Serial0/0
Skrewt#



Looking Ahead

We have spent two chaptersone of them very longdescribing the major aspects of OSPF, which is not
only the most well-known of the link-state routing protocols, but probably the most widely used IP
routing protocol. In the next chapter we will look at a less-known link-state protocol: IS-IS. Some might
call this a "more exotic" protocol, but as you will see, it is actually much simpler than OSPF.



Summary Table: Chapter 9 Command Review

Command Description
area area-id nssa [no-
redistribution]
[default-information-
originate [metric]
[metric-type]] [no-
summary]

Defines an area as a not so stubby
area and gives the option of
configuring related parameters.

area area-id range
{ipv6-prefix /  prefix-
length} [advertise |
not-advertise] [cost
cost]

Creates a summary prefix out of
more specific routes in the specified
area. The summary is flooded (or
not flooded, depending on the
advertise | not-advertise option)
to the other areas.

area area-id stub [no-
summary]

Defines an area as a stub or totally
stubby area.

debug ipv6 ospf
packet

Provides debugging information
about each IPv6 OSPF packet
received.

debug ipv6 ospf [adj |
ipsec | database-
timer | flood | hello |
lsa-generation |
retransmission]

Provides debugging information
about specific OSPF packet types.

ipv6 ospf process-id
area area-id [instance
instance-id]

Creates the OSPFv3 process (if it is
not already created) and enables
OSPF on an interface.

ipv6 ospf neighbor
ipv6-address [priority
number ] [poll-interval
seconds] [cost
number ] [database-
filter all out]

Manually configures OSPFv3
neighbors.

ipv6 ospf network
{broadcast | non-
broadcast | {point-to-
multipoint [non-
broadcast] | point-to-
point}}

Configures the OSPF network type
to a type other then the default for a
given medium.

ipv6 ospf priority
number-value

Configures the OSPFv3 priority to
give to a router for use in DR and
BDR election.

ipv6 router ospf
process-id

Enables OSPFv3 router level
configuration.

show ipv6 ospf
[process-id] [area-id]

Displays general information about
the OSPFv3 process.

show ipv6 ospf
[process-id] [area-id]

Displays information about OSPFv3
neighbors.



neighbor
[interface-type
interface-number ]
[neighbor-id] [detail]
show ipv6 ospf
[process-id] [area-id]
interface [interface-
type interface-number ]

Displays OSPFv3 information
related to the specified interface.

summary-prefix prefix
[not-advertise | tag
tag-value]

Summarizes prefixes that are
redistributed into OSPFv3.
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Review Questions

1 Can OSPFv3 support IPv4v?

2 What is meant, in OSPFv3, that it can support multiple instances per link? What field in the
OSPFv3 message header makes this possible?

3 How are OSPFv3 packets authenticated?

4 What is the OSPFv3 Next Header number?

5 What are the two reserved OSPFv3 multicast addresses?

6 Does OSPFv3 use any different message types than OSPFv2?

7 What is the purpose of the first three bits of the Link State Type field of the OSPFv3 LSA
header?

8 What flooding scope is supported by OSPFv3 but not by OSPFv2? What LSA uses this
flooding scope?

9 What is the most significant difference between OSPFv2 Router and Network LSAs, and
OSPFv3 Router and Network LSAs?

10 What is the purpose of the Intra-Area Prefixes LSA?

11 What is the purpose of the Link LSA?



Configuration Exercises

1 Which OSPFv3 command is required to include a second IPv6 prefix that has been
configured on an interface in the OSPFv3 process?

2 Can two routers become adjacent if one is configured with the IPv6 address
2001:db8:0:1::1/64, and the other is configured with the address 2001:db8:0:100::1/126?

3 Provide the IPv6 OSPFv3 configuration of the routers in Figure 9-19.

Figure 9-19. IPv6 OSPFv3 network.

[View full size image]

4 Configure area 1 in Figure 9-19 as a totally stubby area and summarize addresses into
area 0.



Chapter 10. Integrated IS-IS
This chapter covers the following subjects:

Operation of Integrated IS-IS

Configuring Integrated IS-IS

Troubleshooting Integrated IS-IS

When the terms link-state protocol  and IP are mentioned together, almost everyone thinks of Open
Shortest Path First (OSPF). Some might say, "Oh, yeah, there's also IS-IS, but Idunnomuchaboutit."
Only a few will think of Integrated IS-IS as a serious alternative to OSPF. However, those few do exist,
and there are networksprimarily ISPs and carriersthat route IP with IS-IS.

IS-IS, which stands for Intermediate System to Intermediate System, is the routing protocol for the ISO's
Connectionless Network Protocol (CLNP). It is described in ISO 10589.[1] The first production
incarnation of the protocol was developed by Digital Equipment Corporation for its DECnet Phase V.

[1] International Organization for Standardization, "Intermediate System to Intermediate
System Intra-Domain Routeing Information Exchange Protocol for Use in Conjunction with the
Protocol for Providing the Connectionless-mode Network Service (ISO 8473)," ISO/IEC
10589, 1992.

The ISO was working on IS-IS at more or less the same time that the Internet Architecture Board (IAB)
was working on OSPF, and there was a proposal that IS-IS be adopted as the routing protocol for
TCP/IP in place of OSPF. This proposal was driven by the opinion, popularly held in the late 1980s and
early 1990s, that TCP/IP was an interim protocol suite that would eventually be replaced by the OSI
suite. Adding impetus to this movement toward OSI were specifications such as the United States'
Government Open Systems Interconnection Profile (GOSIP) and the European Procurement Handbook
for Open Systems (EPHOS).

To support the predicted transition from TCP/IP to OSI, an extension to IS-IS, known as Integrated IS-
IS, was proposed.[2] The purpose of Integrated IS-IS, also known as Dual IS-IS, was to provide a
single routing protocol with the capabilities of routing both CLNS[3] and IP. The protocol was designed
to operate in a pure CLNS environment, a pure IP environment, or a dual CLNS/IP environment.

[2] Ross Callon, "Use of OSI IS-IS for Routing in TCP/IP and Dual Environments," RFC 1195,
December 1990.

[3] Connectionless-Mode Network Servicethe network layer protocol of CLNP.

Saying that battle lines were drawn might be overly dramatic, but at the least strong pro-ISO and pro-
OSPF factions developed. It can be enlightening to read and contrast the coverage of OSPF and IS-IS
in the well-known books by Christian Huitema,[4] a past chairman of the IAB, and Radia Perlman,[5] the
chief designer of IS-IS. In the end, the Internet Engineering Task Force (IETF) adopted OSPF as the
recommended IGP. Technical differences certainly influenced the decision, but so did political
considerations. ISO standardization is a slow, four-step process that depends upon the voted approval
of many committees. The IETF, on the other hand, is much more freewheeling. A statement made in
1992 has been its informal motto: "We reject kings, presidents, and voting; we believe in rough
consensus and running code."[6] Letting OSPF evolve through the RFC process made more sense
than adopting the more formalized IS-IS.

[4] Christian Huitema, Routing in the Internet, Prentice Hall PTR, Englewood Cliffs, NJ, 1995.



[5] Radia Perlman, Interconnections: Bridges and Routers, Addison-Wesley, Reading, MA,
1992.

[6] Dave Clark, quoted in Huitema, p. 23.

On the other hand, the very small but very sophisticated IS-IS user community has proven to be an
advantage for both IS-IS implementers and users. Agreement on extensions tends to be reached
quickly, and because the users are mostly high-end ISPs and carriers, they hold tremendous leverage
over their router vendors. Having a carrier-grade IS-IS implementation is a must for any router vendor
that wishes to enter the high-performance network market.

Despite the political friction, the OSPF Working Group learned from and capitalized on many of the
basic mechanisms designed for IS-IS. On the surface, OSPF and IS-IS have many features in common:

They both maintain a link-state database from which a Dijkstra-based SPF algorithm computes a
shortest-path tree.

They both use Hello packets to form and maintain adjacencies.

They both use areas to form a two-level hierarchical topology.

They both have the capability of providing address summarization between areas.

They both are classless protocols.

They both elect a designated router to represent broadcast networks.

They both have authentication capabilities.

Below these similarities, there are distinct differences. This chapter begins by examining those
differences. Integrated IS-IS (henceforth referred to simply as IS-IS) is covered only as an IP routing
protocol; CLNS is discussed only when it is relevant to using IS-IS to route IP. And as mentioned
already, IS-IS is almost exclusively found in service provider networks where reliability and scalability
are paramount; so an additional focus of this chapter is to look at the features of IS-IS that meet these
requirements in very large networks.



Operation of Integrated IS-IS

The ISO often uses different terms than the IETF to describe the same entities, a fact that can sometimes
cause confusion. ISO terms are introduced and defined in this section, but in most cases the more familiar
IETF terminology used throughout the rest of this book is used in this chapter.[7] Some ISO terms are so
fundamental that they should be discussed before getting into any specifics of the IS-IS protocol.

[7] The temptation to use the ISO/European spelling of certain common terms such as "routeing"
and "neighbour" was successfully resisted.

A router is an Intermediate System (IS), and a host is an End System (ES). Accordingly, a protocol that
provides communication between a host and a router is known as ES-IS, and a protocol that routers use to
speak to each other (a routing protocol) is IS-IS (Figure 10-1). Whereas IP uses router discovery
mechanisms, such as Proxy ARP, IRDP, or in the case of IPv6 NDP, or simply has a default gateway
configured on hosts, CLNP uses ES-IS to form adjacencies between End Systems and Intermediate Systems.
ES-IS has no relevance to IS-IS for IP and is not covered in this book.

Figure 10-1. Hosts are End Systems in ISO terminology, and routers are Intermediate Systems.

An interface attached to a subnetwork is a Subnetwork Point of Attachment  (SNPA). An SNPA is somewhat
conceptual because it actually defines the point at which subnetwork services are provided, rather than an
actual physical interface. The conceptual nature of SNPAs fits with the conceptual nature of subnetworks
themselves, which can consist of multiple data links connected by data-link switches.

A data unit passed from an OSI layer of one node to the peer OSI layer of another node is called a Protocol
Data Unit (PDU). So a frame is a Data Link PDU (DLPDU), and a packet is a Network PDU (NPDU). The
data unit that performs the equivalent function of the OSPF LSA is the Link State PDU (LSP).[8] Unlike LSAs,
which are encapsulated behind an OSPF header and then an IP packet, an LSP is itself a packet.

[8] Some documentation, such as RFC 1195, defines the LSP as Link State Packet.

IS-IS Areas

Although both IS-IS and OSPF use areas to create a two-level hierarchical topology, a fundamental difference
exists in the way in which the two protocols define their areas. OSPF area borders are marked by routers, as
shown in Figure 10-2. Some interfaces are in one area, and other interfaces are in another area. When an
OSPF router has interfaces in more than one area, it is an Area Border Router (ABR).

Figure 10-2. OSPF area borders fall within routers, and the routers that connect the areas are ABRs.



Figure 10-3 shows the same topology as shown in Figure 10-2 but with IS-IS areas. Notice that all the routers
are completely within an area, and the area borders are on links, not on routers. The IS-IS "backbone area" is
a Level 2 area, while non-backbone areas are Level 1 areas.

Figure 10-3. IS-IS areas fall on links, and the routers that connect the areas are level 2 routers.

An intermediate system can be a level 1 (L1) router, a level 2 (L2) router, or both (L1/L2). L1 routers are
analogous to OSPF nonbackbone Internal Routers, L2 routers are analogous to OSPF backbone routers,
and L1/L2 routers are analogous to OSPF ABRs. In Figure 10-3, the L1/L2 routers are connected to L1
routers and to L2 routers. These L1/L2 routers must maintain both a level 1 link-state database and a level 2
link-state database, in much the same way that an OSPF ABR must maintain a separate database for each
area to which it is attached. Cisco routers are configured as L1-only, L2-only, or L1/L2 with the command is-
type. By default, they are L1/L2.

While the area topology shown in Figure 10-3 is useful for contrasting IS-IS areas with OSPF areas, it can
also be slightly misleading; IS-IS areas are not quite as clear-cut as OSPF areas are. Rather than think of
them as topological areas, IS-IS areas are best thought of as a set of adjacencies. An adjacency, in turn, can
be either L1 or L2. So, for example, a given L1 area is actually a contiguous set of L1 adjacencies between
routers with the same AID. This is especially important for understanding L2 areas, which are always defined
as a set of L2 adjacencies. An L1/L2 router, then, is a router in an L1 area that has both one or more L1
adjacencies and one or more L2 adjacencies. An L2 router is one that has only L2 adjacencies.



It is also possible for both an L1 and an L2 adjacency to exist between two neighbors; because IS-IS areas
are defined as a series of adjacencies, the implication of having both an L1 and an L2 adjacency between
the same two neighbors is that IS-IS areas can overlap. This is in contrast to OSPF, in which area boundaries
are more distinct.

As with OSPF, inter-area traffic must traverse an L2 area to prevent inter-area routing loops. Every L1 router
within an area (including the area's L1/L2 routers) maintains an identical link-state database. Unlike OSPF
ABRs, L1/L2 routers do not by default advertise L2 routes to L1 routers. Therefore, an L1 router has no
knowledge of destinations outside of its own area. In this sense, an L1 area is similar to an OSPF totally
stubby area. To route a packet to another area, an L1 router must forward the packet to an L1/L2 router.
When an L1/L2 router sends its level 1 LSP into an area, it signals other L1 routers that it can reach another
area by setting a bit known as the Attached (ATT) bit[9] in the LSP.

[9] There are actually four ATT bits, relevant to different metrics. These bits are further explained in
the section "IS-IS PDU Formats."

ISO 10589 describes a procedure by which IS-IS routers can create virtual links to repair partitioned areas,
just as OSPF can. This feature is not supported by Cisco or by most other router vendors and is not further
described here. The primary reason vendors do not support IS-IS virtual links is simply that their customers
have not asked for them, and this goes to a fundamental difference in OSPF and IS-IS application. OSPF,
with its rich area utilities and feature set, is the protocol of choice for enterprise networks. Multi-area IS-IS, on
the other hand, is more complex to run and so is seldom if ever found in enterprise networks. Carriers and
ISPs run BGP-based networks, and their IGP is used mainly for finding BGP session endpoints. So they want
their IGP to be as simple as possibleoften making their entire routing domain a single IGP area. IS-IS is
certainly simpler than OSPF in many aspects, and many will argue that it is more scalable in this type of
"single large area" application. So when you encounter IS-IS in a service provider network, what you will
usually encounter is a single L2 area.[10]

[10] L2 areas are used so that on the outside chance that a separate area must be added, the new
area can be made L1 and easily connected to the existing L2 area.

Because an IS-IS router resides completely within a single area, the Area ID (or area address) is associated
with the entire router rather than an interface. A unique feature of IS-IS is that a router can have, by default,
up to three area addresses, which can be useful during area transitions. Using the IOS command max-area-
addresses, you can increase an area's addresses up to 254. A configuration case study later in this chapter,
"An Area Migration," demonstrates the use of multiple area addresses. Each IS-IS router must also have a
way to uniquely identify itself within the routing domain. This identification is the function of the System ID,
which is analogous to the OSPF Router ID. Both the Area ID and the System ID are defined on an IS-IS router
by a single address, the Network Entity Title (NET).

Network Entity Titles

Even when IS-IS is used to route only TCP/IP, IS-IS is still an ISO CLNP protocol. Consequently, the packets
by which IS-IS communicates with its peers are CLNS PDUs, which in turn means that even in an IP-only
environment, an IS-IS router must have an ISO address. The ISO address is a network address, known as
Network Entity Title (NET), described in ISO 8348.[11] The length of a NET can range from 8 to 20 octets;
the NET describes both the Area ID and the System ID of a device, as shown in Figure 10-4.

[11] International Organization for Standardization, "Network Service Definition Addendum 2:
Network Layer Addressing," ISO/IEC 8348/Add.2, 1988.

Figure 10-4. The NET specifies the Area ID and the System ID of an IS or ES.



The ISO designed the NET to be many things to many systems, and depending upon your viewpoint, the
address format is either extremely flexible and scalable or it is a cumbersome muddle of variable fields. Figure
10-5 shows just three of the many forms an ISO NET can take. Although the fields preceding the System ID
are different in each example, the System ID itself is the same. ISO 10589 specifies that the field can be from
one to eight octets in length, but that the System ID of all nodes within the routing domain must use the same
length. In practice, the length is always six octets[12] and is often adapted from the Media Access Control
(MAC) identifier of an interface on the device. The System ID must be unique for each node within the routing
domain.

[12] The Cisco IS-IS implementation requires a System ID of 6 octets.

Figure 10-5. Three NET formats: A simple eight-octet Area ID/System ID format (a); an OSI NSAP
format (b); and a GOSIP NSAP format[13] (c).

[13] GOSIP Advanced Requirements Group, "Government Open Systems Interconnection Profile
(GOSIP) Version 2.0 [Final Text]," Federal Information Processing Standard, U.S. Department of
Commerce, National Institute of Standards and Technology, October 1990.

Also of interest in the examples of Figure 10-5 is the NSAP Selector (SEL). In each case, this one-octet field
is set to 0x00. A Network Service Access Point (NSAP) describes an attachment to a particular service at the
network layer of a node. So when the SEL is set to something other than 0x00 in an ISO address the address
is an NSAP address. This situation is similar to the combination of IP destination address and IP protocol
number in an IP packet, which addresses a particular service at the network layer of a particular device's
TCP/IP stack. When the SEL is set to 0x00 in an ISO address, the address is a NET, the address of a node's
network layer itself.

As the variety of formats in Figure 10-5 implies, a detailed discussion of the configuration of NETs is beyond
the scope of this book. A good reference for further study is RFC 1237.[14] In an IP-only environment, the
NET might be assigned based on a standard such as GOSIP. If you are free to choose any NET for an IP-
only environment, choose the simplest format that will serve the needs of your network.

[14] Richard Colella, Ella Gardner, and Ross Callon, "Guidelines for OSI NSAP Allocation in the
Internet," RFC 1237, July 1991.

Regardless of the format, the following three rules apply:

The NET must begin with a single octet (for example, 47.xxxx. . .).



The NET must end with a single octet, which should be set to 0x00 (. . .xxxx.00). IS-IS will function if the
SEL is nonzero but a dual CLNP/IP router might experience problems.

On Cisco routers, the System ID of the NET must be six octets.

IS-IS Functional Organization

One of the primary reasons for having a layered network architecture like the OSI model is so that the
functions of each layer are independent from the layer below. The network layer, for example, must adapt to
many types of data links, or subnetworks. To further this adaptability, the network layer consists of two
sublayers (Figure 10-6). The Subnetwork Independent sublayer  provides consistent, uniform network
services to the transport layer. The Subnetwork Dependent sublayer  accesses the services of the data-link
layer on behalf of the Subnetwork Independent sublayer. As the two names imply, the Subnetwork Dependent
sublayer depends upon a specific type of data link, so that the Subnetwork Independent sublayer can be
independent of the data link.

Figure 10-6. The OSI network layer consists of two sublayers.

The organization of the network layer, specified in ISO 8648,[15] is actually more complex than that shown in
Figure 10-6. The two basic sublayers are introduced here because ISO 10589 presents much of its
description of the operation of IS-IS within the framework of the functions of these sublayers.

[15] International Organization for Standardization, "Internal Organisation of the Network Layer,"
ISO 8648, 1990.

Subnetwork Dependent Functions

The subnetwork dependent functions are, of course, the functions of the Subnetwork Dependent sublayer.
Their job is to hide the characteristics of different kinds of data links (subnetworks) from the functions of the
Subnetwork Independent sublayer. The following subnetwork dependent functions are important to routing:

The transmission and reception of PDUs over the specific attached subnetwork

The exchange of IS-IS Hello PDUs to discover neighbors and establish adjacencies on the subnetwork

The maintenance of the adjacencies

Link demultiplexing, or the transfer of OSI PDUs to the OSI process and the transfer of IP packets to the
IP process

In contrast to the four network types defined by OSPF, IS-IS defines only two: broadcast subnetworks and
point-to-point or general topology subnetworks. Broadcast subnetworks are defined the same as they are
under OSPFmulti-access data links that support multicasting. Point-to-point (nonbroadcast) subnetworks can
be permanent, such as a T1 link, or dynamically established, such as X.25 SVCs.



Neighbors and Adjacencies

IS-IS routers discover neighbors and form adjacencies by exchanging IS-IS Hello PDUs. Hellos are
transmitted every 10 seconds, and on Cisco routers this interval can be changed on a per interface basis with
the command isis hello-interval. Although IS-IS Hellos are slightly different for broadcast and point-to-point
subnetworks, the Hellos include the same essential information, described in the section "IS-IS PDU
Formats." An IS-IS router uses its Hello PDUs to identify itself and its capabilities and to describe the
parameters of the interface on which the Hellos are sent. If two neighbors are in agreement about their
respective capabilities and interface parameters, they become adjacent. IS-IS is, however, less strict than
OSPF in accepting adjacencies. In most cases, capabilities advertised by one neighbor but not supported by
the other neighbor will not prevent an adjacency from forming; the capability is just ignored. The neighbors
can even advertise different Hello intervals.

IS-IS forms separate adjacencies for L1 and L2 neighbors. L1-only routers form L1 adjacencies with L1 and
L1/L2 neighbors, and L2-only routers form L2 adjacencies with L2 and L1/L2 neighbors. Neighboring L1/L2
routers can form both an L1 adjacency and an L2 adjacency. An L1-only router and an L2-only router will not
establish an adjacency. As mentioned previously, Cisco routers are by default L1/L2.

While the type of router (L1-only, L2-only, or L1/L2) influences the type of adjacency that is formed, so do the
area IDs configured on the two neighbors in question. The following rules apply:

Two L1-only routers form an L1 adjacency only if their AIDs match.

Two L2-only routers form an L2 adjacency, even if their AIDs are different.

An L1-only router forms an L1 adjacency with an L1/L2 router only if their AIDs match.

An L2-only router forms an L2 adjacency with an L1/L2 router even if their AIDs are different.

Two L1/L2 routers form both L1 and L2 adjacencies if their AIDs match.

Two L1/L2 routers form only an L2 adjacency if their AIDs do not match.

Once an adjacency is established, the Hellos act as keepalives. Each router sends a hold time in its Hellos,
informing its neighbors how long they should wait to hear the next Hello before declaring the router dead.
The default hold time on Cisco routers is three times the Hello interval and can be changed on a per interface
basis with the command isis hello-multiplier. A significant difference from OSPF is that the hello intervals
and hold times between two IS-IS neighbors do not have to match. Each router honors the hold time
advertised by its neighbor.

Another interesting difference between OSPF and IS-IS adjacencies is when two routers become adjacent.
OSPF can be a bit confusing here; two routers are considered adjacent as soon as two-way communication
is established, but not fully adjacent  until database synchronization is completed. IS-IS considers routers
adjacent as soon as they have exchanged Hellos.

The IS-IS neighbor table can be observed with the command show clns is-neighbors (Example 10-1). The
first four columns of the display show the System ID of each neighbor, the interface on which the neighbor is
located, the state of the adjacency, and the adjacency type. The state will be either Init, indicating that the
neighbor is known, but is not adjacent, or Up, indicating that the neighbor is adjacent. The priority is the
router priority used for electing a Designated Router on a broadcast network, as described in the next
section.

Example 10-1. The command show clns is-neighbors  displays the IS-IS neighbor table.

Brussels#show clns is-neighbors
System Id      Interface  State  Type  Priority  Circuit Id         Format
0000.0C04.DCC0 Se0        Up     L1    0         06                 Phase V
0000.0C04.DCC0 Et1        Up     L1    64        0000.0C76.5B7C.03  Phase V
0000.0C0A.2C51 Et0        Up     L2    64        0000.0C76.5B7C.02  Phase V
0000.0C0A.2AA9 Et0        Up     L1L2  64/64     0000.0C76.5B7C.02  Phase V
Brussels#



The sixth column shows the Circuit ID, a one-octet number that the router uses to uniquely identify the IS-IS
interface. If the interface is attached to a broadcast multiaccess network, the Circuit ID is concatenated with
the System ID of the network's Designated Router, and the complete number is known as the LAN ID. In this
usage, the Circuit ID is more correctly called the Pseudonode ID. For example, in Example 10-1 the LAN ID of
the link attached to interface E0 is 0000.0c76.5b7c.02. The System ID of the Designated Router is
0000.0c76.5b7c, and the Pseudonode ID is 02.

The last column indicates the format of the adjacency. For Integrated IS-IS the format will always be Phase V,
indicating OSI/DECnet Phase V. The only other adjacency format is DECnet Phase IV.

Designated Routers

IS-IS elects a Designated Router (or more officially, a Designated IS) on broadcast multi-access networks for
the same reason OSPF does. Rather than having each router connected to the LAN advertise an adjacency
with every other router on the network, the network itself is considered a routera pseudonode. Each router,
including the Designated Router, advertises a single link to the pseudonode. The DR also advertises, as the
representative of the pseudonode, a zero-cost link to all of the attached routers.

Unlike OSPF, however, an IS-IS router attached to a broadcast multi-access network establishes adjacencies
with all of its neighbors on the network, not just the DR. This is in keeping with the mention in the previous
section that IS-IS adjacencies are established as soon as Hellos are exchanged. Each router multicasts its
LSPs to all of its neighbors, and the DR uses a system of PDUs called Sequence Number PDUs (SNPs) to
ensure that the flooding of LSPs is reliable. The reliable flooding process, and SNPs, are described in a later
section, "Update Process."

The IS-IS Designated Router election process is quite simple. Every IS-IS router interface is assigned both an
L1 priority and an L2 priority in the range of 0 to 127. Cisco router interfaces have a default priority of 64 for
both levels, and this value can be changed with the command isis priority.

The router advertises its priority in the Hellos sent from each interfacethe L1 priority is advertised in L1
Hellos, and the L2 priority is advertised in L2 Hellos. Unlike OSPF, in which a priority of 0 makes the router
ineligible to become the DR, an IS-IS router with a priority of 0 is merely the lowest priority, but can still
become the DR. Interfaces to nonbroadcast networks, on which a DR is not elected, always have a priority of
0 (notice the priority of the serial interface in Example 10-1). The router with the highest priority becomes the
DR. In a tie, the router whose attached interface has the numerically highest MAC address becomes the DR.

As the L1 and L2 priorities suggest, separate DRs are elected on a network for level 1 and level 2. This
outcome is necessary because of the separate L1 and L2 adjacencies that can exist on a single LAN, as
shown in Figure 10-7. Because an interface can have separate priorities for each level, the L1 DR and the L2
DR on a LAN might or might not be the same router.

Figure 10-7. Separate adjacencies are established for level 1 and for level 2, so separate DRs must
be elected for level 1 and level 2.

[View full size image]



The DR assigns the LAN ID to the network. As discussed in the preceding section, the LAN ID is a
concatenation of the DR's System ID and its Pseudonode ID for the attached network. All other routers on the
network will use the LAN ID assigned by the DR.

Example 10-2 shows the neighbor table of a router whose E0 interface is attached to the same network as
the E0 interface of the router of Example 10-1. By comparing these two tables, you can see that three routers
are attached to the Ethernet: 0000.0c0a.2aa9, 0000.0c0a.2c51, and 0000.0c76.5b7c. All have a priority of
64, so the one with the numerically highest MAC address is the DR. That router, 0000.0c76.5b7c, identifies
the network with Circuit ID 02. Therefore, the LAN ID shown in both Example 10-1 and Example 10-2 is
0000.0c76.5b7c.02.

Appending the Circuit ID to the System ID is necessary because the same router can be the DR on more than
one network. Notice in Example 10-1 that the same router is the DR on the network attached to E0 and the
network attached to E1. It is the Circuit ID, 02 on E0 and 03 on E1, which makes the LAN ID unique for each
network.

Example 10-2. The E0 interface of this router is attached to the same network as the E0 interface of
the router in Example 10-1.

London#show clns is-neighbors
System Id       Interface  State  Type  Priority  Circuit Id         Format
0000.0C76.5B7C  Et0        Up     L2    64        0000.0C76.5B7C.02  Phase V
0000.0C0A.2AA9  Et0        Up     L2    64        0000.0C76.5B7C.02  Phase V
0000.3090.6756  Se0        Up     L1    0         02                 Phase V
London#

The IS-IS DR process is more primitive (or less complex, depending upon one's viewpoint) than the OSPF DR
process in two ways. First, IS-IS does not elect a Backup Designated Router. If the IS-IS DR fails, a new DR
is elected. Second, the IS-IS DR is not as stable as the OSPF DR. If an OSPF router becomes active on a
network with an existing DR, the new router will not become the DR even if its priority or Router ID is higher.
As a result, the OSPF DR usually is the router that has been active on the network for the longest time. In
contrast to the OSPF rules, a new IS-IS router with a higher priority than the existing DR, or an equal priority
and a higher MAC address, will become the new DR. Each time the DR is changed, a new set of LSPs must
be flooded. However, given that adding a new router to a broadcast link is a relatively uncommon occurrence
in the operational day of a network, and that DR election happens very quickly in modern routerson the order
of microsecondsthe lack of a BDR and the fact that a DR can be preempted should not be a cause for
concern.

Subnetwork Independent Functions

The functions of the subnetwork-independent sublayer define how CLNS delivers packets throughout the



CLNP network and how these services are offered to the transport layer. The routing function itself is divided
into four processes: the Update process, the Decision process, the Forwarding process, and the Receive
process. As the names of the last two processes suggest, the Forwarding process is responsible for
transmitting PDUs, and the Receive process is responsible for the reception of PDUs. These two processes,
as described in ISO 10589, are more relevant to CLNS NPDUs than to IP packets, and so are not described
further.

Update Process

The Update process is responsible for constructing the L1 and L2 link-state databases. To do so, L1 LSPs
are flooded throughout the area in which they are originated, and L2 LSPs are flooded over all L2
adjacencies. The specific fields of the LSPs are described in the section "IS-IS PDU Formats."

Each LSP contains a Remaining Lifetime, a Sequence Number, and a Checksum. The Remaining Lifetime is
an age. The difference between an IS-IS LSP's Remaining Lifetime and an OSPF LSA's Age parameter is that
the LSA Age increments from zero to MaxAge, whereas the LSP Remaining Lifetime begins at MaxAge and
decrements to zero. The IS-IS MaxAge is 1200 seconds (20 minutes). Like OSPF, IS-IS ages each LSP as it
resides in the link-state database, and the originator must periodically refresh its LSAs to prevent the
Remaining Lifetime from reaching zero. The IS-IS refresh interval is 15 minutes minus a random jitter of up to
25 percent. If the Remaining Lifetime reaches zero, the expired LSP will be kept in the link-state database for
60 seconds, known as the ZeroAgeLifetime.

An interesting and important difference from the OSPF LSA refresh process is that because the IS-IS
Remaining Lifetime begins as a non-zero number and is decremented down to zero, the beginning number
can be changed from its default of 1200 seconds. In fact, it can be increased up to 65,535
secondsapproximately 18.2 hours. This is a major contributing factor to IS-IS scalability in very large areas. If
the area links are reasonably stable, increasing the refresh time and the Remaining Lifetime can sharply
reduce the flooding load caused by LSP refreshes. The initial Remaining Lifetime (MaxAge) value that is set
in locally originated LSPs is changed with the command max-lsp-lifetime, and the period between refreshes
of locally originated LSPs is set with the command lsp-refresh-interval. If you change the defaults, always
set the refresh interval at least a few hundred seconds less than the Remaining Lifetime so that newly
refreshed LSPs arrive at all routers in the area before the old instances of the LSPs age out.

Under older IS-IS procedures, if any router receives an LSP with an incorrect checksum, the router will purge
the LSP by setting the LSP's Remaining Lifetime to zero and reflooding it. The purge causes the LSP's
originator to send a new instance of the LSP. However, the second edition of ISO 10589 does away with
purging LSPs with incorrect checksums because on error-prone subnetworks, allowing receiving routers to
initiate purges can significantly increase the LSP traffic.

IOS implementations before 12.0 follow the older purging procedure, but you can override this behavior with
the command ignore-lsp-errors. When a router with this option enabled receives a corrupted LSP, it drops it
rather than purging it. The originator of the corrupted LSP will still know that the LSP was not received
through the use of SNPs, described later in this section. As of 12.0, the newer IS-IS procedures are
implemented and ignore-lsp-errors is enabled by default.

A significant point about the LSP purging, however, is yet another way that IS-IS differs from OSPF, where
only the originator can purge an OSPF LSA.

The Sequence Number is an unsigned, 32-bit linear number. When a router first originates an LSP, it uses a
Sequence Number of one, and each subsequent instance of the LSP has its Sequence Number incremented
by one. If the Sequence Number increments to the maximum (0xFFFFFFFF), the IS-IS process must shut
down for at least 21 minutes (MaxAge + ZeroAgeLifetime) to allow the old LSPs to age out of all databases.

On point-to-point subnetworks, routers send L1 and L2 LSPs directly to the neighboring router. On broadcast
subnetworks, the LSPs are multicast to all neighbors. Frames carrying L1 LSPs have a destination MAC
identifier of 0180.c200.0014, known as AllL1ISs. Frames carrying L2 LSPs have a destination MAC identifier
of 0180.c200.0015, known as AllL2ISs.

IS-IS uses SNPs both to acknowledge the receipt of LSPs, to request LSPs, and to help maintain link-state
database synchronization. There are two types of SNPs: Partial SNPs (PSNP) and Complete SNPs (CSNP).



On a point-to-point subnetwork, a router uses a PSNP to explicitly acknowledge each LSP it receives.[16]
The PSNP describes the LSP it is acknowledging by including the following information:

[16] The exception is if a router receives an instance of an LSP that is older than an instance of the
same LSP in its database. In that case, the router will reply with the newer LSP.

The LSP ID

The LSP's Sequence Number

The LSP's checksum

The LSP's Remaining Lifetime

When a router sends an LSP on a point-to-point subnetwork, it sets a timer for a period known as
minimumLSPTransmissionInterval . If the timer expires before the router receives a PSNP acknowledging
receipt of the LSP, a new LSP will be sent. On Cisco routers, the default minimumLSPTransmissionInterval is
five seconds. It can be changed on a per interface basis with the command isis retransmit-interval. The
default value is almost always the right value; the occasional exception is if a neighbor regularly struggles to
process a large number of LSPs. In this case the router might not acknowledge an LSP fast enough,
triggering a retransmit and just adding to its problems. In this case, increasing the
minimumLSPTransmissionInterval can help; but in the long run, the real solution to such a problem is
upgrading the low-powered neighbor.

On broadcast subnetworks, LSPs are not acknowledged by each receiving router. Instead, the DR
periodically multicasts a CSNP that describes every LSP in the link-state database. The default CSNP period
is 10 seconds, which can be changed with the command isis csnp-interval. L1 CSNPs are multicast to
AllL1ISs (0180.c200.0014), and L2 CSNPs are multicast to AllL2ISs (0180.c200.0015).

When a router receives a CSNP, it compares the LSPs summarized in the PDU with the LSPs in its database.
If the router has an LSP that is missing from the CSNP or a newer instance of an LSP, the router multicasts
the LSP onto the network. If another router sends the updated LSP first, however, the router will not send
another copy of the same LSP. If the router's database does not contain a copy of every LSP listed in the
CSNP or if the database contains an older instance of an LSP, the router multicasts a PSNP listing the LSPs
it needs. Although the PSNP is multicast, only the DR responds with the appropriate LSPs.

An interesting feature of IS-IS is its ability to signal other routers if it runs out of memory and cannot record
the complete link-state database. The memory overload might be due to an area that has been allowed to
grow too large, a router with insufficient memory, or a transitory condition such as the failure of a DR. If a
router cannot store the complete link-state database, it will set a bit in its LSP called the Overload (OL) bit.

The OL bit signals that the router might not be able to make correct routing decisions because of its
incomplete database. The other routers still route packets to the overloaded router's directly connected
networks, but do not use the router for transit traffic until it has issued an LSP with the OL bit cleared.
Because a set OL bit prevents the router from being used as a hop along a route, the bit is frequently called
the hippity bit (as in hippity-hop, believe it or not). Memory should be allocated equally to the L1 and the L2
database, but a router can be in an overload condition at one level and normal in the other.

This overload feature is an artifact of the days when routers did not have much memory. Modern routers are
unlikely to become overloaded. However, the OL bit serves another very useful purpose in modern networks,
particularly in BGP networks. To understand the problem, it is necessary to understand a few basic concepts
of BGP. While link-state protocols such as IS-IS converge very quickly, BGP converges slowlysometimes
taking several minutes. In the interior of a BGP network, routes have next-hop addresses that can be several
router hops away. When a packet arrives, its destination is looked up in the BGP routes. The next hop of the
BGP route must then be looked up in the IGP routes before the packet can be forwarded.

Now suppose that a new router is added to the network, and the IGP has converged but BGP has not yet
finished. If another router determines that this new router is on the best path to a BGP next-hop, based on
the converged IGP routes, it will forward packets to the router to be forwarded along to the next-hop address.
But if BGP has not yet converged in the new router, the router might not have a BGP route for the packet and
might drop it, resulting in black-holed traffic.



By setting the IS-IS OL bit until BGP has converged, you can avoid this problem. Other routers, if the OL bit is
set, will route around the new router. Once BGP is converged, the OL bit can be cleared and packets can be
forwarded through the new router.

Using the command set-overload-bit on-startup, you can specify a number of seconds by which the OL bit
is set whenever IS-IS starts. When the specified seconds expire, the OL bit is automatically cleared. By
setting the OL bit at around 300 to 500 seconds, you ensure that BGP will converge before the OL bit is
cleared. There is an alternative command, set-overload-bit on-startup wait-for-bgp, which always clears
the OL bit as soon as BGP converges. While more dynamic than using a static number of seconds, this
option can have a vulnerability: If one BGP session does not come up for some reason, the OL bit will never
be cleared. So it is usually best to specify seconds rather than the wait-for-bgp option.

You can also set the OL bit manually and indefinitely by using the set-overload-bit command with no other
options specified. This can be useful in situations where you want the router to be attached to an IS-IS
network and receive a full database, but you do not want the router to be used in any forwarding path. A lab
router attached to a production network is an example of such an application.

The command show isis database displays a summary of the IS-IS link state database, as shown in
Example 10-3. The router Brussels in this display is an L1/L2 router, so it has both L1 and L2 databases. The
LSP ID shown in the first column consists of the System ID of the originating router, concatenated with two
more octets. The first octet following the System ID is the Pseudonode ID. If this octet is nonzero, the LSP
was originated by a DR. The System ID and the nonzero Pseudonode ID together make the LAN ID of a
broadcast subnetwork.

Example 10-3. The IS-IS database can be observed with the command show isis database .

Brussels#show isis database
IS-IS Level-1 Link State Database
LSPID                  LSP Seq Num  LSP Checksum  LSP Holdtime  ATT/P/OL
0000.0C04.DCC0.00-00   0x00000036   0x78AE        1152          0/0/0
0000.0C0A.2AA9.00-00   0x0000011B   0x057B        416           0/0/0
0000.0C76.5B7C.00-00*  0x00000150   0xD5D4        961           1/0/0
0000.0C76.5B7C.02-00*  0x00000119   0xD9C3        407           0/0/0
0000.0C76.5B7C.03-00*  0x000000FA   0x896E        847           0/0/0
IS-IS Level-2 Link State Database
LSPID                  LSP Seq Num  LSP Checksum  LSP Holdtime  ATT/P/OL
0000.0C0A.2AA9.00-00   0x0000013E   0x319A        666           0/0/0
0000.0C0A.2C51.00-00   0x00000133   0x762D        654           0/0/0
0000.0C76.5B7C.00-00*  0x0000014C    0x4E91       886           0/0/0
0000.0C76.5B7C.02-00*  0x0000011F   0x3CC3        1174          0/0/0
0000.3090.C7DF.00-00   0x0000011A   0xDDF0        858           0/0/0
Brussels#

The last octet is the LSP Number. Occasionally, an LSP can be so large that it exceeds the MTU that can be
supported by the router buffers or the data link. In this case, the LSP is fragmentedthat is, the information is
conveyed in multiple LSPs. The LSP IDs of these multiple LSPs consist of identical System IDs and
Pseudonode IDs, and distinct LSP Numbers.

An asterisk following the LSP ID indicates that the LSP is originated by the router on which the database is
being observed. For example, the database shown in Example 10-3 is taken from a router named Brussels.
The L1 LSP with an ID of 0000.0c76.5bB7c.00-00 is originated by Brussels, as are four other LSPs.

The second and third columns of the database display show the Sequence Number and checksum of each
LSP. The fourth column, LSP Holdtime, is the Remaining Lifetime of the LSP in seconds. If you enter the
show isis database command repeatedly, you can observe the numbers decrementing. When the LSP is
refreshed, the Remaining Lifetime is reset to 1200 seconds and the Sequence Number is incremented by
one.

The last column indicates the state of the Attached (ATT) bit, Partition (P) bit, and Overload (OL) bit of each
LSP. L2 and L1/L2 routers will set the ATT bit to one to indicate that they have a route to another area. The P



bit indicates that the originating router has partition repair capability. Cisco (and most other vendors) does not
support this function, so the bit is always set to zero. The OL bit is set to one if the originating router is
experiencing a memory overload and has an incomplete link-state database, or if the OL bit has been
manually set.

A complete LSP can be observed by using the command show isis database detail along with the level and
the LSP ID, as shown in Example 10-4. The meanings of the individual fields of the LSP are given in the
section "IS-IS PDU Formats."

Example 10-4. The command show isis database detail  is used to observe complete LSPs in the
database.

London#show isis database detail level-2 0000.0C0A.2C51.00-00
IS-IS Level-2 LSP 0000.0C0A.2C51.00-00
LSPID                  LSP Seq Num  LSP Checksum  LSP Holdtime  ATT/P/OL
0000.0C0A.2C51.00-00*  0x0000013B   0x6635        815           0/0/0
  Area Address: 47.0001
  NLPID:      0x81 0xCC
  IP Address: 10.1.3.2
  Metric: 10 IS 0000.0C76.5B7C.02
  Metric: 10 IP 10.1.3.0 255.255.255.0
  Metric: 20 IP 10.1.2.0 255.255.255.0
  Metric: 10 IP 10.1.255.4 255.255.255.252
  Metric: 20 IP 10.1.255.0 255.255.255.0
  Metric: 30 IP 10.1.255.8 255.255.255.252
London#

Decision Process

Once the Update process has built the link-state database, the Decision process uses the information in the
database to calculate a shortest-path tree. The process then uses the shortest-path tree to construct a
forwarding database (route table). Separate SPF calculations are run for the L1 database and the L2
database.

ISO 10589 specifies the following metrics (one required and three optional) to be used by IS-IS to calculate
the shortest path:

Default This metric must be supported and understood by every IS-IS router.

Delay This optional metric reflects the transit delay of a subnetwork.

Expense This optional metric reflects the monetary cost of using the subnetwork.

Error This optional metric reflects the residual error probability of the subnetwork, similar to the
IGRP/EIGRP reliability metric.

Each metric is expressed as an integer between 0 and 63, and a separate route is calculated for each metric.
Therefore, if a system supports all four metrics, the SPF calculation must be run four times for both the L1
database and the L2 database. Because of the potential for many iterations of the SPF calculation for every
destination, resulting in many different route tables, and because the optional metrics provide rudimentary
Type of Service routing at best, Cisco supports only the default metric.

Cisco assigns a default metric of 10 to every interface, regardless of the interface type. The command isis
metric changes the value of the default metric, and the default can be changed separately for level 1 and
level 2. If the metrics are left at 10 for every interface, every subnetwork is considered equal and the IS-IS
metric becomes a simple measure of hop count, where each hop has a cost of 10.

The total cost of a route is a simple sum of the individual metrics at each outgoing interface, and the
maximum metric value that can be assigned to any route is 1023. This small maximum is frequently pointed
out as a limitation of IS-IS because it leaves little room for metric granularity in large networks.



However, newer extensions to IS-IS allow for a much larger metric spacecalled wide metricsof 32 bits. To set
wide metrics, the command metric-style wide is used.

IS-IS not only classifies routes as L1 or L2 but also classifies routes as internal  or external . Internal routes
are paths to destinations within the IS-IS routing domain, and external routes are paths to destinations
external to the routing domain. Whereas L2 routes may be either internal or external, L1 routes are normally
internal; using a routing policy you can make an L1 route external, but this should only be done with good
justification and with special care.

Given multiple possible routes to a particular destination, an L1 path is preferred over an L2 path. Within
each level, a path that supports the optional metrics is preferred over a path that supports only the default
metric. (Again, Cisco supports only the default metric, so the second order of preference is not relevant to
Cisco routers.) Within each level of metric support, the path with the lowest metric is preferred. If multiple
equal-cost, equal-level paths are found by the Decision process, they are all entered into the route table. The
Cisco IS-IS implementation usually performs equal-cost load balancing on up to six paths.

The previous section, "Update Process," discussed the last octet of the LSP ID, known as the LSP Number,
used to track fragmented LSPs. The Decision process pays attention to the LSP Number for several reasons.
First, if an LSP with an LSP Number of zero and a nonzero Remaining Lifetime is not present in the
database, the Decision process will not process any LSPs from the same system that have nonzero LSP
Numbers. For example, if the LSP IDs 0000.0c76.5b7c.00-01 and 0000.0c76.5b7c.00-02 exist in the
database, but the database contains no LSP with an LSP ID of 0000.0c76.5b7c.00-00, the first two LSPs are
not processed. This approach ensures that incomplete LSPs do not cause inaccurate routing decisions.

Also, the Decision process will accept the following information only from LSPs whose LSP Number is zero:

The setting of the Database Overload bit

The setting of the IS Type field

The setting of the Area Addresses option field

The Decision process ignores these settings in LSPs whose LSP Number is nonzero. In other words, the first
LSP in a series of fragments speaks for all the fragments for these three settings.

Example 10-5 shows a route table from a Cisco IS-IS router. Notice that the L1 and L2 routes are indicated
and that three destinations have multiple paths. A mask is associated with each route, indicating support for
VLSM. Finally, the route table indicates that the administrative distance of IS-IS routes is 115.

Example 10-5. This route table shows both level 1 and level 2 IS-IS routes.

Brussels#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
     10.0.0.0 is variably subnetted, 8 subnets, 3 masks
C       10.1.3.0 255.255.255.0 is directly connected, Ethernet0
i L2    10.1.2.0 255.255.255.0 [115/30] via 10.1.3.2, Ethernet0
                               [115/30] via 10.1.3.3, Ethernet0
i L1    10.1.5.0 255.255.255.0 [115/20] via 0.0.0.0, Serial0
                               [115/20] via 10.1.4.2, Ethernet1
C       10.1.4.0 255.255.255.0 is directly connected, Ethernet1
i L2    10.1.255.4 255.255.255.252 [115/20] via 10.1.3.2, Ethernet0
i L2    10.1.255.0 255.255.255.0 [115/30] via 10.1.3.2, Ethernet0
i L1    10.1.255.8 255.255.255.252 [115/20] via 10.1.3.3, Ethernet0
i L1    10.1.6.240 255.255.255.240 [115/20] via 0.0.0.0, Serial0
                                   [115/20] via 10.1.4.2, Ethernet1
Brussels#



Another duty of the Decision process in L1 routers is to calculate the path to the nearest L2 router, for inter-
area routing. As previously discussed, when an L2 or L1/L2 router is attached to another area, the router will
advertise the fact by setting the ATT bit in its LSP to one. The Decision process in L1 routers will choose the
metrically closest L1/L2 router as the default inter-area router. When IS-IS is used to route IP, a default IP
route to the L1/L2 is entered into the route table. For example, Example 10-6 shows a link-state database for
an L1 router and its associated route table. LSP 0000.0c0a.2c51.00-00 has an ATT = 1. Based upon this
information, the Decision process has chosen the router with System ID 0000.0c0a.2c51 as the default inter-
area router. The route table shows a default route (0.0.0.0) via 10.1.255.6, with a metric of 10. Although it is
not readily apparent from the information shown in Example 10-6, 10.1.255.6 and System ID 0000.0c0a.2c51
refer to the same router.

Example 10-6. Integrated IS-IS adds a default IP route to the nearest L1/L2 router whose ATT bit is
set to one.

Paris#show isis database
IS-IS Level-1 Link State Database
LSPID                  LSP Seq Num  LSP Checksum  LSP Holdtime  ATT/P/OL
0000.0C0A.2C51.00-00   0x0000016D   0xA093        730           1/0/0
0000.3090.6756.00-00*  0x00000167   0xC103        813           0/0/0
0000.3090.6756.04-00*  0x0000014E   0x227F        801           0/0/0
0000.3090.C7DF.00-00   0x00000158   0x78A6        442           0/0/0
Paris#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is 10.1.255.6 to network 0.0.0.0
     10.0.0.0 is variably subnetted, 5 subnets, 2 masks
i L1    10.1.3.0 255.255.255.0 [115/20] via 10.1.255.6, Serial0
C       10.1.2.0 255.255.255.0 is directly connected, TokenRing0
i L1    10.1.255.4 255.255.255.252 [115/20] via 10.1.255.6, Serial0
C       10.1.255.0 255.255.255.0 is directly connected, Serial0
i L1    10.1.255.8 255.255.255.252 [115/20] via 10.1.2.2, TokenRing0
i*L1 0.0.0.0 0.0.0.0 [115/10] via 10.1.255.6, Serial0
Paris#

The information in Example 10-6 illustrates an interesting characteristic of working with Integrated IS-IS,
particularly when troubleshooting. Although TCP/IP is the protocol being routed, the protocol determining the
routes, including all the route control packets and addresses, is a CLNS protocol. Sometimes correlating the
CLNS information with the IP information can be difficult. One command that can be useful is which-route.

The command is used primarily to determine the route table in which a particular CLNS destination is located.
However, which-route can also yield useful information about the IP addresses associated with a particular
CLNS address. In Example 10-7, the System ID/Circuit ID 0000.0c0a.2c51.00, shown in the database of
Example 10-6 as having ATT = 1, is used as the argument to which-route. The result shows, among other
things, that the next-hop address for the queried System ID is 10.1.255.6.

Example 10-7. The command which-route can reveal some information tying CLNS addresses to IP
addresses.

Paris#which-route 0000.0C0A.2C51.00
Route look-up for destination 00.000c.0a2c.5100
  Using route to closest IS-IS level-2 router
Adjacency entry used:
System Id        SNPA      Interface   State   Holdtime   Type   Protocol
0000.0C0A.2C51   *HDLC*    Se0         Up      26         L1     IS-IS
  Area Address(es): 47.0001
  IP Address(es): 10.1.255.6
  Uptime: 22:08:52



Paris#

IS-IS PDU Formats

IS-IS uses nine PDU types in its processes, and each PDU is identified by a five-bit type number. The PDUs
fall into three categories, as shown in Table 10-1.

Table 10-1. IS-IS PDU types.
IS-IS PDU Type

Number
Hello PDUs  
Level 1 LAN IS-IS Hello PDU 15
Level 2 LAN IS-IS Hello PDU 16
Point-to-point IS-IS Hello PDU 17
Link State PDUs  
Level 1 LSP 18
Level 2 LSP 20
Sequence Numbers PDUs  
Level 1 CSNP 24
Level 2 CNSP 25
Level 1 PSNP 26
Level 2 PSNP 27

The first eight octets of all of the IS-IS PDUs are header fields that are common to all PDU types, as shown in
Figure 10-8. These first fields are described here, and the PDU-specific fields are described in subsequent
sections.

Figure 10-8. The first eight octets of the IS-IS PDUs.

Intradomain Routeing Protocol Discriminator  is a constant assigned by ISO 9577[17] to identify NPDUs. All
IS-IS PDUs have a value of 0x83 in this field.



[17] International Organization for Standardization, "Protocol Identification in the Network Layer,"
ISO/IEC TR 9577, 1990.

Length Indicator  specifies the length of the fixed header in octets.

Version/Protocol ID Extension is always set to one.

ID Length describes the length of the System ID field of NSAP addresses and NETs used in this routing
domain. This field is set to one of the following values:

An integer between 1 and 8 inclusive, indicating a System ID field of the same length in octets

0, indicating a System ID field of six octets

255, indicating a null System ID field (zero octets)

The System ID of Cisco routers must be six octets, so the ID Length field of a Cisco-originated PDU will
always be zero.

PDU Type is a five-bit field containing one of the PDU type numbers shown in Table 10-1. The preceding
three bits (R) are reserved and are always set to zero.

Version is always set to one, just like the Version/Protocol ID Extension in the third octet.

Reserved is always set to all zeroes.

Maximum Area Addresses describes the number of area addresses permitted for this IS area. The number is
set to one of the following values:

An integer between 1 and 254 inclusive, indicating the number of areas allowed

0, indicating that the IS only supports a maximum of three addresses

Cisco IOS supports a maximum of three areas by default, so the Maximum Area Addresses field in IS-IS PDUs
originated by Cisco routers will always be zero unless the default has been changed with the max-area-
addresses command.

In Figure 10-9, an analyzer capture of an IS-IS PDU shows the first eight octets of the PDU.

Figure 10-9. This analyzer capture shows the first eight fields of an IS-IS PDU, along with its data-
link header.

The PDU-specific fields following the common header fields are also part of the header; they vary according



to PDU type and are discussed in the sections dealing with specific PDU types.

TLV Fields

The variable-length fields following the PDU-specific fields are Type/Length/Value (TLV)[18] triplets, as
shown in Figure 10-10. The Type (or Code)[19] is a number specifying the information content of the value
field, the Length specifies the length of the Value field, and the Value field is the information itself. As the one-
octet size of the Length field implies, the maximum size of the Value field is 255 octets.

[18] You are already familiar with the concept of TLVs from the coverage of EIGRP TLVs in Chapter
7, "Enhanced Interior Gateway Routing Protocol (EIGRP)." In fact, RFC 1195 refers to Integrated
IS-IS TLVs as TLVs.

[19] ISO uses the term "Code," while IETF uses the term "Type." Because "TLV" has come into
more common usage, it is generally used in this chapter. This is a change from the first edition of
this book, in which I chose to use the term "Code."

Figure 10-10. IS-IS TLV triplets perform the same function for IS-IS as TLV triplets perform for
EIGRP.

Table 10-2 lists the basic IS-IS TLV codes. The table also indicates whether the TLV is specified in ISO
10589 or in RFC 1195. The ISO-specified TLVs are designed for use with CLNP, although most of them are
also used with IP. The RFC-specified TLVs are designed only for IP. If a router does not recognize a particular
TLV code, it will ignore the TLV. This arrangement allows TLVs for CLNP, IP, or both to be carried in the same
PDU.

Table 10-2. TLV codes used with IS-IS.
Type TLV ISO

10589
RFC 1195

1 Area Addresses X  
2 IS Neighbors (LSPs) X  
3 ES Neighbors[*] X  

4 Partition Designated level 2 IS[**] X  

5 Prefix Neighbors X  
6 IS Neighbors (Hellos) X  
8 Padding X  
9 LSP Entries X  
10 Authentication Information X  
14 LSP Buffersize X  
128 IP Internal Reachability

Information
 X

129 Protocols Supported  X
130 IP External Reachability

Information
 X



131 Inter-Domain Routing Protocol
Information

 X

132 IP Interface Address  X
133 Authentication Information[***]  X

[*] The ES-Neighbors and Prefix Neighbors TLVs are not relevant to IP routing and are not covered
in this book.

[**] This TLV is used for partition repair, which Cisco does not support.

[***] RFC 1195 specifies this code for IP authentication, but most IS-IS implementations, including
IOS, use the ISO code of 10.

Although many of the TLVs are used by more than one IS-IS PDU type, only one (Authentication) is used by
all PDUs. As the formats of the IS-IS PDUs are described in the following sections, the TLVs used by each
PDU are listed. The format of each TLV is described only once, the first time it is listed. Table 10-3
summarizes which TLVs are used with which PDUs.

Table 10-3. The TLVs used by each IS-IS PDU.
 PDU Type

TLV Type 15 16 17 18 20 24 25 26 27
Area addresses X X X X X     
IS Neighbors (LSPs)    X X     
ES Neighbors    X      
Partition Designated Level
2 IS

    X     

Prefix Neighbors     X     
IS Neighbors (Hellos) X X        
Padding X X X       
LSP Entries      X X X X
Authentication Information X X X X X X X X X
IP Internal Reachability
Information

   X X     

Protocols Supported X X X X X     
IP External Reachability
Information

   X X     

Inter-Domain Routing
Protocol Information

    X     

IP Interface Address X X X X X     

The great advantage of using TLVs is that to add new capabilities to IS-IS, you need only add new TLV
types. Since it was first specified, there have been many enhancements to IS-IS. Table 10-4 lists many of the
TLVs that have been added since ISO 10589 and RFC 1195 first specified IS-IS. Also listed are the RFCs
specifying the new TLVs and what they are used for. In some cases, the extensions are new enough that at
this writing they are still in Internet-Draft form. By the time you are reading this chapter, they might be RFCs;
check the IETF website (www.ietf.org) Linked Varified to find out. Some of the extensions listed in Table 10-4
are detailed in subsequent sections of this chapter, and some are not.

Table 10-4. TLVs used for extending IS-IS capabilities.



Type TLV RFC Description
12 Optional Checksum 3358 Adds checksum capability to

SNPs
22 Extended IS Reachability 3784 Adds Traffic Engineering

capabilities, replaces type 2
TLVs

134 Traffic Engineering Router
ID

3784 Adds Traffic Engineering
capability

135 Extended IP Reachability 3784 Adds Traffic Engineering and
wide metrics capability,
replaces types 128 and 130
TLVs

137 Dynamic Hostname 2763 Adds the ability for nodes to
be identified by hostname
rather than SysID in
commands such as show
isis database

211 Restart 3847 Adds Graceful Restart
capability

222 MT Intermediate Systems Draft Used with type 22 TLVs for
multitopology support

229 Multi-Topology Draft Adds multitopology support
232 IPv6 Interface Address Draft Equivalent to type 132 TLVs,

for IPv6 support
235 MT Reachable IPv4 Prefixes Draft Used with type 135 TLV for

multitopology support
236 IPv6 Reachability Draft Equivalent to types 128 and

130, for IPv6 support
237 MT Reachable IPv6 Prefixes Draft Used with type 236 TLVs for

multitopology support
240 Point-to-Point Three-Way

Adjacency
3373 Adds 3-way handshaking

capability
250 Experimental Draft Used for experimental

extensions

IS-IS Hello PDU Format

The purpose of the IS-IS Hello PDU is to allow IS-IS routers to discover IS-IS neighbors on a link. Once the
neighbors have been discovered and have become adjacent, the job of the Hello PDU is to act as a
keepalive to maintain the adjacency and to inform the neighbors of any changes in the adjacency
parameters.

The upper limit on the size of an IS-IS PDU is defined by either the buffer size of the originating router or the
MTU of the data link on which the PDU is transmitted. ISO 10589 specifies that IS-IS Hellos must be padded,
using type 8 Padding TLVs, to within one octet less than this maximum, partly to allow a router to implicitly
communicate its MTU to its neighbors. More important, sending Hellos at or near the link MTU is intended to
help detect link failure modes in which small PDUs pass but larger PDUs are dropped. If a neighboring
interface does not support the minimum required MTU, the padded Hellos are dropped and no adjacency is
established.

There are two kinds of IS-IS Hellos: LAN Hellos and point-to-point Hellos. The LAN Hellos can be further
divided into L1 and L2 LAN Hellos. The format of the two types of LAN Hellos is identical, as shown in Figure



10-11. Figure 10-12 shows an analyzer capture of a level 2 LAN Hello.

Figure 10-11. The IS-IS LAN Hello PDU format.

Figure 10-12. This analyzer capture of a LAN Hello shows the fields unique to a Hello PDU.

[View full size image]

Circuit Type is a two-bit field (the preceding six bits are reserved and are always zero) specifying whether the
router is an L1 (01), L2 (10), or L1/L2 (11). If both bits are zero (00), the entire PDU is ignored.

Source ID is the System ID of the router that originated the Hello.

Holding Time is the period a neighbor should wait to hear the next Hello before declaring the originating
router dead.

PDU Length is the length of the entire PDU in octets.

Priority is a seven-bit field used for the election of a DR. The field carries a value between 0 and 127 with the



higher number having the higher priority. L1 DRs are elected by the priority in L1 LAN Hellos, and L2 DRs are
elected by the priority in L2 LAN Hellos.

LAN ID is the System ID of the DR plus one more octet (the Pseudonode ID) to differentiate this LAN ID from
another LAN ID that might have the same DR.

The following TLVs can be used by an IS-IS LAN Hello:[20]

[20] As a reminder, RFC 1195 also specifies an Authentication Information TLV with a type number
of 133. Cisco uses the ISO-specified type number of 10 to identify its Authentication Information
TLVs.

Area Addresses (type 1)

Intermediate System Neighbors (type 6)

Padding (type 8)

Authentication Information (type 10)

Optional Checksum (type 12)

Protocols Supported (type 129)

IP Interface Address (type 132)

Restart (type 211)

Multi-Topology (type 229)

IPv6 Interface Address (type 232)

Experimental (type 250)

Figure 10-13 shows the format of the IS-IS point-to-point Hello PDU. It is almost identical to the LAN Hello,
except that there is no Priority field and there is a Local Circuit ID field instead of a LAN ID field. Unlike LAN
Hellos, L1 and L2 information is carried in the same point-to-point Hello PDU. The point-to-point Hello carries
all of the same TLVs, with the exception of the Intermediate System Neighbors TLV. Instead, if the IS-IS
implementation supports the associated extension, the point-to-point Hello carries a P2P Three-Way
Adjacency (type 240) TLV. The use of this TLV is described in the later section "3-Way Handshaking."

Figure 10-13. The IS-IS point-to-point Hello PDU.



Local Circuit ID is a one-octet ID assigned to this circuit by the router originating the Hello and is unique
among the router's interfaces. The Local Circuit ID in the Hellos at the other end of the point-to-point link
might or might not contain the same value.

Area Addresses TLV

The Area Addresses TLV (Figure 10-14) is used to advertise the area addresses configured on the originating
router. As the multiple Address Length/Area Address fields imply, a router can be configured with multiple area
addresses.

Figure 10-14. The Area Addresses TLV.

Figure 10-15 shows part of an IS-IS Hello PDU; Variable Length Field #3 is an Area Addresses TLV with a
total length of six octets. There are two area addresses: 47.0002 (three octets), and 0 (one octet).

Figure 10-15. An Area Addresses TLV is shown as Variable Length Field #3. The analyzer also
indicates the total addresses listed in the TLV (2) for convenience, but this information is not one of

the TLV fields.

[View full size image]

Intermediate System Neighbors TLV (Hello)

The IS Neighbors TLV (Figure 10-16) lists the System IDs of all neighbors from whom a Hello has been heard



within the last Hold Time. Note that this TLV gives the IS-IS LAN Hello a function similar to the OSPF function
of listing all recently-heard-from neighbors, to verify two-way communication.

Figure 10-16. The IS Neighbors TLV for Hello PDUs.

This TLV is used only in LAN Hellos; it is not carried in point-to-point Hellos, where no DR election is
performed. It is also different from the IS Neighbors TLV used by LSPs, and the two are distinguished by their
type numbers. L1 LAN Hellos list L1 neighbors only, and L2 LAN Hellos list L2 neighbors. The neighbors
listed in this TLV are identified by the MAC address of their interfaces on the LAN. Variable Length Field #5 in
Figure 10-17 shows an IS Neighbors TLV in which a single neighbor, 0000.0c0a.2aa9, is listed.

Figure 10-17. An IS Neighbors TLV is shown as Variable Length Field #5.

[View full size image]

Padding TLV

The Padding TLV is used to pad a Hello PDU out to either the minimum allowed IS-IS size of 1492 bytes or
the MTU of the link. Since the maximum size of a Value field is 255 octets, multiple Padding TLVs are often
used. The bits in the Value field can be arbitrary because they are ignored; Cisco sets all these bits to zero
(Figure 10-18).

Figure 10-18. The last Variable Length Fields of the Hello PDU shown in Figure 10-12 are Padding
TLVs, which bring the size of the PDU to the 1497-octet length shown in Figure 10-12. With the

addition of the 3-octet LLC header and the 18-octet Ethernet header, the entire frame size is the
1518-octet Ethernet MTU.

[View full size image]



Authentication Information TLV

The Authentication Information TLV (Figure 10-19) is used when authentication is configured. The
Authentication Type field contains a number between 0 and 255 that specifies the type of authentication used
and hence the type of information contained in the Authentication Value field. IOS supports either clear-text
password authentication or, HMAC-MD5 encrypted hash authentication. Clear-text passwords are
Authentication Type 1, and HMAC-MD5 is Authentication Type 54.

Figure 10-19. The Authentication Information TLV.

Variable Length Field #1 in Figure 10-15 is an Authentication Information TLV. The password is "jeff," which is
displayed as the hex representation of its ASCII characters.

Protocols Supported TLV

The Protocols Supported TLV (Figure 10-20) is specified in RFC 1195, and its original purpose was to
indicate whether the originator of the PDU supports CLNP only, IP only, or both. Since that time, the TLV is
also used to indicate support for IPv6. The IPv4 NLPID is 204 (0xCC) and the IPv6 NLPID is 142 (0x8E). For
each protocol supported, the corresponding one-octet Network Layer Protocol Identifier (NLPID), specified in
ISO/TR 9577, is listed in the TLV. IP is 0x81. Variable Length Field #2 in Figure 10-15 is a Protocols
Supported TLV.

Figure 10-20. The Protocols Supported TLV.



IP Interface Address TLV

The IP Interface Address TLV (Figure 10-21) contains the IP address or addresses of the interface out which
the PDU was sent. Because the Length field is one octet, an interface of an IS-IS router can theoretically
have up to 63 IP addresses. Variable Length Field #4 in Figure 10-17 is an IP Interface Address TLV,
indicating that the captured Hello PDU was transmitted from an interface with an address of 10.1.3.1.

Figure 10-21. The IP Interface Address TLV.

IS-IS Link State PDU Format

The IS-IS LSP performs essentially the same function as the OSPF LSA. An L1 router floods an L1 LSP
throughout an area to identify its adjacencies and the state of those adjacencies. An L2 router floods L2 LSPs
throughout the level 2 domain, identifying adjacencies to other L2 routers and address prefixes that the
advertising L2 router can reach.

Figure 10-22 shows the format of the IS-IS LSP. The format is the same for both L1 LSPs and L2 LSPs.

Figure 10-22. The IS-IS LSP format.



PDU Length is the length of the entire PDU in octets.

Remaining Lifetime is the number of seconds before the LSP is considered to be expired.

LSP ID is the System ID, the Pseudonode ID, and the LSP Number of the LSP. The LSP ID is described in
more detail in section "Update Process."

Sequence Number  is a 32-bit unsigned integer.

Checksum is the checksum of the contents of the LSP.

P is the Partition Repair bit. Although the bit exists in both L1 and L2 LSPs, it is relevant only in L2 LSPs.
When this bit is set, it indicates that the originating router supports the automatic repair of area partitions.
Cisco IOS does not support this function, so the P bit of LSPs originated by Cisco routers will always be zero.

ATT is a four-bit field indicating that the originating router is attached to one or more other areas. Although
the bits exist in both L1 and L2 LSPs, they are relevant only in L1 LSPs that have been originated by L1/L2
routers. The four bits indicate which metrics are supported by the attachment. Reading from left to right, the
bits indicate

Bit 7: The Error metric

Bit 6: The Expense metric

Bit 5: The Delay metric

Bit 4: The Default metric

Cisco IOS supports only the default metric, so bits 5 through 7 will always be zero.

OL is the Link State Database Overload bit. Under normal circumstances, this bit will be zero. Routers
receiving an LSP with the OL bit set will not use the originating router as a transit router, although they will
still route to destinations on the originator's directly connected links.

IS Type is a two-bit field indicating whether the originating router is an L1 or an L2:

00 = Unused value

01 = L1



10 = Unused value

11 = L2

An L1/L2 router sets the bits according to whether the LSP is an L1 or an L2 LSP.

The following TLVs can be used by an L1 LSP:

Area Addresses (type 1)

IS Neighbors (type 2)

ES Neighbors (type 3)

Authentication Information (type 10)

LSP Buffer Size (type 14)

Extended IS Reachability (type 22)

IP Internal Reachability Information (type 128)

Protocols Supported (type 129)

IP External Reachability Information (type 130)

Traffic Engineering Router ID (type 134)

Extended IP Reachability (type 135)

Dynamic Hostname (type 137)

MT Intermediate Systems (type 222)

Multi-Topology (type 229)

IPv6 Interface Address (type 232)

MT Reachable IPv4 Prefixes (type 235)

IPv6 IP Reachability (type 236)

MT Reachable IPv6 Prefixes (type 237)

Experimental (type 250)

The following TLVs can be used by an L2 LSP:

Area Addresses (type 1)

IS Neighbors (type 2)

Partition Designated Level 2 IS (type 4)

Prefix Neighbors (type 5)

Authentication Information (type 10)

LSP Buffer Size (type 14)

Extended IS Reachability (type 22)

IP Internal Reachability Information (type 128)

IP External Reachability Information (type 130)



Inter-Domain Routing Protocol Information (type 131)

Protocols Supported (type 129)

IP Interface Address (type 132)

Traffic Engineering Router ID (type 134)

Extended IP Reachability (type 135)

Dynamic Hostname (type 137)

MT Intermediate Systems (type 222)

Multi-Topology (type 229)

IPv6 Interface Address (type 232)

MT Reachable IPv4 Prefixes (type 235)

IPv6 IP Reachability (type 236)

MT Reachable IPv6 Prefixes (type 237)

Experimental (type 250)

Figure 10-23 shows an L1 LSP that was originated by an L1/L2 router.

Figure 10-23. Analyzer capture of an LSP.

[View full size image]

Intermediate System Neighbors TLV (LSP)

The Intermediate System Neighbors TLV used by LSPs (Figure 10-24) lists the originating router's IS-IS
neighbors (including pseudonodes) and the metrics of the router's link to each of its neighbors.

Figure 10-24. Intermediate System Neighbors TLV for LSPs.



Virtual Flag , although eight bits long, has a value of either 0x01 or 0x00. A 0x01 in this field indicates that the
link is a level 2 virtual link to repair an area partition. The field is relevant only to L2 routers that support area
partition repair; Cisco does not, so the field will always be 0x00 in Cisco-originated LSPs.

R is a reserved bit and is always zero.

I/E, associated with each of the metrics, indicates whether the associated metric is internal or external. The
bit has no meaning in IS Neighbors TLVs because all neighbors are by definition internal to the IS-IS domain.
Therefore, this bit is always zero in IS Neighbors TLVs.

Default Metric is the six-bit default metric for the originating router's link to the listed neighbor and contains a
value between 0 and 63.

S, associated with each of the optional metrics, indicates whether the metric is supported (zero) or
unsupported (one). Cisco does not support any of the three optional metrics, so the bit is always set to one
and the associated six-bit metric fields are all zeroes.

Neighbor ID  is the System ID of the neighbor, plus one more octet. If the neighbor is a router, the last octet is
0x00. If the neighbor is a pseudonode, the System ID is that of the DR and the last octet is the Pseudonode
ID.

Figure 10-25 shows part of an IS Neighbors TLV.

Figure 10-25. Part of an IS Neighbors TLV in an LSP.

[View full size image]



IP Internal Reachability Information TLV

The IP Internal Reachability Information TLV (Figure 10-26) lists IP addresses and associated masks within
the routing domain that are directly connected to the advertising router. The TLV is used by both L1 and L2
LSPs, but never appears in an LSP describing a pseudonode. The metric fields are identical to the IS
Neighbors TLV, except that no I/E bit is associated with the optional metrics. Instead, the bit is reserved and is
always zero. Like the IS Neighbors TLV, the I/E bit in this TLV is always zero because the addresses
advertised in the TLV are always internal. Figure 10-27 shows an analyzer capture of an IP Internal
Reachability Information TLV.

Figure 10-26. IP Internal Reachability Information TLV.

Figure 10-27. Analyzer capture of an IP Internal Reachability Information TLV.

[View full size image]



IP External Reachability Information TLV

The IP External Reachability Information TLV lists IP addresses and associated masks external to the routing
domain, which can be reached via one of the originating router's interfaces. Its format is identical to the
Internal Reachability Information TLV shown in Figure 10-26 except for the code, which is 130. The I/E bit
determines the metric type for all four metricsI/E = 0 for internal metrics and I/E = 1 for external metrics.

Inter-Domain Routing Protocol Information TLV

The Inter-Domain Routing Protocol Information TLV (Figure 10-28) allows L2 LSPs to transparently carry
information from external routing protocols through the IS-IS domain. The TLV serves the same purpose as
the Route Tag fields of RIPv2, EIGRP, and OSPF packets. Route tagging is covered in Chapter 14, "Route
Maps."

Figure 10-28. The Inter-Domain Routing Protocol Information TLV.

Inter-Domain Information Type specifies the type of information contained in the variable-length External
Information field. If the type field is 0x01, the External Information is of a format used by the local interdomain
routing protocol. Chapter 14 includes examples of using route maps to set such local information. If the type
field is 0x02, the External Information is a 16-bit autonomous system number, which is used to tag all
subsequent External IP Reachability entries until either the end of the LSP or the next occurrence of the Inter-
Domain Routing Protocol Information TLV.

IS-IS Sequence Numbers PDU Format

SNPs are used to maintain the IS-IS link-state database by describing some or all of the LSPs in the
database. They are also used, in some cases, to request LSPs and to implicitly or explicitly acknowledge
received LSPs. So SNPs have a function similar to OSPF Link State Request, Database Description, and
Link State Acknowledgment messages.



A DR periodically multicasts a CSNP (Figure 10-29) to describe all the LSPs in the pseudonode's database.
Because there is an L1 database and an L2 database, CSNPs are also either L1 or L2. Some link-state
databases can be so large that the LSPs cannot all be described in a single CSNP. For this reason, the last
two fields of the CSNP header are the Start LSP ID  field and the End LSP ID  field, which together describe
the range of LSPs described in the CSNP. Figure 10-30 shows how these two fields are used. In this CSNP,
the full database is described; therefore, the LSP ID range starts with 0000.0000.0000.00.00 and ends with
ffff.ffff.ffff.ff.ff. If two CSNPs were required to describe the database, the range of the first CSNP might be
something like 0000.0000.0000.00 to 0000.0c0a.1234.00.00 and the range of the second CSNP might be
0000.0c0a.1234.00.01 to ffff.ffff.ffff.ff.ff.

Figure 10-29. The IS-IS CSNP format.

Figure 10-30. This analyzer capture shows the header of an L1 CSNP.

[View full size image]

A PSNP (Figure 10-31) is similar to a CSNP, except that the former describes only some LSPs rather than the
entire database. Therefore, no Start and End fields are necessary as they are with CSNPs. A router sends a
PSNP on a point-to-point subnetwork to acknowledge received LSPs. On a broadcast subnetwork, PSNPs
request missing or more recent LSPs. Like CSNPs, there are both L1 and L2 PSNPs.



Figure 10-31. IS-IS PSNP format.

Only four TLVs are used by SNPs, whether they are CSNP or PSNP and whether they are L1 or L2:

LSP Entries (type 9)

Authentication Information (type 10)

Optional Checksum (type 12)

Experimental (type 250)

LSP Entries TLV

The LSP Entries TLV (Figure 10-32) summarizes an LSP by listing its Remaining Lifetime, LSP ID, Sequence
Number, and Checksum. These fields not only identify the LSP but also completely identify a particular
instance of an LSP. Figure 10-33 shows part of an LSP Entries TLV.

Figure 10-32. LSP Entries TLV.

Figure 10-33. Part of the LSP Entries TLV of the CSNP in Figure 10-30.

[View full size image]



Extensions to IS-IS

As you have already seen in Table 10-4 and the associated discussion, a number of extensionseither to
support optional capabilities or to improve the basic mechanisms of IS-IShave been added since the protocol
was first extended to support IPv4. In this section we explore the most important of those extensions.

One of the nice things about basic IS-IS behavior is that unlike OSPFv2's LSAs, if IS-IS encounters a TLV
that it does not understand, it just ignores it. This makes extendability and backward-compatibility much
easier in IS-IS. If you are migrating your network to support a new feature, or simply have one router that
understands an extension and another that does not, there is much less worry that adjacencies would be
effected than with OSPFv2. You also saw in Chapter 9, "OSPFv3," that OSPFv3 has adopted at least some
of this same behavior, making the protocol more forgiving than OSPFv2.

3-Way Handshaking

Before neighbors become adjacent, they must ensure that there is two-way communication between them.
The process for ensuring this is called handshaking. It is not enough to simply send and receive Hellos,
which is two-way handshaking; it is possible that your neighbor is not receiving the Hellos you send. So
three-way handshaking , in which there is some explicit acknowledgment that your neighbor has received
your Hellos, is required. OSPF always uses three-way handshaking, by listing in transmitted Hellos the
neighbors that it has received Hellos from. So if an OSPF router sees its RID listed in the Neighbor field of a
received Hello, it knows that the originator of the Hello has received this router's Hellos. Bidirectional
communication is confirmed.

IS-IS also uses three-way handshaking across broadcast networks. The LAN Hello uses the IS Neighbors
TLV to list all neighbors from which a Hello has been received. The TLV then serves the same purpose as the
Neighbors list in OSPF Hellos: An IS-IS router that sees its own SysID in the IS Neighbors TLV of a received
LAN Hello knows that bidirectional communication is confirmed.

But as has already been mentioned, Point-to-Point Hellos do not carry IS Neighbors TLVs. ISO 10589
prescribes only two-way handshaking across point-to-point links, with the admonition that the point-to-point
medium should be reliable. In reality, point-to-point links can often be unreliable; certainly we do not want to
reject IS-IS as a potential IGP choice just because we might have a link in our network that does not meet
some vague reliability requirement.

To remedy this problem, RFC 3373 specifies a Point-to-Point Three-Way Adjacency TLV. This type 240 TLV,
shown in Figure 10-34, lists the SysIDs of all neighbors known by the originator, and also indicates the
originator's perception of the state of its adjacency on the link: Up, Initializing, or Down.

Figure 10-34. Point-to-Point Three-Way Adjacency TLV.



Domain-Wide Prefix Distribution

The default characteristic of L1 areas, as you read earlier in this chapter, is very much like an OSPF totally
stubby area. That is, no prefixes are advertised from L2 to L1; instead, L1/L2 routers set the ATT bit and L1
routers then install a default router to the nearest L1/L2 router. In fact, RFC 1195 specifically prohibits
advertising prefixes from L2 to L1.

But this is not always acceptable. If there are multiple L1/L2 routers, sometimes you would prefer to pick the
one closest to the destination rather than just the closest L1/L2 router exiting the area. For this to happen, the
L1 routers must have knowledge of specific prefixes and their costs outside of the local area; and that, in
turn, means that prefixes must be advertised from L2 to L1. In IS-IS lingo this is called route leaking.

The potential difficulty, and the reason RFC 1195 prohibits such "downward" route leaking, is that if you have
more that one L1/L2 router in the L1 areawhich is most likely why you want to leak routes from L2 to L1 in the
first placeyou have the potential for inter-area routing loops. Figure 10-35 illustrates the problem. The L1/L2
router Hague learns prefix 192.168.0/24 from some L2 LSP. If it is to advertise the prefix into its L1 area, it
must advertise the prefix in its L1 LSP using an IP Internal Reachability TLV. When that L1 TLV is flooded, it is
received by Rotterdam, another L1/L2 router. But because the prefix is in an L1 LSP, Rotterdam has no way
of knowing that it originated outside of the L1 area. So it advertises the prefix back out to the L2 area in an L2
LSP. A routing loop can now exist in which L2 routers think that a path to 192.168.1.0/24 exists within the L1
area.

Figure 10-35. Under basic RFC 1195 rules, a prefix leaked from L2 to L1 is at risk of being advertised
back to L2, creating a routing loop.

OSPF does not have this problem because prefixes external to a non-backbone area are advertised in type 3
LSAs. Other ABRs do not advertise prefixes learned from type 3 LSAs in a non-backbone area into area 0.



RFC 2666 provides a workaround to the problem by defining a bit in the IP Internal Reachability and IP
External Reachability TLVs called the Up/Down (U/D) bit. Looking at the format of the IP Internal Reachability
TLV in Figure 10-26 (and remembering that the format of the IP External Reachability bit is identical), notice
that the octet containing the I/E bit and the 6-bit Default Metric field begins with a reserved bit. This bit
becomes the U/D bit, as shown in Figure 10-36. As the type field indicates, the bit is defined for both IP
Internal Reachability and IP External Reachability TLVs.

Figure 10-36. The eighth bit of the default metric field, previously reserved, is redefined as the
Up/Down bit.

When an L1/L2 router advertises a route from L2 to L1, it sets the U/D bit. Any other L1/L2 router that
receives a prefix with its U/D bit set in an L1 LSP does not advertise the prefix in an L2 LSP. If an L1/L2
router does not understand the U/L bit, it ignores the bit. So it is important, if you are using L2 to L1 route
leaking, to ensure that all of your L1/L2 routers understand this extension.

The Case Study "Route Leaking Between Levels" later in this chapter demonstrates how to set up L2 to L1
route leaking.

Wide Metrics

Traffic Engineering (TE) is a function primarily associated with Multiprotocol Label Switching (MPLS)
networks in which some subset of packets can be forwarded differently depending on a user-specified set of
constraints. In other words, rather than always choosing the single shortest path through a network as an IGP
does, traffic flows can be spread out over different paths. This can both help overall bandwidth utilization in a
network and enable service differentiationby, for example, ensuring that delay-sensitive flows take the
shortest path while other traffic takes longer paths.

One of the keys to traffic engineering is the communication of much more detailed interface parameters than
just metrics; it makes sense to use an IGP that is already designed for sharing path and interface information
to share these TE interface parameters. Both OSPF and IS-IS have been extended to carry TE interface
parameters; for IS-IS, two new TLVs are used:



Extended IS Reachability (type 22)

Extended IP Reachability (type 135)

These TLVs, and the TE parameters they support, are specified in RFC 3784. However, MPLS Traffic
Engineering is beyond the scope of this book. Nevertheless, these two new TLVs are of interest to us
because they provide an important new capability that can be used outside of just Traffic Engineering.

As mentioned earlier in this chapter, a concern about IS-IS in its original form is that the six-bit metric field
does not allow enough metric granularity for a large network. These new TLVs support a much larger metric
space, called wide metrics. The Extended IS Reachability TLV uses a 24-bit metric field, and the Extended IP
Reachability TLV uses a 32-bit metric field.

The format of the Extended IS Reachability TLV is shown in Figure 10-37. When wide metrics are enabled,
this TLV is used in place of the type 2 IS Neighbors TLV in LSPs. Of interest to us is that like the type 2 TLV,
it lists neighbors and their metrics for the SPF calculations; notice the 24-bit metric field. The sub-TLV field is
for TE parameters, and has no relevance to this discussion. However, it is useful to note that TLVs such as
this one do allow nested TLVsthat is, sub-TLVs or TLVs within other TLVs. That's just one more example of
the flexibility that TLVs allow developers.

Figure 10-37. Extended IS Reachability TLV.

The format of the Extended IP Reachability TLV is shown in Figure 10-38. When wide metrics are enabled,
this TLV is used in place of both IP Internal Reachability Information and IP External Reachability Information
TLVs. Accordingly, this TLV can appear in both L1 and L2 LSPs. You can see in the illustration that prefixes
advertised by this TLV can have a metric of up to 32 bits. There is also an Up/Down flag for L2 to L1 route
leaking. As with the Extended IS Reachability TLV, the sub-TLV fields only have relevance to Traffic
Engineering (the S bit indicates the presence of sub-TLVs).

Figure 10-38. Extended IP Reachability TLV.

[View full size image]



Wide metrics are enabled in IOS with the command metric-style wide. Examples of using wide metrics are
shown in this chapter in the Case Studies "A Basic Integrated IS-IS Configuration for IPv6" and "Transition to
Multiple Topology Mode."

Routing IPv6 with IS-IS

In Chapter 9, you saw that OSPF support for IPv6 requires an entirely new version of OSPF. IS-IS, on the
other hand, is easily extended to support IPv6 through the addition of two new TLVs. As of this writing, the
IPv6 extension of IS-IS is still in the Internet-Draft stage, but it is likely to be an RFC very soonprobably by the
time you are reading this chapter.

IS-IS indicates its support of IPv6 by including the IPv6 NLPID 142 (0x8E) in its Protocols Supported TLV. The
two TLVs for IPv6 support are

IPv6 Reachability (type 236)

IPv6 Interface Address (type 232)

The IPv6 Reachability TLV (Figure 10-39) can be said to serve the same purpose as the IP Internal
Reachability Information and IP External Reachability Information TLVs for IPv4. However, the parallel
function is actually much closer to the type 135 Extended IP Reachability TLV for two reasons:

The one TLV is used to advertise both internal and external prefixes.

The TLV includes a 32-bit metric field, so wide metrics are supported.

Figure 10-39. IPv6 Reachability TLV.



You can see in the figure the 32-bit metric field and an Up/Down bit for L2 to L1 route leaking for each prefix.
The X bit indicates whether the prefix is internally originated (X = 0) or externally originated (X = 1). The S bit
indicates whether sub-TLVs exist.

The IPv6 Interface Address TLV, shown in Figure 10-40, is the functional equivalent of the type 132 IP
Interface Address TLV for IPv4: It advertises the address of the interface from which the TLV originates. And
like its IPv4 counterpart, it can be carried in both Hellos and LSPs. When the TLV appears in Hellos, the
addresses it advertises are the link-local addresses of the originating interface. If the TLV appears in LSPs,
the addresses it advertises are the non-link-local (site or global scope) addresses of the originating interface.

Figure 10-40. IPv6 Interface Address TLV.

Even though the IP Interface Address TLV can carry up to 63 32-bit IPv4 addresses, IPv6 addresses are four
times as long. That restricts the IPv6 Interface Address TLV to carrying a maximum of 15 IPv6 addresses.

An example of configuring IS-IS for IPv6 is provided in the Case Study "A Basic Integrated IS-IS Configuration
for IPv6."

Dynamic Hostname Exchange

One operational difficulty when working with IS-IS is that it can be hard to associate the SysIDs in various
router displays with the correct router. Identifying IPv4 addresses is not easy, but we tend to be more



comfortable with them just through long familiarity. But SysIDs, such as in the display of Example 10-1, are a
real challenge.

RFC 2763 provides a convenient solution to this challenge by specifying a Dynamic Hostname TLV (type
137). This simple TLV provides, in its value field, up to 255 bits for carrying an ASCII router name. Normally,
implementations supporting this extension insert the configured router hostname into the field; the TLV is then
carried in any non-pseudonode LSP. When a router display is called up, as in Example 10-8, the ASCII value
of the Dynamic Hostname TLV is used instead of the SysID, for easier interpretation.

Example 10-8. This re-display of the IS-IS neighbor table of Example 10-1 shows the advantage of
the Dynamic Hostname Exchange mechanism.

Brussels#show clns is-neighbors
System Id      Interface   State  Type Priority  Circuit Id        Format
Dublin         Se0         Up     L1   0         06                Phase V
Amsterdam      Et1         Up     L1   64        Brussels.03       Phase V
Rome           Et0         Up     L2   64        Brussels.02       Phase V
London         Et0         Up     L1L2 64/64     Brussels.02       Phase V

Brussels#

Multiple Topologies

Modern IP networks often provide multiple services over a common IP infrastructure, using basic service
building blocks such as IPv4, IPv6, and multicast. The financial advantages of using a common infrastructure
for all services, as opposed to building separate networks for each service, are enormous: Far less capital
expenditure, less equipment to maintain, simpler operational procedures, and fewer operations personnel.
But often the requirements of the separate basic service building blocks require different routing topologies.
Perhaps IPv4 is run everywhere, but IPv6 should be limited to just some parts of the IPv4 domain. Multicast
might also need to be limited to some subset of the IPv4 domain, but different from the IPv6 topology.

Multi Topology (MT) routing allows you to build these routing subsets on a common infrastructure. The
individual topologies are identified by Multi Topology Identifiers (MT IDs). The currently defined MT IDs are
listed in Table 10-5. These MT IDs are assigned to router interfaces to indicate what topologies the interface
belongs to; each interface can have one or more MT IDs. Adjacencies are not MT specific, but are
established between all IS-IS neighbors as usual. But the LSPs are tagged with the appropriate MT IDs, and
a separate SPF calculation is run for each topology. In each router, a separate route table is maintained for
each topology, and entries are made in them based on the separate PSF calculations.

Table 10-5. Multi Topology Identifiers used by MT IS-IS
MT ID Topology
0 Standard (default) topology (IPv4 unicast routing

topology)
1 IPv4 in-band management
2 IPv6 unicast routing topology
3 IPv4 multicast routing topology
4 IPv6 multicast routing topology
53995 Reserved for IETF consensus
39964095 Reserved for development, experimental, and

proprietary features

IS-IS support for MT routing is currently in the Internet-Draft stage. The draft specifies several TLVs for MT



support:

MT Intermediate Systems (type 222)

Multi Topology (type 229)

MT Reachable IPv4 Prefixes (type 235)

MT Reachable IPv6 Prefixes (type 237)

When an MT IS-IS router sends Hellos, it includes one or more Multi Topology TLVs (Figure 10-41), one for
each topology to which the originating interface belongs. If a neighbor does not include any Multi Topology
TLVs in its Hellos, the neighbor is considered to belong only to the default IPv4 topology (MT ID 0). On a
point-to-point link, if the two neighbors do not have any MT IDs in common, no adjacency is formed.
However, behavior is different on a broadcast link; neighbors form an adjacency even if they have no MT IDs
in common. This is because the Designated Router election is independent of the MT IS-IS extensions; a
router that does not support the extensions can be elected DR, so all routers at the same level must be
adjacent.

Figure 10-41. Multi Topology TLV.

The Multi Topology TLV is carried not only in Hellos but also in LSPs. As Figure 10-41 shows, the TLV can
signal Overloading (with the O bit) and L2 attachment (with the A bit) separately for each topology.

The format of the MT Intermediate Systems TLV (Figure 10-42) is exactly the same as that of the Extended IS
Reachability TLV, and serves the same purpose, except that there is a separate MT Intermediate Systems
TLV for each of the topologies to which the originator belongs.

Figure 10-42. MT Intermediate Systems TLV.



The MT Reachable IPv4 Prefixes TLV (Figure 10-43) and the MT Reachable IPv6 Prefixes TLV (Figure 10-
44) are the functional equivalents of the Extended IP Reachability and IPv6 Reachability TLVs, respectively.
They advertise prefixes, but associated with a given topology.

Figure 10-43. MT Reachable IPv6 Prefixes TLV.

Figure 10-44. MT Reachable IPv6 Prefixes TLV.

An example of configuring multiple IS-IS topologies is provided later in this chapter in the Case Study
"Transition to Multiple Topology Mode."



Mesh Groups

Although the technologies are quickly vanishing in favor of SONET and MPLS, Frame Relay and ATM
networks are often still used as the core transport media of many large networks. And a topology frequently
used in Frame Relay and ATM networks is that the virtual circuits (VCs) used for connectivity are fully
meshed as shown in Figure 10-45. But well-meshed or fully meshed networkswhere all routers have
connections to all other routersare susceptible to abnormally heavy flooding loads.

Figure 10-45. ATM and Frame Relay infrastructures underlying an IP network often are configured
so that every node is connected to every other nodethat is, the nodes are fully meshed.

Because every router is connected to every other router, when a router floods an LSP every other router
immediately receives it, as shown in Figure 10-46. This is as flooding needs to proceed.

Figure 10-46. In a fully meshed network, a transmission from one router is immediately received by
all other routers.

The problem is that the receiving routers have links to other routers, and they have no way of knowing that
the flooded LSP has already been received by these other routers. So following the basic split horizon rule for
flooding, these other routers flood the LSP out every interface except the one that the LSP was received on,
as shown in Figure 10-47. This illustration shows that every router in the network floods n 2 unnecessary
LSPs, where n is the number of routers in the network: It floods an LSP to every router except itself and the
router from which the LSP was received. As quadratic equations demonstrate, this works out to (n 1)(n 2) or
n2 3n + 2 unnecessarily flooded LSPs.[21]

[21] Elementary school math teachers love to torture their students with "language problems," so
here's the equation expressed linguistically: Every router except the originator floods n 2
unnecessary LSPs.

Figure 10-47. Even though every router has received the flooded LSP, they still must follow the
rules of flooding and send the LSP to every neighbor except the one from which they received the

LSP.



In the network we are examining here, the extra flooding load is not that bad: With six routers, n2 3n + 2 = 20
unnecessarily flooded LSPs. But suppose there are 100 fully meshed routers. Now you have n2 3n + 2 =
9,702 unnecessarily flooded LSPs. And this is just from one router refreshing its LSP. Consider every router
refreshing its LSPs, possibly multiple LSPs per router, and other activity besides refresh timers triggering LSP
floods, and you can see that the unnecessary LSPs at every flood are tremendous. Of course, in a modern
network these numbers might not be unreasonable given the overall volume of packets being handled, but to
many network architects any inefficiency offends their sense of aesthetics.

For these individuals who find beauty in simplicity, RFC 2973 offers mesh groups for IS-IS. The mesh group
mechanism allows you to block flooding of an LSP when you are reasonably certain that a router's neighbor
has already received the LSP. Mesh groups place the interface in one of three modes:

Inactive

Blocked

Set

Inactive mode simply means that although the router supports mesh groups, no mesh groups are enabled for
that interface and LSPs are flooded normally.

When an interface is in blocked mode, it does not flood any LSPs. Figure 10-48 shows how blocked
interfaces might reduce the flooding load of the network of Figure 10-45. Here, the fully meshed topology of
Figure 10-45 has been reduced to a "ring" flooding topology; of course, regular packet forwarding can still
use the full mesh. In this flooding topology, every router has two neighbors rather than n-1 neighbors. There
is still a bit of unnecessary flooding, but it is greatly reduced from the level shown in Figure 10-47.

Figure 10-48. Blocking flooding on some interfaces reduces overall flooding load.



There is a tradeoff for the partially blocked topology in Figure 10-48there is always a tradeoff. First, while
every router has an unblocked flooding link to two other routers, if both of those links fail flooding will be
corrupted even though the router has other perfectly good links to neighbors. Second, convergence time can
be effected. Although full-mesh flooding as shown in Figure 10-46 ensures that every router receives a
flooded LSP as soon as it is sent, the partially blocked flooding topology of Figure 10-48 means that a
flooded LSP in some cases must transit one or several routers before all routers have received it.

Set mode gives you a bit more flexibility than blocked mode, providing a compromise between the reduced
redundancy and increased convergence time of blocked mode while still reducing the flooding loadalthough
not as much as blocked mode. In set mode, you define numbered mesh groups and then assign interfaces to
the groups. When an LSP is received, it is received on an interface belonging to some numbered group. The
LSP is then flooded out all interfaces except interfaces belonging to the same group as the interface on which
the LSP was received.

Figure 10-49 shows the topology of Figure 10-45 configured into two mesh groups: Group 1 and Group 2. If a
router is originating an LSP, it floods the LSP out every interface no matter what group the interface belongs
to; so the first flooding looks just like Figure 10-46. Some of the neighbors receive the LSP on an interface
belonging to group 1, and some receive it on interfaces belonging to group 2.

Figure 10-49. Set mode allows you to create numbered mesh groups by assigning interfaces to
groups.

The receiving routers then flood the LSP out interfaces belonging to mesh groups other than the one it was
received on. If the LSP was received on an interface belonging to group 1, it is only flooded out interfaces
belonging to group 2, and vice versa, as shown in Figure 10-50. All of these flooded LSPs are of course
unnecessary; every router received a copy of the LSP when the originator initially flooded it. Comparing the
flooding pattern to Figure 10-48, you can see that although the unnecessary flooding is heavier than with
blocked mode, it is still less than the load depicted in Figure 10-47. And, because the initial flood reached all
of the routers, convergence time is not affected.

Figure 10-50. A received LSP is flooded on all interfaces except those belonging to the same mesh
group as the interface on which it was received.



Inactive, blocked, and set mode can be mixed in a complex topology to attain the flooding patterns you want.
In practice, blocked mode is used far more often than set mode. But if you choose to use mesh groups at all,
be aware that you are in all cases trading some of the robustness of full-mesh flooding for a reduced flooding
load.

Using IOS, you can block flooding on an interface with the command isis mesh-group blocked or assign
the interface to a numbered mesh group with the command isis mesh-group number .

Flooding Delays

While mesh groups can control the amount of unnecessary LSPs sent during flooding in densely meshed
networks, flooding can also become a problem if the network becomes unstable. For example, a quickly and
constantly flapping link can cause tremendous flooding of LSPs, each triggering SPF calculations in all area
routers, eating up network resources.

IOS offers several tools for reducing the impact of flooding in such situations. The first is a means of reducing
flooding of locally originated LSPs when the router experiences an instability such as a flapping link. In such
a situation, imposing a delay before flooding an LSP might mean that not every flap causes a flood. For
example, if a link flaps every 20 seconds but flooding is delayed for one minute, only every fifth flap will cause
a flood.

But we do not want to always delay flooding; when the network is stable, waiting one minute before flooding a
new LSP can cause a serious increase in convergence time. So IOS uses an exponential backoff algorithm in
which a very small delay of 50 milliseconds is imposed before the first generation of an LSP. If an event
should cause the generation of another LSP within five seconds of the previous generation, the router waits
five seconds before generating the new LSP. This delay continues until the network has been calm for 10
seconds, and then the 50 ms generation interval is restored.

The default behavior of this exponential backoff can be changed with the command lsp-gen-interval, and
the following command options:

lsp-initial-wait is the normal time the router waits before generating an LSP. The default is 50 ms and
can be changed between 1 and 120,000 ms.

lsp-second-wait is the delay between the first and second generation of an LSP. The default is 5000
ms (five seconds) and can be changed between 1 and 120,000 ms. After the second LSP generation,
the previous delay is automatically doubled for each subsequent generation. So if the second wait is 5
seconds, there will be a wait of 10 seconds between the second and third generation, 20 seconds
between the third and fourth generation, 40 seconds between the fourth and fifth, and so on, up to the
lsp-max-wait. It is the function of this parameter that gives the exponential backoff algorithm its name.

lsp-max-wait is the longest delay allowed between LSP generations. This parameter is necessary so
that in the event of a continuing instability the delay will not increase so high that no LSP is ever
generated. The default is 5 seconds, and it can be changed to between 1 and 120 seconds.

While lsp-gen-interval throttles the generation of LSPs during local instabilities, there might also be a
problem in which a particular router is underpowered and can be overwhelmed by heavy flooding. The only
real solution to this problem is to upgrade the router. But there are options for controlling the flooding to the
neighbor in the interim. The first option is the command isis lsp-interval, which changes the default delay



between transmissions of LSPs on an interface (and hence to a specific neighbor). The default delay is 33
ms. So, for example, if the delay is set to 100 ms, LSPs cannot be transmitted faster than one every .1
seconds or 10 LSPs per second.

There is also the problem of LSP retransmissions, which again applies to underpowered neighbors. If a
router is struggling to process received LSPs, it might be delayed in acknowledging the LSPs, causing its
neighbors to retransmit the LSPs. If the router was struggling to begin with, the retransmissions would make
matters worse. The default wait time before retransmitting an LSP is 5 seconds. An underpowered neighbor
can be protected somewhat by increasing the wait time, up to 65,535 seconds, with the command isis
retransmit-interval.

There might still be a problem in which, even if you had increased the wait time before retransmitting an LSP
with the isis retransmit-interval command, the wait time would expire on multiple LSPs and they all would
need to be retransmitted. You can regulate the time between the transmission of each of these retransmitted
LSPs, in milliseconds, with the command isis retransmit-throttle-interval. So while isis retransmit-
interval increases the time to wait for an acknowledgment before retransmitting, isis retransmit-throttle-
interval increases the interval between each retransmitted LSP if and when the wait time does expire.

Although these commands give you options for controlling flooding, they should be used only in extreme
cases. In the great majority of cases the defaults should not be changed; and where tinkering with these
values becomes necessary, you should look to the cause. Usually a router upgrade or an improvement in link
reliability is the better solution.

Improving SPF Efficiency

IOS uses two mechanisms for improving the efficiency of its SPF algorithm:

Incremental SPF (iSPF)

Partial Route Calculations (PRC)

When a stub router is added to the networkthat is, when a router is added in which there is only one link to
itall routers in the area do not need to recalculate the SPF. Instead, it is enough to just add the router to the
tree. And if a link that is not already on the SPF tree changes in some way that does not affect the tree, it is
unnecessary for routers to run SPF at all. iSPF takes such cases into account, and only runs SPF to the
extent that the topological change warrants. iSPF can also limit the scope of an SPF calculation. That is, if a
change affects only a limited part of the topology, iSPF can confine the SPF recalculation to that portion of
the topology.

Another change that does not need to trigger an SPF calculation is the addition, deletion, or metric change of
an IP prefix. A router detecting such a change floods an LSP with an IP Reachability TLV (or one of its
functional equivalents) to advertise the change. But this LSP does not need to trigger an SPF calculation.
This is Partial Route Calculation: Received LSPs are examined, and if there is no topological change
requiring an SPF calculation, such as a new IP Reachability TLV or a new IS Neighbors TLV, no SPF
calculation is run.

In times of network instability, imposing longer delays between SPF runs might span the reception of multiple
LSPs. That is, if many LSPs are being flooded, waiting between SPF runs might mean that rather than
running SPF every time an LSP is received, the router might receive many LSPs and account for them all with
a single SPF run. IOS uses an exponential backoff algorithm like the one used for throttling LSP generation,
described in the previous section, for SPF runs. The command spf-interval applies to full SPF runs, and
prc-interval for partial route calculations. In both cases, like the LSP generation throttling, you can specify
an initial wait, a second wait that is doubled for each subsequent run, and a maximum wait time that cannot
be exceeded. The defaults for the SPF exponential backoff are 5500 ms for the initial wait, 5500 ms for the
second wait, and 10 seconds for the maximum wait; the defaults for PRC are 2000 ms, 5000 ms, and 5
seconds respectively. However, as with the flooding delays, it is seldom a good idea to change the default
values of the SPF delays. The real solutions to overly frequent SPF runs are reliable links and network
components, and perhaps the use of areas to reduce flooding scope.



Configuring Integrated IS-IS

Integrated IS-IS is unique among the IP routing protocols covered in this book for two reasons. First, it is the
only IP routing protocol that must be enabled both as a process and on individual interfaces. Second, it is the
only IP routing protocol that was not originally designed for IP. Because IS-IS uses CLNS PDUs rather than IP
packets, the configuration is not always as obvious as that of the other protocols.

Case Study: A Basic IPv4 Integrated IS-IS Configuration

A basic Integrated IS-IS process is configured on a Cisco router in four steps:

Step 1. Determine the area in which the router is to be located and the interfaces on which IS-IS is to be
enabled.

Step 2. Enable IS-IS with the command router isis.[22]

[22] The router isis command can also be given a name, such as router isis Warsaw. If
IS-IS and ISO-IGRP are configured on the same router, one or both of the processes
must be named. If ISO-IGRP is not configured, naming is unnecessary.

Step 3. Configure the NET with the net command.

Step 4. Enable Integrated IS-IS on the proper interfaces with the command ip router isis. This command
must be added not only to transit interfaces (interfaces connected to IS-IS neighbors) but also to
interfaces connected to stub networks whose IP addresses should be advertised by IS-IS.

Figure 10-51 shows a small six-router network divided into two areas. In the NETs, areas 1 and 2 will be
encoded as 00.0001 and 00.0002, respectively, and the System IDs will be the MAC identifiers of the E0 or
FastEthernet0/0 interfaces of each router. Table 10-6 shows the NETs encoded with this information.

Figure 10-51. Area 1 is encoded as 00.0001 in the NET, and area 2 is encoded as 00.0002. The
System ID of each NET is the E0 or TO0 MAC identifier.



Table 10-6. The NETs used for the IS-IS configurations of the
routers in Figure 10-51.

Router Area MAC Net
Paris 00.0001 0004.c150.e700 00.0001.0004.c150.e700.00
Berlin 00.0001 0010.7b3c.6bd3 00.0001.0010.7b3c.6bd3.00
London 00.0001 00b0.6430.1de0 00.0001.00b0.6430.1de0.00
Rome 00.0001 0004.c150.f1c0 00.0001.0004.c150.f1c0.00
Brussels 00.0002 0005.5e6b.50a0 00.0002.0005.5e6b.50a0.00
Amsterdam 00.0002 0000.0c8d.34f1 00.0002.0000.0c8d.34f1.00

The configurations of Paris, London, Brussels, and Amsterdam are displayed in Example 10-9 through
Example 10-12.

Example 10-9. Paris.

interface Serial0/0.1 point-to-point
 ip address 10.1.255.5 255.255.255.252
 ip router isis
!
interface FastEthernet0/0
 ip address 10.1.2.1 255.255.255.0
 ip router isis
!
interface FastEthernet0/1
 ip address 10.1.7.1 255.255.255.0
 ip router isis
!
router isis
 net 00.0001.0004.c150.e700.00



Example 10-10. London.

interface Ethernet0/0
 ip address 10.1.3.2 255.255.255.0
 ip router isis
!
interface Serial0/0.1 point-to-point
 ip address 10.1.255.6 255.255.255.252
 ip router isis
!
router isis
 net 00.0001.00b0.6430.1de0.00

Example 10-11. Brussels.

interface FastEthernet0/0
 ip address 10.1.3.1 255.255.255.0
 ip router isis
!
interface FastEthernet0/1
 ip address 10.1.4.1 255.255.255.0
 ip router isis
!
router isis
 net 00.0002.0005.5e6b.50a0.00

Example 10-12. Amsterdam.

clns routing
!
interface FastEthernet0/0
 ip address 10.1.4.2 255.255.255.0
 ip router isis
!
interface FastEthernet0/1
 ip address 10.1.5.1 255.255.255.0
 ip router isis
!
interface FastEthernet0/2
 ip address 10.1.6.241 255.255.255.240
 ip router isis
!
router isis
 net 00.0002.0000.0c8d.34f1.00

The configurations of Berlin and Rome are similar. A detail that you should notice is that CLNS routing is
enabled in Amsterdam's configuration. The CLNS routing is necessary to handle the CLNS PDUs used by IS-
IS. CLNS routing is enabled automatically when you create an IS-IS process. In some versions of IOS, you
might see the clns routing command in the configuration, even though it is not required to enter it as a
configuration step.

Example 10-13 shows Paris's route table. Notice that the table contains both L1 and L2 routes. By default,



Cisco routers are L1/L2 routers. This fact is also apparent by observing the routers' IS neighbor tables, as in
Example 10-14.

Example 10-13. Paris's route table shows both L1 and L2 routes, indicating that this router is an
L1/L2 router.

Paris#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 9 subnets, 3 masks
i L1    10.1.8.0/24 [115/20] via 10.1.2.2, FastEthernet0/0
i L1    10.1.3.0/24 [115/20] via 10.1.255.6, Serial0/0.1
C       10.1.2.0/24 is directly connected, FastEthernet0/0
C       10.1.7.0/24 is directly connected, FastEthernet0/1
i L2    10.1.5.0/24 [115/40] via 10.1.255.6, Serial0/0.1
i L2    10.1.4.0/24 [115/30] via 10.1.255.6, Serial0/0.1
C       10.1.255.4/30 is directly connected, Serial0/0.1
i L1    10.1.255.8/30 [115/20] via 10.1.2.2, FastEthernet0/0
i L2    10.1.6.240/28 [115/40] via 10.1.255.6, Serial0/0.1
Paris#

Example 10-14. Berlin's IS neighbor table shows that both Paris and Rome are L1/L2 routers.

Berlin#show clns is-neighbors
System Id      Interface   State  Type Priority  Circuit Id       Format
Rome           Se0.1       Up     L1L2 0 /0      00               Phase V
Paris          Et0         Up     L1L2 64/64     Berlin.01        Phase V
Berlin#

Notice in Berlin's IS neighbor table that the name of each neighbor is listed. Hostnames are dynamically
exchanged using the TLV type 137, as discussed in the section "Dynamic Hostname Exchange." To view the
system identifiers associated with each hostname, use the command show isis hostname, as displayed in
Example 10-15.

Example 10-15. The system IDs associated with known hostnames are displayed using the
command show isis hostname .

Berlin#show isis hostname
Level  System ID      Dynamic Hostname  (notag)
1      00B0.6430.1DE0 London
2      0000.0C8D.34F1 Amsterdam
1      0004.C150.E700 Paris
1      0004.C150.F1C0 Rome
     * 0010.7B3C.6BD3 Berlin
Berlin#

Because every router in the network of Figure 10-51 is an L1/L2, every router has formed both L1
adjacencies and L2 adjacencies. Consequently, every router has both an L1 and an L2 LS database. The L1
areas completely overlap with the L2 area. For example, Example 10-16 shows the LS databases of



Amsterdam. The L1 database contains an LSP originated by Amsterdam[23] and an LSP originated by
Brussels. It also contains a pseudonode LSP (Brussels.02-00) originated by Brussels, representing the
Ethernet link between Brussels and Amsterdam. Remember that the LSP ID is recognizable as that of a
pseudonode LSP because the next-to-last octet, the Pseudonode ID, is non-zero.

[23] As discussed earlier, the asterisk after the LSP ID indicates that the LSP was originated by this
router.

Example 10-16. Amsterdam has both a level 1 LS database and a level 2 LS database, indicating that
the router is an L1/L2 router.

Amsterdam#show isis database
IS-IS Level-1 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime     ATT/P/OL
Amsterdam.00-00     * 0x00000015   0x642E        1112             1/0/0
Brussels.00-00        0x00000016   0x9B81        1187             1/0/0
Brussels.02-00        0x00000013   0x46BD        1139             0/0/0
IS-IS Level-2 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime     ATT/P/OL
Amsterdam.00-00     * 0x00000015   0xEAFF        1176             0/0/0
Paris.00-00           0x00000023   0x2B29        504              0/0/0
Rome.00-00            0x0000001D   0xD016        482              0/0/0
Brussels.00-00        0x00000019   0x45BB        1187             0/0/0
Brussels.02-00        0x00000013   0xD5B6        375              0/0/0
Berlin.00-00          0x0000001E   0x408B        506              0/0/0
Berlin.01-00          0x00000013   0xB10F        557              0/0/0
London.00-00          0x00000019   0xF1B1        463              0/0/0
London.01-00          0x00000013   0x9E92        844              0/0/0
Amsterdam#

The three level-1 LSPs indicate that, other then Amsterdam, the only L1 router known to Amsterdam is
Brussels. This single node is expected because Brussels is the only other router in area 2. Amsterdam's L2
database shows that Amsterdam knows of every router in the IS-IS domain, which is also expected because
every router is an L1/L2.

Case Study: Changing the Router Types

In a small network like the one in Figure 10-51, leaving all routers at their default type is acceptable. As the
network grows, these defaults become less and less acceptable. Not only is the processing and maintenance
of two LS databases a burden on the router's CPU and memory, the L1 and L2 IS-IS PDUs being originated
by every router become a burden on the buffers and bandwidth.

Paris, Berlin, and Amsterdam in Figure 10-51 can be configured as L1 routers, because they have no direct
connection to another area. To change the default router type, use the command is-type. For example, to
make Berlin an L1 router, its configuration is as displayed in Example 10-17.

Example 10-17. Berlin is configured to be a L1 router.

router isis
 net 00.0001.0000.3090.c7df.00
 is-type level-1

Paris and Amsterdam are configured similarly. Comparing Paris's route table in Example 10-18 with its route
table in Example 10-13 shows that the L2 routes have been deleted. Similarly, comparing Example 10-19 with
Example 10-16 shows that Amsterdam now has only an L1 LS database.



Example 10-18. After Paris is configured as an L1 router, its route table contains routes only to
destinations within its own area.

Paris#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is 10.1.255.6 to network 0.0.0.0
     10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
i L1    10.1.8.0/24 [115/20] via 10.1.2.2, FastEthernet0/0
i L1    10.1.3.0/24 [115/20] via 10.1.255.6, Serial0/0.1
C       10.1.2.0/24 is directly connected, FastEthernet0/0
C       10.1.7.0/24 is directly connected, FastEthernet0/1
C       10.1.255.4/30 is directly connected, Serial0/0.1
i L1    10.1.255.8/30 [115/20] via 10.1.2.2, FastEthernet0/0
i*L1 0.0.0.0/0 [115/10] via 10.1.255.6, Serial0/0.1
Paris#

Example 10-19. After Amsterdam is configured as an L1 router, it has only a level 1 link-state
database.

Amsterdam#show isis database
IS-IS Level-1 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Amsterdam.00-00     * 0x00000017   0x5644        1065              0/0/0
Brussels.00-00        0x00000018   0x9783        1063              1/0/0
Brussels.02-00        0x00000014   0x44BE        1063              0/0/0
Amsterdam#

Recall from the earlier discussion of the ATT bit in the LSPs that an L1/L2 router uses the ATT bit to tell L1
routers that it has an inter-area connection. Example 10-20 shows that both London's LSP and Rome's LSP
have ATT = 1. So Paris should know to send inter-area traffic to either London or Rome. In other words, Paris
should have a default route to London or Rome, with London being preferred because it is metrically closer.
Example 10-18 shows that there is a default route (0.0.0.0) in Paris's route table.

Example 10-20. The L1 LSPs of London and Rome have ATT = 1, indicating a connection to another
area.

Paris#show isis database
IS-IS Level-1 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum LSP Holdtime      ATT/P/OL
Paris.00-00         * 0x00000022   0xA4C8       857               0/0/0
Rome.00-00            0x00000018   0x139F       727               1/0/0
Berlin.00-00          0x0000001C   0x28B8       733               0/0/0
Berlin.01-00          0x00000018   0x161F       851               0/0/0
London.00-00          0x00000017   0xDD92       848               1/0/0
London.01-00          0x00000014   0x9F54       1080              0/0/0
Paris#

In older versions of IOS, the IP process does not directly interpret the ATT bit. The ATT bit is a CLNS



function. When running older versions of IOS, if no default route is automatically created in the L1 routers,
there are two solutions to the problem. The first solution is to enable IS-IS for CLNS on the interfaces in
addition to IS-IS for IP. For example, the serial interface configurations for London and Paris are displayed in
Example 10-21 and Example 10-22.

Example 10-21. London is configured with IS-IS for CLNS on the interface to enable processing of
the ATT bit.

interface Serial0/0.1
 ip address 10.1.255.6 255.255.255.252
 ip router isis
 clns router isis

Example 10-22. Paris is configured with IS-IS for CLNS on the interface to enable processing of the
ATT bit.

interface Serial0/0.1
 ip address 10.1.255.5 255.255.255.252
 ip router isis
 clns router isis

This first solution works in a dual CLNP/IP environment, but if IS-IS is being used as an IP-only routing
protocol, enabling CLNS routing just for default IP routes might be undesirable. A second solution to the
default route problem is to configure a static default route on the L1/L2 router and configure IS-IS to advertise
the default with the command default-information originate. Using this method in area 2 of Figure 10-51,
the Brussels' configuration is displayed in Example 10-23.

Example 10-23. Brussels is configured to originate a default route.

router isis
 net 00.0002.0000.0c76.5b7c.00
 default-information originate
!
ip route 0.0.0.0 0.0.0.0 Null0

Default routes and the default-information originate command are discussed in more detail in Chapter 12,
"Default Routes and On-Demand Routing."

Case Study: An Area Migration

To change area addresses in an OSPF domain, downtime must be scheduled. However, IS-IS is designed to
allow areas to be changed nondisruptively. As discussed in "Operation of Integrated IS-IS," Cisco routers can
be configured with up to 254 L1 area addresses. For two routers to form an L1 adjacency, they must have at
least one area address in common. With multiple area addresses allowed, a new adjacency can take over
while an old adjacency is being broken. This approach is useful when areas are being consolidated or split,
when an area is being renumbered, or when area addresses assigned by multiple addressing authorities are
being used in the same IS-IS domain.

For example, the routers in Figure 10-52(a) all have an area address of 01. (A NET of one of these routers
would look like 01.0000.0c12.3456.00.) In Figure 10-52(b), the routers have been assigned an additional
area address of 03. Although multiple adjacencies are not actually formed, the routers do recognize that they
have multiple area addresses in common. In Figure 10-52(c), area 01 has been removed from one of the
routers. All three routers remain adjacent, because they all have at least one area address in common.



Finally, in Figure 10-52(d), all of the 01 area addresses have been removed and the routers are all in area
03. At no time during the area migration was an adjacency lost.

Figure 10-52. The support of multiple area addresses per router eases area changes.

[View full size image]

Suppose that the "powers that be" over the network in Figure 10-51 decree that the area addressing scheme
being used is inappropriate and should become GOSIP compliant. After registering with the U.S. GSA, the
following components are to be used to construct the NETs:

AFI: 47

IDI: 0005

DFI: 80

AAI: 00ab7c

Reserved: 0000

RDI: fffe9

Areas: 0001 (area 1),
0002 (area 2)

The new NETs are shown in Table 10-7.

Table 10-7. The new GOSIP-format NETs to be assigned to the
routers in Figure 10-51.

Router NET

Paris 47.0005.80.00ab7c.0000.ffe9.0001.0004.c150.e700.00

Berlin 47.0005.80.00ab7c.0000.ffe9.0001.0010.7b3c.6bd3.00

London 47.0005.80.00ab7c.0000.ffe9.0001.00b0.6430.1de0.00

Rome 47.0005.80.00ab7c.0000.ffe9.0001.0004.c150.f1c0.00

Brussels 47.0005.80.00ab7c.0000.ffe9.0002.0005.5e6b.50a0.00

Amsterdam 47.0005.80.00ab7c.0000.ffe9.0002.0000.0c8d.34f1.00

The first step in changing the area addresses is to add the new NETs to the routers without changing the old
NETs. Rome's IS-IS configuration is shown in Example 10-24.



Example 10-24. Rome is configured with two NETs during transition.

router isis
 net 00.0001.0000.0c0a.2aa9.00
 net 47.0005.8000.ab7c.0000.ffe9.0001.0004.c150.f1c0.00

The other five routers are configured similarly. The results can be observed by using the detail keyword with
either the show isis database command (Example 10-25) or the show clns is-neighbors command
(Example 10-26). In both databases, multiple areas are associated with each router in the network.

Example 10-25. The LSPs in Rome's link-state database show that all routers in the network of
Figure 10-41 are advertising two area addresses.

Rome#show isis database detail
IS-IS Level-1 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Paris.00-00           0x00000026   0xC3AA        886               0/0/0
  Area Address: 00.0001
  Area Address: 47.0005.8000.ab7c.0000.ffe9.0001
  NLPID:        0xCC
  Hostname: Paris
  IP Address:   10.1.7.1
  Metric: 10         IP 10.1.2.0 255.255.255.0
  Metric: 10         IP 10.1.255.4 255.255.255.252
  Metric: 10         IP 10.1.7.0 255.255.255.0
  Metric: 10         IS Berlin.01
  Metric: 10         IS London.00
Rome.00-00         *  0x0000001E   0x4D64        688               1/0/0
  Area Address: 00.0001
  Area Address: 47.0005.8000.ab7c.0000.ffe9.0001
  NLPID:        0xCC
  Hostname: Rome
  IP Address:   10.1.255.10
  Metric: 10         IP 10.1.3.0 255.255.255.0
  Metric: 10         IP 10.1.255.8 255.255.255.252
  Metric: 10         IS Berlin.00
  Metric: 10         IS London.01
Berlin.00-00          0x00000024   0xC419        716               0/0/0
  Area Address: 00.0001
  Area Address: 47.0005.8000.ab7c.0000.ffe9.0001
  NLPID:        0xCC
  Hostname: Berlin
  IP Address:   10.1.8.1
  Metric: 10         IP 10.1.2.0 255.255.255.0
  Metric: 10         IP 10.1.8.0 255.255.255.0
  Metric: 10         IP 10.1.255.8 255.255.255.252
  Metric: 10         IS Berlin.01
  Metric: 10         IS Berlin.02
  Metric: 10         IS Rome.00
Berlin.01-00          0x0000001B   0x1022        572               0/0/0
  Metric: 0          IS Berlin.00
  Metric: 0          IS Paris.00
London.00-00          0x0000001A   0x1959        1044              1/0/0
  Area Address: 00.0001
--More

Example 10-26. Rome's IS-IS neighbor table also shows multiple addresses associated with each
neighbor.



Rome#show clns is-neighbors detail
System Id      Interface   State  Type Priority  Circuit Id        Format
Berlin         Se0/0.1     Up     L1   0         00                Phase V
  Area Address(es): 00.0001 47.0005.8000.ab7c.0000.ffe9.0001
  IP Address(es):  10.1.255.9*
  Uptime: 00:30:49
London         Fa0/0       Up     L1L2 64/64     London.01         Phase V
  Area Address(es): 00.0001 47.0005.8000.ab7c.0000.ffe9.0001
  IP Address(es):  10.1.3.2*
  Uptime: 04:49:01
  NSF capable
Brussels       Fa0/0       Up     L2   64        London.01         Phase V
  Area Address(es): 00.0002 47.0005.8000.ab7c.0000.ffe9.0002
  IP Address(es):  10.1.3.1*
  Uptime: 04:51:46
  NSF capable
Rome#

The last step of the migration is to delete the old NET statements from all routers. For example, under
Rome's IS-IS configuration the command no net 00.0001.0004.c150.f1c0.00 is entered. Example 10-27
shows some of the LSPs in Rome's database after the old NET statements have been removed from the
routers.

Example 10-27. The LSPs in Rome's database show only a single area address.

Rome#show isis data detail
IS-IS Level-1 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Paris.00-00           0x0000002D   0x412E        1171              0/0/0
  Area Address: 47.0005.8000.ab7c.0000.ffe9.0001
  NLPID:        0xCC
  Hostname: Paris
  IP Address:   10.1.7.1
  Metric: 10         IP 10.1.2.0 255.255.255.0
  Metric: 10         IP 10.1.255.4 255.255.255.252
  Metric: 10         IP 10.1.7.0 255.255.255.0
  Metric: 10         IS Berlin.01
  Metric: 10         IS London.00
Rome.00-00          * 0x00000025   0x0BA7        1174              1/0/0
  Area Address: 47.0005.8000.ab7c.0000.ffe9.0001
  NLPID:        0xCC
  Hostname: Rome
  IP Address:   10.1.255.10
  Metric: 10         IP 10.1.3.0 255.255.255.0
  Metric: 10         IP 10.1.255.8 255.255.255.252
  Metric: 10         IS Berlin.00
  Metric: 10         IS London.01
Berlin.00-00          0x00000029   0x20C0        1097              0/0/0
  Area Address: 47.0005.8000.ab7c.0000.ffe9.0001
  NLPID:        0xCC
  Hostname: Berlin
  IP Address:   10.1.8.1
  Metric: 10         IP 10.1.2.0 255.255.255.0
  Metric: 10         IP 10.1.8.0 255.255.255.0
  Metric: 10         IP 10.1.255.8 255.255.255.252
  Metric: 10         IS Berlin.01
  Metric: 10         IS Berlin.02
  Metric: 10         IS Rome.00
Berlin.01-00          0x0000001D   0x0C24        1090              0/0/0
  Metric: 0          IS Berlin.00
  Metric: 0          IS Paris.00
London.00-00         0x0000001F    0xB7BD        1163              1/0/0



  Area Address: 47.0005.8000.ab7c.0000.ffe9.0001
  NLPID: 0xCC
 --More

Case Study: Route Summarization

Route summarization between areas in a link-state protocol is introduced in Chapter 8. A more complete
discussion of summarization, in the context of default routes, is presented in Chapter 12. Briefly, summary
routes are useful because

They reduce the size of LSPs, which reduces the size of the link-state database; consequently, memory
and CPU are conserved.

They hide instabilities within areas. If an address within a summary range changes or a link changes
state, the change is not advertised outside of the summarized area.

The primary disadvantages of summary routes are

Their effectiveness is dependent on being able to summarize a contiguous range of IP addresses, so
addresses must be planned carefully.

They can reduce route precision by hiding the details of the area. If there are multiple paths into a
summarized area, the best path cannot be determined.

Summarization is enabled under the IS-IS configuration with the summary-address command. Any more-
specific destination addresses that fall within the summarization range are suppressed, and the metric of the
summary route is the smallest metric of all the more-specific addresses.

Figure 10-53 shows an IS-IS network with three areas. The addresses within area 1 can be summarized with
172.16.0.0/21, and the addresses within area 3 can be summarized with 172.16.16.0/21. The configurations
of Zurich, Madrid, and Bonn are displayed in Example 10-28 through Example 10-30.[24]

[24] Notice that Madrid, which has no L1 neighbors, is configured as an L2 router.

Figure 10-53. Zurich and Bonn are summarizing areas 1 and 3 into area 2.

Example 10-28. Zurich is configured to perform route summarization.

router isis
 net 01.0000.0c76.5b7c.00
 summary-address 172.16.0.0 255.255.248.0



Example 10-29. Madrid's configuration has no route summarization.

router isis
 net 02.0000.3090.6756.00
 is-type level-2-only

Example 10-30. Bonn is configured to perform route summarization.

router isis
 net 03.0000.0c0a.2aa9.00
 summary-address 172.16.16.0 255.255.248.0

Notice that Madrid, which has no L1 neighbors, is configured as an L2 router. Zurich and Bonn are
summarizing their areas into the level 2 backbone. The results of the summarization can be seen in Madrid's
route table (Example 10-31).

Example 10-31. Madrid's route table shows the summary addresses advertised by Bonn and Zurich.

Madrid#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

     172.16.0.0/16 is variably subnetted, 4 subnets, 2 masks
i L2    172.16.16.0/21 [115/20] via 172.16.9.2, Serial0/0.2
C       172.16.8.0/24 is directly connected, Serial0/0.1
C       172.16.9.0/24 is directly connected, Serial0/0.2
i L2    172.16.0.0/21 [115/20] via 172.16.8.2, Serial0/0.1
Madrid#

Case Study: Authentication

IS-IS authentication can use cleartext passwords or HMAC-MD5. There are two methods of configuring
cleartext password. Both provide weak security against a determined attack on the network but are effective
for preventing service disruptions from misconfigured or unauthorized routers. One of the cleartext
configuration modes uses key chains, which can be encrypted in the configuration file so that someone
cannot inadvertently obtain the password by looking at the file. Cleartext authentication without key chains is
considered the "old style" password.

Cisco IOS supports IS-IS authentication on three levels: between neighbors, area-wide, and domain-wide.
The three authentication levels can be used by themselves or together. The rules for IS-IS authentication are

When authenticating between neighbors, the same password must be configured on the connecting
interfaces.

When authenticating between neighbors, authentication may be configured separately for L1 and L2
adjacencies.



When authenticating between neighbors, either clear text or MD5 may be used.

When performing area-wide authentication, every router in the area must use the same authentication
mode and must have a common key-string.

When performing domain-wide authentication, every L2 and L1/L2 router in the IS-IS domain must utilize
the same mode of authentication and must use a common key-string.

The steps for configuring authentication are the same as for RIPv2 and EIGRP. These steps are repeated
here:

Step 1. Define a key chain with a name.

Step 2. Define the key or keys on the key chain.

Step 3. Enable authentication on an interface or for the IS-IS instance at level-1 (area wide) or level-2
(domain wide), and specify the key chain to be used.

Step 4. Specify whether the interface or IS-IS instance level-1 or level-2 will use clear text or MD5
authentication.

Step 5. Optionally configure key management.

Authentication can be configured in the network without breaking adjacencies between routers. To
accomplish this, the command isis authentication send-only must first be applied to all routers that will use
authentication. This command is used on the interfaces to authenticate between neighbors and it is used
under the ISIS routing process to authenticate area-wide or domain-wide. The command is removed after
authentication is fully configured.

To authenticate between neighbors, the key chain is configured, the isis authentication key-chain
command references the preconfigured key chain, then the isis authentication mode command is used to
configure the type of authentication on the connected interfaces. L1 and L2 adjacencies may reference
different key chains. Neighboring routers must share a common key-string or password. The key chains for
either or both levels can be specified on an interface, and the key-strings for each level can be the same or
different. When configured, the key-strings are carried in authentication information TLVs in the L1 or L2
Hellos between IS-IS neighbors.

For example, to authenticate between Geneva, Zurich, and Madrid in Figure 10-53, the configurations are as
displayed in Example 10-32 through Example 10-34.

Example 10-32. Geneva's authentication configuration.

interface FastEthernet0/0
 ip address 172.16.4.1 255.255.255.0
 ip router isis
 isis password magic

Example 10-33. Zurich's authentication configuration.

key chain troll
 key 1
  key-string magic
key chain fairy
 key 1
  key-string dust



interface Ethernet0/0
 ip address 172.16.4.2 255.255.255.0
 ip router isis
 isis authentication mode text
 isis authentication key-chain troll level-1
!
interface Serial0/0.1 point-to-point
 ip address 172.16.8.2 255.255.255.0
 ip router isis
 isis authentication mode text
 isis authentication key-chain fairy level-2

Example 10-34. Madrid's authentication configuration.

key chain fairy
 key 1
  key-string dust
interface Serial0/0.1 point-to-point
 ip address 172.16.8.1 255.255.255.0
 ip router isis
 isis authentication mode text
 isis authentication key-chain fairy level-2

Since the adjacency between Geneva and Zurich is L1, only a level 1 key-chain reference is specified.
Between Zurich and Madrid, only an L2 adjacency exists, so a level 2 key-chain reference is used. Note that
if no level-1 or level-2 keyword is specified, the isis password, isis authentication mode and isis
authentication key-chain commands default to both L1 and L2.

Note Geneva's configuration. Geneva's interface connecting to Zurich is configured with the old style cleartext
password. The password must be the same as the key-string defined on Zurich for the adjacencies to
establish.[25]

[25] Passwords and/or key-strings must be identical between routers. They are case sensitive.
Also, spaces and other characters are part of the passwords. If configuration files are created off-
line, and pasted into the routers, be aware of trailing spaces.

To authenticate within an area, the isis authentication mode mode level-1 and isis authentication key-
chain name level-1 commands are used to define the authentication mode and to reference a key chain
under the IS-IS configuration. When the mode is text, the two commands together are used in place of the
old style area-password command. Whereas the key-string specified at the interface level by the isis
authentication command is carried in Hellos, the key-string specified by the level-1 authentication command
for the IS-IS process is carried in all L1 LSPs, CSNPs, and PSNPs. So the neighbor-level authentication
regulates the establishment of adjacencies, and the area-level authentication regulates the exchange of level
1 link-state information. If area authentication is not configured correctly, routers will still become adjacent but
L1 LSPs will not be exchanged.

To configure area passwords in area 3 of Figure 10-53, the configurations of Bonn and Frankfurt are as
displayed in Example 10-35 and Example 10-36.

Example 10-35. Bonn's area password configuration.

Key chain river
 Key 1
  Key-string Rhine



router isis
 net 03.0000.0c0a.2aa9.00
 authentication key-chain river level-1
 authentication mode text level-1
 summary-address 172.16.16.0 255.255.248.0

Example 10-36. Frankfurt's area password configuration.

router isis
 net 03.0000.0c04.dcc0.00
 is-type level-1
 area-password Rhine

Frankfurt's IOS does not support the new style authentication, so the area-password command is used.
Note that the password is the same as the key-string defined on Bonn.

To authenticate domain-wide, the authentication key-chain and authentication mode commands are used
with the level-2 keyword for the IS-IS process. These configuration commands are interoperable with the old
style command, domain-password. Both styles of commands cannot be configured on the same router
concurrently. The key-string defined in the key-chain referenced by these authentication commands is carried
in L2 LSPs, CSNPs, and PSNPs. As a result, domain authentication regulates the exchange of L2 route
information. Like area authentication, domain authentication does not authenticate L2 adjacencies, but does
authenticate the exchange of L2 LSPs.

To configure domain authentication in the network of Figure 10-53, only Zurich, Madrid, and Bonn must be
configured because Geneva and Frankfurt are L1 routers. The configurations are shown in Example 10-37
through Example 10-39.

Example 10-37. Zurich's domain authentication configuration.

key chain troll
 key 1
  key-string magic
key chain fairy
 key 1
  key-string dust
key chain forest
 key 1
  key-string Blackforest
interface Ethernet0/0
 ip address 172.16.4.2 255.255.255.0
 ip router isis
 isis authentication mode text
 isis authentication key-chain troll level-1
!
interface Serial0/0.1 point-to-point
 ip address 172.16.8.2 255.255.255.0
 ip router isis
 isis authentication mode text
 isis authentication key-chain fairy level-2
!
router isis
 authentication key-chain forest level-2



 authentication mode md5 level-2
 net 01.0000.0c76.5b7c.00
 summary-address 172.16.0.0 255.255.248.0

Example 10-38. Madrid's domain authentication configuration.

key chain fairy
 key 1
  key-string dust
key chain forest
 key 1
  key-string Blackforest
interface Serial0/0.1 point-to-point
 ip address 172.16.8.1 255.255.255.0
 ip router isis
 isis authentication mode text
 isis authentication key-chain fairy level-2
!
router isis
 net 02.0000.3090.6756.00
 is-type level-2-only
 authentication key-chain forest level-2
 authentication mode md5 level-2

Example 10-39. Bonn's domain authentication configuration.

key chain river
 key 1
  key-string Rhine
key chain forest
 key 1
  key-string Blackforest
!
router isis
 net 03.0000.0c0a.2aa9.00
 authentication key-chain river level-1
 authentication key-chain forest level-2
 authentication mode text level-1
 authentication mode md5 level-2
 summary-address 172.16.16.0 255.255.248.0

Case Study: A Basic Integrated IS-IS Configuration for IPv6

Integrated IS-IS computes a single SPF to create a single topology for both IPv4 and IPv6 (and CLNS). If both
IPv4 and IPv6 are configured on the network, all interfaces and all routers must be configured with both
protocols.

A link is added to the network in Figure 10-53, between Geneva and Madrid. Geneva is no longer an L1-only
router. IPv6 is added to the network also. The new addresses are shown in Figure 10-54. Integrated IS-IS is
already configured on the routers. To enable IS-IS for IPv6, enable IPv6 routing globally with the command
ipv6 unicast-routing, then enable IPv6 IS-IS on the interfaces. An IPv6 address and IPv6 IS-IS is added to
every interface with an IPv4 address. Geneva's new configuration is displayed in Example 10-40.



Figure 10-54. IS-IS for IPv6 is added to the network.
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Example 10-40. Geneva's IPv6 IS-IS configuration.

Hostname Geneva
ipv6 unicast-routing
!
interface FastEthernet0/0
 ip address 172.16.4.1 255.255.255.0
 ip router isis
 isis password magic
 ipv6 address 2001:db8:0:4::1/64
 ipv6 router isis
!
interface s 0/0.1 point-to-point
 ip address 172.16.21.1 255.255.255.0
 ip router isis
 ipv6 address 2001:db8:0:15::1/64
 ipv6 router isis
!
interface FastEthernet0/1
 ip address 172.16.1.1 255.255.255.0
 ipv6 address 2001:db8:0:1::1/64
 ip router isis
 ipv6 router isis
!
interface FastEthernet0/2
 ip address 172.16.2.1 255.255.255.0
 ipv6 address 2001:db8:0:2::1/64
 ip router isis
 ipv6 router isis
!
interface FastEthernet0/3
 ip address 172.16.3.1 255.255.255.0
 ipv6 address 2001:db8:0:3::1/64
 ip router isis
 ipv6 router isis
!
router isis
 net 01.0004.c150.f1c0.00



 authentication mode md5
 authentication key-chain forest

The IS-IS routing process has not been changed. An IPv6 address has been added to each interface and IS-
IS for IPv6 has been enabled on each interface. The other routers are configured similarly.

The IPv6 addresses in Figure 10-54 are summarized similarly to the IPv4 addresses. Zurich, Geneva, and
Bonn summarize the routes as they are advertised to the L2 routers. IPv6 addresses are summarized under
the global IS-IS routing process by specifying the IPv6 address family and configuring the address range to
be summarized (see Example 10-41 through Example 10-43).

Example 10-41. Zurich is summarizing IPv6 routes.

router isis
 address-family ipv6
 summary-prefix 2001:db8::/62

Example 10-42. Geneva is summarizing IPv6 routes.

router isis
 address-family ipv6
 summary-prefix 2001:db8::/62

Example 10-43. Bonn is summarizing IPv6 routes.

router isis
 address-family ipv6
 summary-prefix 2001:db8:0:10::/62

Example 10-44 shows Madrid's IPv6 route table, with Zurich's, Geneva's, and Bonn's summarized address
ranges.

Example 10-44. Madrid's IPv6 route table shows addresses summarized by Zurich, Geneva, and
Bonn.

Madrid#show ipv6 route
IPv6 Routing Table - 12 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
I2  2001:DB8::/62 [115/20]
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.3
I2  2001:DB8:0:4::/64 [115/20]
     via FE80::2B0:64FF:FE30:1DE0, Serial0/0.1
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.3
C   2001:DB8:0:8::/64 [0/0]
     via ::, Serial0/0.1
L   2001:DB8:0:8::1/128 [0/0]
     via ::, Serial0/0.1
C   2001:DB8:0:9::/64 [0/0]



     via ::, Serial0/0.2
L   2001:DB8:0:9::1/128 [0/0]
     via ::, Serial0/0.2
C   2001:DB8:0:15::/64 [0/0]
     via ::, Serial0/0.3
L   2001:DB8:0:15::2/128 [0/0]
     via ::, Serial0/0.3
I2  2001:DB8:0:10::/62 [115/20]
     via FE80::205:5EFF:FE6B:50A0, Serial0/0.2
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Madrid#

IPv4 and IPv6 share the same topology and, therefore, the same metric values. IPv6 TLVs use extended
metrics, but by default, IPv4 uses the narrow metric style with a maximum value of 63. The IPv6 metric is,
therefore, also limited to 63. The default value for each interface is 10. The metric style can be changed
using the metric-style command. The keywords wide, transition, or wide transition enable the router to
send or accept narrow- and wide-style metrics during network reconfiguration. The type of metric used can
be seen in the output of the command show clns protocol, displayed in Example 10-45.

Example 10-45. Zurich is configured to use the default narrow metric style.

Zurich#show clns protocol
IS-IS Router: <Null Tag>
  System Id: 0000.0C76.5B7C.00 IS-Type: level-1-2
  Manual area address(es):
        01
  Routing for area address(es):
        01
  Interfaces supported by IS-IS:
        Serial0/0.1 - IP - IPv6
        Ethernet0/0 - IP - IPv6
  Redistribute:
    static (on by default)
  Distance for L2 CLNS routes: 110
  RRR level: none
  Generate narrow metrics: level-1-2
  Accept narrow metrics:   level-1-2
  Generate wide metrics:   none
  Accept wide metrics:     none
Zurich#

As seen in Example 10-45, Zurich sends and accepts narrow metrics only. Notice that the metric style is not
specific for either IPv4 or IPv6.

Zurich's metric-style configuration is changed as in Example 10-46.

Example 10-46. Zurich is configured with the metric style in transition mode, accepting and sending
both wide and narrow metrics.

router isis
 metric-style transition
 address-family ipv6
  summary-prefix 2001:db8::/62



The keyword transition causes the router to send and accept wide metrics and narrow metrics. Example 10-
47 shows the results on Zurich.

Example 10-47. Both narrow and wide metrics are generated and accepted.

Zurich#show clns protocol
IS-IS Router: <Null Tag>
  System Id: 0000.0C76.5B7C.00 IS-Type: level-1-2
  Manual area address(es):
        01
  Routing for area address(es):
        01
  Interfaces supported by IS-IS:
        Serial0/0.1 - IP - IPv6
        Ethernet0/0 - IP - IPv6
  Redistribute:
    static (on by default)
  Distance for L2 CLNS routes: 110
  RRR level: none
  Generate narrow metrics: level-1-2
  Accept narrow metrics:   level-1-2
  Generate wide metrics:   level-1-2
  Accept wide metrics:     level-1-2
Zurich#

Case Study: Transition to Multiple Topology Mode

A problem has arisen in the network shown in Figure 10-54. Frankfurt's IOS does not support IPv6. When
IPv6 is configured on Bonn and the rest of the network, by default, IPv6 is added to the single IS-IS topology
that is created for each level for IPv4. Because a single topology exists for each level, and the topology is
shared by both IPv4 and IPv6, IPv4 and IPv6 must both be configured on each link and each router. If a single
topology is used, and both IPv4 and IPv6 are configured, every link that has an IPv4 address must also have
an IPv6 address. The problem can be seen on Bonn. When IPv6 was configured, the IS-IS adjacency with
Frankfurt failed. debug isis adj-packets, shown in Example 10-48, shows the problem with the IPv6
address.

Example 10-48. debug isis adj-packets shows an error with the IPv6 addressing in single topology
mode.

Bonn#debug is adj-packets fastethernet0/0
IS-IS Adjacency related packets debugging is on
Bonn#
ISIS-Adj: Sending L1 LAN IIH on FastEthernet0/0, length 1497
ISIS-Adj: Sending L2 LAN IIH on FastEthernet0/0, length 1497
ISIS-Adj: Rec L1 IIH from 0000.0c8d.34f1 (FastEthernet0/0), cir type L1, cir id
0000.0C0A.2AA9.01, length 1497
ISIS-Adj: No usable IPv6 linklocal addresses in LAN IIH from FastEthernet0/0

IOS supports multiple topology IS-IS in addition to the default single topology mode.[26] In single topology
mode, IPv4, IPv6, and CLNS share the same IS-IS topology. When multi-topology is configured, IOS supports
two topologies: one for IPv6, the other for IPv4 and CLNS. Individual SPF are computed for each topology.

[26] Multiple topology support is available in IOS 12.2(15)T, 12.2(18)S, 12.0(26)S, 12.3, 12.3(2)T,
and later.

As explained earlier in the section "Multiple Topologies," single topology IS-IS and multiple topology IS-IS use



different TLVs to exchange information. A router that does not support multi-topology will not interpret multi-
topology TLVs. A multi-topology router will process single-topology TLVs: If no multi-topology TLVs are
received over an adjacency, the receiving router assumes the neighbor to be part of the IPv4/CLNS topology.
This could be problematic when single topology mode and IPv6 are already configured in the network and
you want to migrate to multiple topologies. During the migration, areas of the IPv6 network could become
unreachable.

IOS provides a transition mode, in which both single topology and multi-topology TLVs are sent, but the
routers operate only in single topology mode. After all routers are configured, transition mode can be
removed.

The use of extended metrics, which are used in multi-topology TLVs, must be configured on the router before
multi-topology can be configured.

Multi-topology is configured in the network shown in Figure 10-54. All routers are first configured in transition
mode, with the configuration in Example 10-49.

Example 10-49. All routers in Figure 10-54 have this configuration.

router isis
 metric-style wide transition
 address-family ipv6
  multi-topology transition

Frankfurt does not support IPv6 or multi-topology mode. The only configuration change on Frankfurt is to
change to the wide metric-style. Since no multi-topology TLVs are sent from Frankfurt, the Frankfurt router
and its links remain part of the default IPv4 topology.

Two commands are needed to change from single topology mode to multi-topology mode: The first command
changes the metric style from narrow to wide, and the second command enables multi-topology mode. The
new topology shares the NET and the L1/L2 boundaries with the IPv4 topology.

The two different topologies can be seen on Bonn. Bonn's IS-IS IPv6 topology shows IPv6 paths to L1 routers
and L2 routers. There are two entries for L1 routers. One is for Bonn itself. The other is for Frankfurt. The
asterisks mean that there is no IPv6 path to this router, but a link does exist. Compare the IPv6 topology with
the IPv4 topology. Example 10-50 shows the output of show isis ipv6 topology and show isis topology.
The command show isis topology displays the default, IPv4 topology.

Example 10-50. The IPv4 topology and the IPv6 topology are displayed on the Bonn router.

Bonn#show isis ipv6 topology
IS-IS IPv6 paths to level-1 routers
System Id            Metric     Next-Hop             Interface   SNPA
Bonn                 --
Frankfurt            **
IS-IS IPv6 paths to level-2 routers
System Id            Metric     Next-Hop             Interface   SNPA
Bonn                 --
Zurich               20         Madrid               Se0/0.1     DLCI 171
Madrid               10         Madrid               Se0/0.1     DLCI 171
Geneva               20         Madrid               Se0/0.1     DLCI 171
Bonn#show isis topology
IS-IS paths to level-1 routers
System Id            Metric     Next-Hop             Interface   SNPA
Bonn                 --
Frankfurt            10         Frankfurt            Fa0/0       0000.0c8d.34f1
IS-IS paths to level-2 routers
System Id            Metric     Next-Hop             Interface   SNPA
Bonn                 --



Zurich               20         Madrid               Se0/0.1     DLCI 171
Madrid               10         Madrid               Se0/0.1     DLCI 171
Geneva               20         Madrid               Se0/0.1     DLCI 171
Bonn#

A single adjacency is formed over point-to-point links if at least one topology exists. The show clns is-
neighbors detail command in Example 10-51 shows that Bonn has one adjacency on Serial0/0.1 to Madrid,
but that two topologies share that adjacency, IPv4 and IPv6.

Example 10-51. A single adjacency is formed between Bonn and Madrid, shared by both the IPv4
and the IPv6 topologies.

Bonn#show clns is-neighbors detail
System Id      Interface   State  Type Priority  Circuit Id         Format
Madrid         Se0/0.1     Up     L2   0         00                 Phase V
  Area Address(es): 03
  IP Address(es):  172.16.9.1*
  IPv6 Address(es): FE80::204:C1FF:FE50:E700
  Uptime: 00:23:14
  NSF capable
  Topology: IPv4, IPv6
Frankfurt      Fa0/0       Up     L1   64        Bonn.01            Phase V
  Area Address(es): 03
  IP Address(es): 172.16.19.2*
  Uptime: 00:23:17
Bonn#

Case Study: Route Leaking Between Levels

Recall that when an L1/L2 router sends its L1 LSP into an area, it signals other L1 routers that it can reach
another area by setting the Attached (ATT) bit in the LSP. The L1 routers forward packets to the nearest L2
router (measured as the least cost path to a router with the ATT bit set) when forwarding packets out of the
area.

Consider the network in Figure 10-55. In area 1, both Prague and Bucharest are L1/L2 routers. They both set
the ATT bit on L1 updates sent to Belgrade and Zagreb, both L1 routers. Example 10-52 is a display of
Belgrade's IS database.

Figure 10-55. A network with multiple L1/L2 routers in area 1 could result in inefficient routing from
area 1 to other areas.

[View full size image]



Example 10-52. The IS-IS database of an L1 router in area 1 shows two L1/L2 routers with the ATT
bit set.

Belgrade#show is database
IS-IS Level-1 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Bucharest.00-00       0x00000052   0xE802        1104              1/0/0
Prague.00-00          0x00000052   0xEDC1        1099              1/0/0
Zagreb.00-00          0x0000003B   0x13A5        1076              0/0/0
Belgrade.00-00      * 0x00000050   0x5EC1        485               0/0/0
Belgrade#

Belgrade's IS-IS database shows all routers in area 1. Prague and Bucharest are both L1/L2 routers and,
therefore, have set the ATT bit. Recall that L1 routers use the closest L1/L2 router to forward traffic out of the
area. Both L1/L2 routers are equal distance to Belgrade. Belgrade's IPv4 route table (Example 10-53) and
IPv6 route table (Example 10-54) show that the both Bucharest and Prague will be used to forward traffic out
of the area.

Example 10-53. The IPv4 route table on the L1 router Belgrade shows two paths out of the area,
indicated by two default routes.

Belgrade#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is 172.16.5.1 to network 0.0.0.0
     172.16.0.0/24 is subnetted, 8 subnets
C       172.16.21.0 is directly connected, Serial0/0.1
i L1    172.16.22.0 [115/20] via 172.16.21.2, Serial0/0.1
i L1    172.16.8.0 [115/20] via 172.16.4.2, Serial0/0.2
                   [115/20] via 172.16.5.1, Serial0/0.3
i L1    172.16.9.0 [115/20] via 172.16.5.1, Serial0/0.3
i L1    172.16.10.0 [115/20] via 172.16.21.2, Serial0/0.1
i L1    172.16.11.0 [115/20] via 172.16.21.2, Serial0/0.1
                    [115/20] via 172.16.5.1, Serial0/0.3
C       172.16.4.0 is directly connected, Serial0/0.2
C       172.16.5.0 is directly connected, Serial0/0.3
i*L1 0.0.0.0/0 [115/10] via 172.16.5.1, Serial0/0.3
               [115/10] via 172.16.21.2, Serial0/0.1
Belgrade#

Example 10-54. The IPv6 route table on the L1 router Belgrade shows two paths out of the area,
indicated by two default routes.

Belgrade#show ipv6 route
IPv6 Routing Table - 9 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2



I1  ::/0 [115/10]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.3
C   2001:DB8:0:5::/64 [0/0]
     via ::, Serial0/0.3
L   2001:DB8:0:5::2/128 [0/0]
     via ::, Serial0/0.3
I1  2001:DB8:0:B::/64 [115/20]
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.3
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
C   2001:DB8:0:15::/64 [0/0]
     via ::, Serial0/0.1
L   2001:DB8:0:15::1/128 [0/0]
     via ::, Serial0/0.1
I1  2001:DB8:0:16::/64 [115/20]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Belgrade#

As you can see in Example 10-53 and Example 10-54, only L1 routes are in Belgrade's route table. All
addresses outside of the area follow the path indicated by the default route. The default routes (IPv4:
0.0.0.0/0, IPv6: ::/0) show two next-hop addresses, one via Bucharest (S0/0.3) and one via Prague (S0/0.1).

172.16.23.0/24 and 2001:db8:0:17::/64 are addresses connected to the Warsaw router, in area 3. The best
path for Belgrade to take to these addresses is via Prague. However, because both Bucharest and Prague
are equal distance L1/L2 routers, Belgrade will load share between the L1/L2 routers when sending traffic to
172.16.23.0/24 or 2001:db8:0:17::/64. Half of the traffic will take the optimal path, the other half will take a
longer path. Example 10-55 shows Belgrade pinging 172.16.23.1 and recording the route. One route is via
Bucharest (172.16.11.2), the other is via Prague (172.16.22.2).

Example 10-55. Ping with the record route option shows the round trip path a packet takes from
Belgrade to Warsaw.

Belgrade#ping
Protocol [ip]:
Target IP address: 172.16.23.1
Extended commands [n]: y
Loose, Strict, Record, Timestamp, Verbose[none]: r
Loose, Strict, Record, Timestamp, Verbose[RV]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.23.1, timeout is 2 seconds:
<...>Reply to request 0 (416 ms).  Received packet has options
 Total option bytes= 40, padded length=40
 Record route:
   (172.16.5.2)
   (172.16.11.2)
   (172.16.22.2)
   (172.16.23.1)
   (172.16.22.1)
   (172.16.21.2)
   (172.16.5.2) <*>
   (0.0.0.0)
   (0.0.0.0)
 End of list
Reply to request 1 (216 ms).  Received packet has options
 Total option bytes= 40, padded length=40
 Record route:
   (172.16.21.1)
   (172.16.22.2)



   (172.16.23.1)
   (172.16.22.1)
   (172.16.21.2)
   (172.16.21.1) <*>
   (0.0.0.0)
   (0.0.0.0)
   (0.0.0.0)
End of list

The path that the traffic takes from Belgrade to 172.16.23.0 can be controlled by advertising the address to
the L1 routers in area 1. This advertising of L2 routes to L1 router is called route leaking. The downside of
route leaking is that the L1 router needs to keep track of additional addresses and paths to those addresses.

Route leaking is configured by creating a list containing the addresses to be advertised into the area, and
then configuring the distribution of this list to the L1 routers. Prague's configuration is displayed in Example
10-56.

Example 10-56. Prague is configured to leak routes L2 routes into the L1 area.

access-list 100 permit ip 172.16.23.0 0.0.0.255 any
ipv6 prefix-list warsaw seq 5 permit 2001:DB8:0:17::/64
router isis
 redistribute isis ip level-2 into level-1 distribute-list 100
 address-family ipv6
  redistribute isis level-2 into level-1 distribute-list warsaw
 exit-address-family

The access list number 100 defines the IPv4 addresses to be advertised and the prefix-list named warsaw
defines the IPv6 addresses to be advertised. The redistribute isis ip command looks for L2 IPv4 addresses
that match the list 100 and advertises them to L1 routers within the area. The redistribute isis command
listed under the address-family ipv6 command looks for L2 IPv6 addresses that match those defined in the
prefix-list named warsaw, and advertises them to the L1 area. Access-lists are discussed in Appendix B, and
route redistribution is discussed in more detail in Chapter 11.

Leaked routes are advertised the same way as other addresses: in type 128, 130, or 135 IPv4 Reachability
TLVs, and type 236 and 237 IPv6 Reachability TLVs. TLV 128 and 130 are used with narrow-type metrics,
and 135 is used with wide metrics. To distinguish leaked routes from other connected IP routes or external IP
routes an Up/Down bit is defined, as discussed previously in the section "Domain-Wide Prefix Distribution." If
the Up/Down bit is set to 0, the route originated in this L1 area. If the Up/Down bit is set to 1, the route was
leaked from L2. Setting this bit helps keeps route loops from occurring. A L1/L2 router will not advertise an L1
address that has the Up/Down bit set to another L2 router.

A route that was leaked into L1 is identifiable in the route table and in the IS-IS database. Example 10-57 and
Example 10-58 display Belgrade's IPv4 and IPv6 route tables, respectively, and Example 10-59 displays
Belgrade's IS-IS database.

Example 10-57. The leaked address in the route table is identified as an "ia" route, or inter-area
route.

Belgrade#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is 172.16.5.1 to network 0.0.0.0



Gateway of last resort is 172.16.5.1 to network 0.0.0.0
     172.16.0.0/24 is subnetted, 9 subnets
C       172.16.21.0 is directly connected, Serial0/0.1
i L1    172.16.22.0 [115/20] via 172.16.21.2, Serial0/0.1
i ia    172.16.23.0 [115/30] via 172.16.21.2, Serial0/0.1
i L1    172.16.8.0 [115/20] via 172.16.4.2, Serial0/0.2
                   [115/20] via 172.16.5.1, Serial0/0.3
i L1    172.16.9.0 [115/20] via 172.16.5.1, Serial0/0.3
i L1    172.16.10.0 [115/20] via 172.16.21.2, Serial0/0.1
i L1    172.16.11.0 [115/20] via 172.16.21.2, Serial0/0.1
                    [115/20] via 172.16.5.1, Serial0/0.3
C       172.16.4.0 is directly connected, Serial0/0.2
C       172.16.5.0 is directly connected, Serial0/0.3
i*L1 0.0.0.0/0 [115/10] via 172.16.5.1, Serial0/0.3
               [115/10] via 172.16.21.2, Serial0/0.1
Belgrade#

Example 10-58. The leaked IPv6 address in the route table is identified as "IA," inter-area.

Belgrade#show ipv6 route
IPv6 Routing Table - 10 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
I1  ::/0 [115/10]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.3
C   2001:DB8:0:5::/64 [0/0]
     via ::, Serial0/0.3
L   2001:DB8:0:5::2/128 [0/0]
     via ::, Serial0/0.3
I1  2001:DB8:0:B::/64 [115/20]
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.3
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
C   2001:DB8:0:15::/64 [0/0]
     via ::, Serial0/0.1
L   2001:DB8:0:15::1/128 [0/0]
     via ::, Serial0/0.1
I1  2001:DB8:0:16::/64 [115/20]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
IA  2001:DB8:0:17::/64 [115/30]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Belgrade#

Example 10-59. The leaked address in the IS-IS database is identified as an IP-inter-area address.

Belgrade#show is database Prague.00-00 detail l1
IS-IS Level-1 LSP Prague.00-00
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Prague.00-00          0x0000006D   0x7A37        655               1/0/0
  Area Address: 01
  Topology:     IPv4 (0x0) IPv6 (0x4002 ATT)
  NLPID:        0xCC 0x8E
  Hostname: Prague
  IP Address:   172.16.11.1



  Metric: 10         IP 172.16.22.0/24
  Metric: 10         IP 172.16.21.0/24
  Metric: 10         IP 172.16.10.0/24
  Metric: 10         IP 172.16.11.0/24
  IPv6 Address: 2001:DB8:0:15::2
  Metric: 10         IPv6 (MT-IPv6) 2001:DB8:0:16::/64
  Metric: 10         IPv6 (MT-IPv6) 2001:DB8:0:15::/64
  Metric: 10         IPv6 (MT-IPv6) 2001:DB8:0:B::/64
  Metric: 10         IS-Extended Belgrade.00
  Metric: 10         IS-Extended Bucharest.00
  Metric: 10         IS (MT-IPv6) Belgrade.00
  Metric: 10         IS (MT-IPv6) Bucharest.00
  Metric: 20         IP-Interarea 172.16.23.0/24
  Metric: 20         IPv6-Interarea (MT-IPv6) 2001:DB8:0:17::/64
Belgrade#

The route tables display the IPv4 and IPv6 routes as IS-IS inter-area routes, designated by the type "ia" for
IPv4 and "IA" for IPv6. The database entry for the router that originated the leak shows the addresses as IP-
Interarea and IPv6-Interarea.

Case Study: Multiple L1 Areas Active on a Router

IOS supports the ability to have multiple, active, L1 areas on a single router: Up to 29 L1 areas can be
configured, but only one L2 area. By default, the first configured IS-IS routing process defines the L2 area. It
can also define a single L1 area. To enable additional L1 areas on the router, additional IS-IS routing
processes are defined. Routers within each of the configured L1 areas can communicate together via this
L1/L2 router. Because each area does not have to have a unique L1/L2 router to reach the rest of the
network, the number of L1/L2 routers is minimized.

In the network of Figure 10-55, Warsaw is in area 3. The Warsaw router is an L1/L2 router for the area. The
only connection from Warsaw to the rest of the network is via Prague. Prague's configuration is modified so
that Prague becomes the L2 router for both areas 1 and 3. Prague's new configuration is displayed in
Example 10-60.

Example 10-60. Prague is configured with multiple L1 areas.

router isis
 net 01.0004.c150.e700.00
 metric-style wide
 address-family ipv6
  multi-topology
router isis three
 net 03.0004.c150.e700.00
 metric-style wide
 address-family ipv6
  multi-topology
interface Serial0/0.1 point-to-point
 description Warsaw
 ip address 172.16.22.2 255.255.255.0
 ipv6 address 2001:db8:0:16::2/64
 ip router isis three
 ipv6 router isis three

The second IS-IS routing process is called "three." IS-IS three is assigned to the interface connecting Prague
to Warsaw, interface Serial 0/0.1. IS-IS "three" is automatically configured as a L1 area, as seen by the show
clns neighbor command on Prague (Example 10-61).



Example 10-61. Multiple L1 areas are configured on Prague.

Prague#show clns neighbor
Area null:
System Id      Interface   SNPA                 State  Holdtime  Type Protocol
Budapest       Se0/0.3     DLCI 115             Up     24        L2   IS-IS
Belgrade       Se0/0.2     DLCI 116             Up     26        L1   M-ISIS
Bucharest      Se0/0.4     DLCI 113             Up     22        L1L2 M-ISIS
Area three:
System Id      Interface   SNPA                 State  Holdtime  Type Protocol
Warsaw         Se0/0.1     DLCI 117             Up     28        L1   M-ISIS
Prague#

Warsaw can now be configured as a L1 router, because all its neighbors exist in area 3 (see Example 10-62).
In this simple network, this step is not needed because Warsaw's only connection outside area 3 is to
Prague, which only uses L1 communication with Warsaw. This step might be desired in larger networks, to
ensure that Warsaw does not attempt L2 connections to other routers.

Example 10-62. Warsaw is configured as an L1 router.

router isis
 is-type level-1

Example 10-63 shows Warsaw's IS-IS database and the route table as a L1/L2 router. Example 10-64 shows
the same tables with Warsaw as a L1 router.

Example 10-63. Warsaw's database includes entries for area 3 routers and all L2 routers.

Warsaw#show is database
IS-IS Level-1 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Prague.00-00          0x0000000A   0x08B1        1048              1/0/0
Warsaw.00-00        * 0x00000075   0x3D13        1085              1/0/0
IS-IS Level-2 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Bucharest.00-00       0x0000007A   0x59D0        1060              0/0/0
Prague.00-00          0x00000090   0x433A        1078              0/0/0
Warsaw.00-00        * 0x00000001   0xA828        1080              0/0/0
Budapest.00-00        0x00000073   0xFE95        344               0/0/0
Budapest.01-00        0x00000066   0xFF8B        444               0/0/0
Warsaw#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/24 is subnetted, 10 subnets
i L2    172.16.21.0 [115/20] via 172.16.22.2, Serial0/0.1
C       172.16.22.0 is directly connected, Serial0/0.1
C       172.16.23.0 is directly connected, FastEthernet0/0
i L2    172.16.12.0 [115/30] via 172.16.22.2, Serial0/0.1
i L2    172.16.8.0 [115/30] via 172.16.22.2, Serial0/0.1
i L2    172.16.9.0 [115/30] via 172.16.22.2, Serial0/0.1
i L2    172.16.10.0 [115/20] via 172.16.22.2, Serial0/0.1
i L2    172.16.11.0 [115/20] via 172.16.22.2, Serial0/0.1



i L2    172.16.4.0 [115/30] via 172.16.22.2, Serial0/0.1
i L2    172.16.5.0 [115/30] via 172.16.22.2, Serial0/0.1
Warsaw#

Example 10-64. Warsaw's database includes only area 3 routers and links, and its route tables
contain only a default route for addresses not in area 3.

Warsaw#show is database
IS-IS Level-1 Link State Database:
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Prague.00-00          0x00000009   0x2BDF        923               1/0/0
Warsaw.00-00        * 0x00000073   0x6CF3        924               0/0/0
Warsaw#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is 172.16.22.2 to network 0.0.0.0
     172.16.0.0/24 is subnetted, 2 subnets
C       172.16.22.0 is directly connected, Serial0/0.1
C       172.16.23.0 is directly connected, FastEthernet0/0
i*L1 0.0.0.0/0 [115/10] via 172.16.22.2, Serial0/0.1
Warsaw#

When Warsaw was the L1/L2 router for area 3, the IS database contained entries for each router in area 3
and entries for each L2 router and all the addresses those L2 routers could reach. The route table contained
entries for every reachable address in the network. As an L1 router, Warsaw has reduced the size of its IS-IS
database and its route table significantly.



Troubleshooting Integrated IS-IS

The basic methods for troubleshooting IS-IS are very similar to the methods for troubleshooting OSPF, as discussed in
Chapter 8. A major aspect of troubleshooting Integrated IS-IS that is different from the other IP routing protocols is that IS-IS
uses CLNS PDUs rather than IP packets. If you are troubleshooting the protocol itself, remember that you are
troubleshooting CLNS, not IP.

As with all routing protocols, the first troubleshooting step is to check the route table for accurate information. If an expected
route entry is missing or incorrect, the remainder of the troubleshooting task is to determine the source of the problem.

After the route table, the link-state database is the most important source of troubleshooting information. As recommended
in Chapter 8, it is good practice to keep a copy of the L1 link-state database for every area, and a copy of the L2 link-state
database. These stored copies of the databases should be updated regularly, as part of your routine baselining
procedures. When things go wrong, these stored databases provide a steady-state reference.

When examining an individual router's configuration, consider the following:

Does the net statement under the IS-IS configuration specify the correct NET? Are the Area ID and System ID correct
for this router? Does the NET comply with whatever CLNS addressing convention is being used in this network?

Is IS-IS enabled on the correct interfaces with the ip router isis or ipv6 router isis command?

Are the IP addresses and subnet masks or prefixes correct? It is doubly important to check these in an Integrated IS-IS
environment because a misconfigured IP address will not prevent an IS-IS adjacency from being partially established.

Troubleshooting IS-IS Adjacencies

The command show clns is-neighbors displays the IS-IS neighbor table. The entire table is displayed by default, or you
can specify a particular interface. From this table, you can observe whether all expected neighbors are present and
whether they are the correct type. For more information, such as the area addresses and IP addresses associated with
each neighbor and the uptime of each neighbor, use the show clns is-neighbors detail command.

When examining adjacencies, consider the following:

Are the router levels configured correctly? L1 routers can establish adjacencies only with L1 and L1/L2 routers, and L2
routers can establish adjacencies only with L2 and L1/L2 routers.

Are Hellos being sent from both neighbors? Are the Hellos the correct level, and do they contain the correct
parameters? The command debug isis adj-packets is useful for observing Hellos.

If authentication is being used, are the passwords and authentication mode the same between neighbors? Remember
that area (level 1) and domain (level 2) authentication do not regulate adjacencies, only the exchange of LSPs.

Are any access lists blocking IS-IS or CLNS?

A change has been made on the router Bonn in Figure 10-54. Bonn and Frankfurt are no longer accessible via IPv4 from
other locations. A look at Bonn's IPv4 route table (Example 10-65) shows that there are no IP routes learned via Madrid
(interface Serial0/0.1).

Example 10-65. Bonn's IPv4 route table shows IS-IS learned routes from Frankfurt on FA0/0, but nothing from
Madrid on Serial0/0.1.

Bonn#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/16 is variably subnetted, 8 subnets, 2 masks
C       172.16.24.0/24 is directly connected, Loopback1
C       172.16.25.0/24 is directly connected, Loopback2
i L1    172.16.16.0/24 [115/20] via 172.16.19.2, FastEthernet0/0
i su    172.16.16.0/21 [115/10] via 0.0.0.0, Null0
i L1    172.16.17.0/24 [115/20] via 172.16.19.2, FastEthernet0/0
i L1    172.16.18.0/24 [115/20] via 172.16.19.2, FastEthernet0/0



C       172.16.19.0/24 is directly connected, FastEthernet0/0
C       172.16.9.0/24 is directly connected, Serial0/0.1
Bonn#

The command show clns is-neighbors shows an adjacency exists from Bonn to Madrid (Example 10-66). However, notice
Madrid's type is IS rather than L1 or L2. This indicates a problem with the adjacency. debug isis adj-packets gives a hint
as to where the problem exists (Example 10-67).

Example 10-66. Bonn's CLNS IS-IS neighbor table shows an adjacency exists to Madrid and to Frankfurt, but
there is something wrong with the Madrid adjacency.

Bonn#show clns is-neighbors
System Id      Interface   State  Type Priority  Circuit Id          Format
Madrid         Se0/0.1     Up     IS   0         00                  Phase V
Frankfurt      Fa0/0       Up     L1   64        Bonn.03             Phase V
Bonn#

Example 10-67. The details of IS-IS Hellos (IIHs) can be observed with the debug isis adj-packets command. This
display is from router Bonn in Figure 10-54 and shows that there is a problem with the IP address on Serial0/0.1.

Bonn#debug isis adj-packets
IS-IS Adjacency related packets debugging is on
Bonn#
ISIS-Adj: Sending serial IIH on Serial0/0.1, length 1499
ISIS-Adj: Rec serial IIH from DLCI 171 (Serial0/0.1), cir type L2, cir id 01, length 1499
ISIS-Adj: No usable IP interface addresses in serial IIH from Serial0/0.1
ISIS-Adj: Sending L1 LAN IIH on FastEthernet0/0, length 1497
ISIS-Adj: Sending L2 LAN IIH on FastEthernet0/0, length 1497
ISIS-Adj: Sending L1 LAN IIH on FastEthernet0/0, length 1497
ISIS-Adj: Rec L1 IIH from 0000.0c8d.34f1 (FastEthernet0/0), cir type L1, cir id
0000.0C0A.2AA9.03, length 1497

Reviewing the IPv4 addresses on Bonn shows that the IP address on Serial0/0.1 have been inadvertently changed. IOS
checks the addresses in the TLVs before establishing adjacencies. If the IPv4 address in the Interface Address TLV, 132,
does not belong to the same subnet as the receiving interface, an adjacency is formed, but the type of the adjacency will
be IS rather then L1 or L2, indicating that there is a problem with the configuration affecting the adjacency. After correcting
the problem, Bonn's CLNS IS neighbor table (Example 10-68) and IPv4 route table look good.

Example 10-68. A problem free CLNS neighbor table shows the adjacency type is L1, L2, or L1/L2. Bonn's route
table shows IP routes from both adjacent neighbors.

Bonn#show clns is-neighbors
System Id      Interface   State  Type Priority  Circuit Id         Format
Madrid         Se0/0.1     Up     L2   0         00                 Phase V
Madrid         Fa0/0       Up     L1   64        Bonn.03            Phase V
Bonn#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/16 is variably subnetted, 11 subnets, 2 masks
C       172.16.24.0/24 is directly connected, Loopback1
C       172.16.25.0/24 is directly connected, Loopback2
i L2    172.16.21.0/24 [115/20] via 172.16.9.1, Serial0/0.1
i L1    172.16.16.0/24 [115/20] via 172.16.19.2, FastEthernet0/0
i su    172.16.16.0/21 [115/10] via 0.0.0.0, Null0
i L1    172.16.17.0/24 [115/20] via 172.16.19.2, FastEthernet0/0
i L1    172.16.18.0/24 [115/20] via 172.16.19.2, FastEthernet0/0
C       172.16.19.0/24 is directly connected, FastEthernet0/0
i L2    172.16.8.0/24 [115/20] via 172.16.9.1, Serial0/0.1



C       172.16.9.0/24 is directly connected, Serial0/0.1
i L2    172.16.0.0/21 [115/30] via 172.16.9.1, Serial0/0.1
Bonn#

The output from the command debug isis adj-packets performed on a problem free Bonn is shown in Example 10-69.
Information is being received over Serial0/0.1.

Example 10-69. The details of IS-IS Hellos (IIHs) are observed on a correctly configured router, Bonn.

Bonn#debug isis adj-packets
IS-IS Adjacency related packets debugging is on
Bonn#
ISIS-Adj: Sending L1 LAN IIH on FastEthernet0/0, length 1497
ISIS-Adj: Sending L2 LAN IIH on FastEthernet0/0, length 1497
ISIS-Adj: Rec L1 IIH from 0000.0c8d.34f1 (FastEthernet0/0), cir type L1, cir id
0000.0C0A.2AA9.03, length 1497
ISIS-Adj: Rec serial IIH from DLCI 171 (Serial0/0.1), cir type L2, cir id 01, length 1499
ISIS-Adj: Local mode (IP, IPv6), remote mode (IP, IPv6)
ISIS-Adj: rcvd state UP, old state UP, new state UP
ISIS-Adj: Action = ACCEPT
ISIS-Adj: Sending L1 LAN IIH on FastEthernet0/0, length 1497l
ISIS-Adj: Sending serial IIH on Serial0/0.1, length 1499
Bonn#

A similar adjacency problem exists with IPv6 in single topology mode, if IPv6 is not configured on every link that is
configured with IPv4. When the network in Figure 10-54 was configured with IPv6 in single topology mode, a problem arose
between Bonn and Frankfurt. Frankfurt does not support IPv6. Example 10-48 shows the output from the debug is adj-
packets on Bonn. The debug's output shows that there is a problem with the link-local address: "No usable IPv6 linklocal
addresses in LAN IIH from FastEthernet0/0." IOS on Bonn checks for valid addresses and address families before
establishing adjacencies. In single topology mode, if both IPv4 and IPv6 are configured on the router, every link that has an
IPv4 address must also have an IPv6 address, every link that has an IPv6 address must also have an IPv4 address, and
neighbor routers must also have valid IPv4 and IPv6 addresses. TLV 232 contains the IPv6 Link Local address in Hello
packets. If in single topology mode, a neighbor router does not include a valid IPv6 link-local address in its hello packets,
the adjacency will be formed as a type IS (again, indicating a problem with the configuration).

There is an IS-IS process configuration command, log-adjacency-changes. This command will log all adjacency changes
to the log, whether buffered or sent to a log server. Perusing the log is very useful for troubleshooting adjacency problems
that occurred at some time in the past.

Troubleshooting the IS-IS Link-State Database

The IS-IS link-state database is examined with the command show isis database. If the router is an L1/L2, both of the
databases are displayed by default. To observe only one of the databases, use the level-1 or level-2 keywords. To
examine the LSPs in more detail, use the detail keyword. A single LSP can be observed by specifying its LSPID, as in
Example 10-70.

Example 10-70. This LSP is from the L2 database of router Zurich in Figure 10-54.

Zurich#show isis database detail Madrid.00-00
IS-IS Level-2 LSP Madrid.00-00
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Madrid.00-00          0x0000007C   0x5874        1023              0/0/0
  Auth:         Length: 17
  Area Address: 03
  Topology:     IPv4 (0x0) IPv6 (0x2)
  NLPID:        0xCC 0x8E
  Hostname: Madrid
  IP Address: 172.16.21.2
  IPv6 Address: 2001:DB8:0:15::2
  Metric: 10         IS-Extended Zurich.00
  Metric: 10         IS-Extended Bonn.00
  Metric: 10         IS-Extended Geneva.00
  Metric: 10         IS (MT-IPv6) Zurich.00
  Metric: 10         IS (MT-IPv6) Bonn.00
  Metric: 10         IS (MT-IPv6) Geneva.00
  Metric: 10         IP 172.16.21.0/24



  Metric: 10         IP 172.16.8.0/24
  Metric: 10         IP 172.16.9.0/24
  Metric: 10         IPv6 (MT-IPv6) 2001:DB8:0:8::/64
  Metric: 10         IPv6 (MT-IPv6) 2001:DB8:0:9::/64
  Metric: 10         IPv6 (MT-IPv6) 2001:DB8:0:15::/64
Zurich#

A sequence number that is noticeably higher than the sequence numbers of other LSPs might indicate instability either
within the area or on the level 2 backbone. Another hint of instability is an LSP Holdtime that never gets very small. If
instability is suspected, use the command show isis spf-log to list all SPF calculations recently performed by the router.

In Example 10-71, the SPF log for router Geneva in Figure 10-54 is shown. Nothing but the periodic SPF calculations
triggered by the 15-minute database refreshes are shown until approximately three minutes before the log was displayed.
At that time, frequent SPF calculations began occurring, indicating frequent changes of some sort in the network.[27]

[27] The first four triggering events were caused by "bouncing" Zurich's serial interface several times, and the
next three events were caused by deleting and then misconfiguring the link password. The last event was caused
when the correct password was configured.

Example 10-71. This SPF log reveals instability in area 1 of Figure 10-54.

Geneva#sh isis spf-log
     Level 1 SPF log
   When      Duration   Nodes   Count    Last trigger LSP     Triggers
02:43:09          12       3       1                         PERIODIC
02:28:08          12       3       1                         PERIODIC
02:13:06          12       3       1                         PERIODIC
01:58:05          12       3       1                         PERIODIC
01:43:03          12       3       1                         PERIODIC
01:28:02          12       3       1                         PERIODIC
01:13:00          12       3       1                         PERIODIC
00:57:59          12       3       1                         PERIODIC
00:42:58          12       3       1                         PERIODIC
00:27:56          12       3       1                         PERIODIC
00:12:55          12       3       1                         PERIODIC
00:03:08          8        3       1   0000.0C76.5B7C.00-00  LSPHEADER
00:02:35          8        3       1   0000.0C76.5B7C.00-00  LSPHEADER
00:02:23          8        3       1   0000.0C76.5B7C.00-00  LSPHEADER
00:01:50          8        3       1   0000.0C76.5B7C.00-00  LSPHEADER
00:01:14          4        1       1   0000.0C0A.2C51.00-00  TLVCONTENT
00:00:46          4        2       2   0000.0C0A.2C51.04-00  NEWLSP TLVCONTENT
00:00:20          4        1       3   0000.0C0A.2C51.00-00  NEWADJ TLVCONTENT
00:00:08          8        3       1   0000.0C76.5B7C.02-00  TLVCONTENT
Geneva#

To further investigate instabilities revealed by the SPF log, three useful debug commands are available. Example 10-72,
Example 10-73, and Example 10-74 show output from these three debug functions. In each case, the debug messages
show the results of disconnecting and reconnecting the serial interface of Bonn in Figure 10-54 from the perspective of
Frankfurt. The first, debug isis spf-triggers (Example 10-72), displays messages pertaining to events that trigger an SPF
calculation. The second command is debug isis spf-events (Example 10-73). This command displays a detailed account
of the SPF calculations caused by a triggering event. The third command, debug isis spf-statistics (Example 10-74),
displays information about the SPF calculation itself. Of particular interest is the time taken to complete the calculation,
which can reveal performance problems on the router.

Example 10-72. debug isis spf-triggers displays messages about events that trigger an SPF calculation.

Frankfurt#debug isis spf-triggers
IS-IS SPF triggering events debugging is on
Frankfurt#
ISIS-Spf: L1, LSP fields changed 0000.0C0A.2AA9.00-00
ISIS-Spf: L1, LSP fields changed 0000.0C0A.2AA9.00-00
Frankfurt#



Example 10-73. debug isis spf-events displays the details of an SPF calculation.

Frankfurt#debug isis spf-events
IS-IS SPF events debugging is on
Frankfurt#
ISIS-Spf: L1 LSP 4 (0000.0C0A.2AA9.00-00) flagged for recalculation from 37D73FA
ISIS-Spf: Calculating routes for L1 LSP 4 (0000.0C0A.2AA9.00-00)
ISIS-Spf: Add 172.16.19.0/255.255.255.0 to IP RIB, metric 20
ISIS-Spf: Next hop 0000.0C0A.2AA9/172.16.19.1 (Ethernet0) (rejected)
ISIS-Spf: Redundant IP route 172.16.24.0/255.255.255.0, metric 20, not added
ISIS-Spf: Redundant IP route 172.16.25.0/255.255.255.0, metric 20, not added
ISIS-Spf: Aging L1 LSP 4 (0000.0C0A.2AA9.00-00), version 105
ISIS-Spf: Aging IP 172.16.9.0/255.255.255.0, next hop 172.16.19.1
ISIS-Spf: Deleted NDB
ISIS-Spf:  Compute L1 SPT
ISIS-Spf: 3 nodes for level-1
ISIS-Spf: Move 0000.0C8D.34F1.00-00 to PATHS, metric 0
ISIS-Spf: Add 0000.0C0A.2AA9.03-00 to TENT, metric 10
ISIS-Spf: Move 0000.0C0A.2AA9.03-00 to PATHS, metric 10
ISIS-Spf: thru 0/2147483647/0, delay 0/0/0, mtu 0/2147483647/0, hops 0/0/0, ticks
0/0/0
ISIS-Spf: considering adj to 0000.0C0A.2AA9 (Ethernet0) metric 10, level 1, circuit
3, adj 1
ISIS-Spf:   (accepted)
ISIS-Spf: Add 0000.0C0A.2AA9.00-00 to TENT, metric 10
ISIS-Spf:   Next hop 0000.0C0A.2AA9 (Ethernet0)
ISIS-Spf: Move 0000.0C0A.2AA9.00-00 to PATHS, metric 10
ISIS-Spf: Add 172.16.19.0/255.255.255.0 to IP RIB, metric 20
ISIS-Spf: Next hop 0000.0C0A.2AA9/172.16.19.1 (Ethernet0) (rejected)
ISIS-Spf: Redundant IP route 172.16.24.0/255.255.255.0, metric 20, not added
ISIS-Spf: Redundant IP route 172.16.25.0/255.255.255.0, metric 20, not added
ISIS-Spf: Aging L1 LSP 2 (0000.0C8D.34F1.00-00), version 101
ISIS-Spf: Aging L1 LSP 3 (0000.0C0A.2AA9.03-00), version 99
ISIS-Spf: Aging L1 LSP 4 (0000.0C0A.2AA9.00-00), version 106
ISIS-Spf: Remove stale 0/0 from IP RIB
ISIS-Spf: L1 LSP 4 (0000.0C0A.2AA9.00-00) flagged for recalculation from 37D73FA
ISIS-Spf: Calculating routes for L1 LSP 4 (0000.0C0A.2AA9.00-00)
ISIS-Spf: Add 172.16.19.0/255.255.255.0 to IP RIB, metric 20
ISIS-Spf: Next hop 0000.0C0A.2AA9/172.16.19.1 (Ethernet0) (rejected)
ISIS-Spf: Add 172.16.9.0/255.255.255.0 to IP RIB, metric 20
ISIS-Spf: Next hop 0000.0C0A.2AA9/172.16.19.1 (Ethernet0) (accepted)
ISIS-Spf: Redundant IP route 172.16.24.0/255.255.255.0, metric 20, not added
ISIS-Spf: Redundant IP route 172.16.25.0/255.255.255.0, metric 20, not added
ISIS-Spf: Aging L1 LSP 4 (0000.0C0A.2AA9.00-00), version 107

Example 10-74. debug isis spf-statistics displays statistical information about the SPF calculation.

Frankfurt#debug isis spf-statistics
IS-IS SPF Timing and Statistics Data debugging is on
Frankfurt#
ISIS-Spf:  Compute L1 SPT
ISIS-Spf: Complete L1 SPT,
ISIS-Spf:  Compute time 0.032/0.032, 2/1 nodes, 0/2 links, 0 suspends
ISIS-Spf:  Compute L1 SPT
ISIS-Spf: Complete L1 SPT,
ISIS-Spf:  Compute time 0.036/0.036, 2/1 nodes, 0/2 links, 0 suspends

Within each area, every router must have an identical link-state database. Additionally, every L1/L2 and L2 router in the IS-
IS domain must have an identical L2 database. If you suspect that a router's link-state database is not correctly
synchronized, examine the LSP IDs and the checksums. The same LSP IDs should exist in every database, and the
checksum of each LSP should be identical in every database.

Two debug commands can help you observe the synchronization process. The first is debug isis update-packets
(Example 10-75), which displays information about SNPs and LSPs the router sends and receives. The second command,
debug isis snp-packets (Example 10-76), displays information specific to the CSNPs and PSNPs the router sends and
receives.



Example 10-75. debug isis update-packets displays information about SNPs and LSPs.

Frankfurt#debug isis update-packets
IS-IS Update related packet debugging is on
Frankfurt#
ISIS-Upd: Rec L1 LSP 0000.0C0A.2AA9.00-00, seq 10, ht 1199,
ISIS-Upd: from SNPA 0005.5e6b.50a0 (Ethernet0)
ISIS-Upd: LSP newer than database copy
ISIS-Upd: Leaf routes changed
ISIS-Upd: Rec L1 LSP 0000.0C0A.2AA9.00-00, seq 11, ht 1199,
ISIS-Upd: from SNPA 0005.5e6b.50a0 (Ethernet0)
ISIS-Upd: LSP newer than database copy
ISIS-Upd: Important fields changed
ISIS-Upd: Full SPF required
ISIS-Upd: Rec L1 LSP 0000.0C0A.2AA9.00-00, seq 12, ht 1199,
ISIS-Upd: from SNPA 0005.5e6b.50a0 (Ethernet0)
Frankfurt#

Example 10-76. debug isis snp-packets displays detailed information about CSNPs and PSNPs.

Frankfurt#debug isis snp-packets
IS-IS CSNP/PSNP packets debugging is on
Frankfurt#
ISIS-Snp: Rec L1 CSNP from 0000.0C0A.2AA9 (Ethernet0)
ISIS-Snp: CSNP range 0000.0000.0000.00-00 to FFFF.FFFF.FFFF.FF-FF
ISIS-Snp: Same entry 0000.0C04.DCC0.00-00, seq 9
ISIS-Snp: Same entry 0000.0C0A.2AA9.00-00, seq 1A
ISIS-Snp: Same entry 0000.0C0A.2AA9.01-00, seq 6
ISIS-Snp: Rec L1 CSNP from 0000.0C0A.2AA9 (Ethernet0)
ISIS-Snp: CSNP range 0000.0000.0000.00-00 to FFFF.FFFF.FFFF.FF-FF
ISIS-Snp: Same entry 0000.0C04.DCC0.00-00, seq 9
ISIS-Snp: Entry 0000.0C0A.2AA9.00-00, seq 1B is newer than ours (seq 1A), sending PSNP
ISIS-Snp: Same entry 0000.0C0A.2AA9.01-00, seq 6
ISIS-Snp: Build L1 PSNP entry for 0000.0C0A.2AA9.00-00, seq 1A
ISIS-Snp: Sending L1 PSNP on Ethernet0
ISIS-Snp: Rec L1 CSNP from 0000.0C0A.2AA9 (Ethernet0)
ISIS-Snp: CSNP range 0000.0000.0000.00-00 to FFFF.FFFF.FFFF.FF-FF
ISIS-Snp: Same entry 0000.0C04.DCC0.00-00, seq 9
ISIS-Snp: Same entry 0000.0C0A.2AA9.00-00, seq 1B
ISIS-Snp: Same entry 0000.0C0A.2AA9.01-00, seq 6
ISIS-Snp: Rec L1 CSNP from 0000.0C0A.2AA9 (Ethernet0)
ISIS-Snp: CSNP range 0000.0000.0000.00-00 to FFFF.FFFF. FFFF.FF-FF
ISIS-Snp: Same entry 0000.0C04.DCC0.00-00, seq 9
ISIS-Snp: Same entry 0000.0C0A.2AA9.00-00, seq 1B
ISIS-Snp: Same entry 0000.0C0A.2AA9.01-00, seq 6
Frankfurt#

Case Study: Integrated IS-IS on NBMA Networks

Figure 10-56 shows four routers running IS-IS connected by a partially meshed Frame Relay network. The IP addresses,
DLCIs, and NETs are shown. The IS-IS configurations of all routers have been verified as correct, and no authentication is
configured.

Figure 10-56. IS-IS is not establishing adjacencies across the Frame Relay network.



The problem with this network is that no routes are being discovered (Example 10-77). The IP addresses of neighbors'
Frame Relay interfaces can be pinged, but the addresses of the routers' other interfaces cannot be pinged (Example 10-
78). The pings show that the Frame Relay PVCs are operational and that IP is working, but that the routers are not routing.

Example 10-77. The route table of Oslo in Figure 10-56 does not contain any IS-IS routes.

Oslo#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
C    192.168.1.0 is directly connected, TokenRing0
C    192.168.5.0 is directly connected, Serial0
Oslo#

Example 10-78. Pings are successful to other interfaces connected to the Frame Relay network, but addresses
reachable through the routers cannot be pinged.

Oslo#ping 192.168.5.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.5.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 64/65/68 ms
Oslo#ping 192.168.2.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.2.1, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Oslo#ping 192.168.5.3
Type escape sequence to 5, 100-byte ICMP Echos to 192.168.5.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 64/66/68 ms
Oslo#ping 192.168.3.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.3.1, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Oslo#ping 192.168.5.4
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.5.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 64/65/68 ms
Oslo#ping 192.168.4.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.4.1, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Oslo#



The next step is to check the IS-IS neighbor table. Oslo's neighbor table shows that Hellos have been received (Example
10-79) and that the router knows the System IDs of its neighbors. It also shows that the IP addresses and the area
addresses of the neighbors are correct. However, the state of all of the neighbors is Init, indicating that a full adjacency
has not been established. A look at the link-state database verifies the absence of adjacencies; the only LSPs in Oslo's
database are the router's own LSPs (Example 10-80).

Example 10-79. Oslo's IS-IS neighbor table shows that Hellos are being received but that the adjacency is not
complete.

Oslo#show clns is-neighbors detail
System Id          Interface   State   Type Priority   Circuit Id         Format
0000.00EF.5678     Se0         Init    L1L2 0 /0       0000.0000.0000.00  Phase V
  Area Address(es): 01
  IP Address(es): 192.168.5.3
  Uptime: 1:11:20
0000.00EF.1234     Se0         Init    L1L2 0 /0       0500.0000.0000.00  Phase V
  Area Address(es): 01
  IP Address(es): 192.168.5.2
  Uptime: 1:11:15
0000.00EF.9ABC     Se0         Init    L1L2 0 /0       0700.0000.0000.00  Phase V
  Area Address(es): 01
  IP Address(es): 192.168.5.4
  Uptime: 1:11:20
Oslo#

Example 10-80. Oslo's link-state database does not contain any LSPs from any of its neighbors.

Oslo#show isis database
IS-IS Level-1 Link State Database
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime  ATT/P/OL
0000.00EF.DEF1.00-00* 0x0000001F   0x8460        947           0/0/0
0000.00EF.DEF1.02-00* 0x00000010   0x695E        896           0/0/0
0000.00EF.DEF1.04-00* 0x00000002   0x2F2E        887           0/0/0
0000.00EF.DEF1.05-00* 0x00000008   0x1C3A        847           0/0/0
IS-IS Level-2 Link State Database
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime  ATT/P/OL
0000.00EF.DEF1.00-00* 0x00000013   0x81BE        829           0/0/0
Oslo#

The fact that Hellos are being received, but adjacencies are not being established, points to a problem with the Hellos
themselves. If the parameters in the Hellos are not correct, the PDU is dropped. So debug isis adj-packets is enabled to
observe the Hellos. Of particular interest in the debug output (Example 10-81) are the "encapsulation failed" messages.
These messages show that the router apparently cannot interpret the received Hellos and is dropping them.

Example 10-81. The results of enabling debug isis adj-packets show that Hellos are being dropped because of
encapsulation failures.

Oslo#debug isis adj-packets
IS-IS Adjacency related packets debugging is on
Oslo#
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Encapsulation failed for level 2 IIH on Serial0
ISIS-Adj: Rec serial IIH from DLCI 17 on Serial0, cir type 3, cir id 00
ISIS-Adj: rcvd state 2, old state 1, new state 1
ISIS-Adj: Action = 1, new_type = 3
ISIS-Adj: Sending L2 IIH on TokenRing0
ISIS-Adj: Encapsulation failed for level 1 IIH on Serial0
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Rec serial IIH from DLCI 18 on Serial0, cir type 3, cir id 07
ISIS-Adj: rcvd state 2, old state 1, new state 1
ISIS-Adj: Action = 1, new_type = 3
ISIS-Adj: Encapsulation failed for level 2 IIH on Serial0
ISIS-Adj: Sending L2 IIH on TokenRing0
ISIS-Adj: Encapsulation failed for level 1 IIH on Serial0
ISIS-Adj: Rec serial IIH from DLCI 16 on Serial0, cir type 3, cir id 05
ISIS-Adj: rcvd state 2, old state 1, new state 1



ISIS-Adj: rcvd state 2, old state 1, new state 1
ISIS-Adj: Action = 1, new_type = 3
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Encapsulation failed for level 2 IIH on Serial0no debu
ISIS-Adj: Sending L2 IIH on TokenRing0
ISIS-Adj: Encapsulation failed for level 1 IIH on Serial0g a
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Rec serial IIH from DLCI 17 on Serial0, cir type 3, cir id 00
ISIS-Adj: rcvd state 2, old state 1, new state 1
ISIS-Adj: Action = 1, new_type = 3
ISIS-Adj: Encapsulation failed for level 2 IIH on Serial0ll

Any time an "encapsulation failed" message is received, suspicion should fall on the data link and its connected interfaces.
Examining the interfaces with the show interface serial command reveals no significant error rates, so it is unlikely that
the Hellos are being corrupted on the Frame Relay PVCs. The next step is to examine the interface configurations. The
interface configurations for the four routers in Figure 10-56 are displayed in Example 10-82 through Example 10-85.

Example 10-82. Oslo's interface configuration.

interface Serial0
 ip address 192.168.5.1 255.255.255.0
 ip router isis
 encapsulation frame-relay
 frame-relay interface-dlci 16
 frame-relay interface-dlci 17
 frame-relay interface-dlci 18

Example 10-83. Stockholm's interface configuration.

interface Serial0
 no ip address
 encapsulation frame-relay
!
interface Serial0.16 point-to-point
 ip address 192.168.5.2 255.255.255.0
 ip router isis
 frame-relay interface-dlci 16

Example 10-84. Copenhagen's interface configuration.

interface Serial0
 no ip address
 encapsulation frame-relay
!
interface Serial0.16 point-to-point
 ip address 192.168.5.3 255.255.255.0
 ip router isis
 frame-relay interface-dlci 16

Example 10-85. Helsinki's interface configuration.

interface Serial0
 no ip address
 encapsulation frame-relay
!
interface Serial0.16 point-to-point
 ip address 192.168.5.4 255.255.255.0
 ip router isis
 frame-relay interface-dlci 16



A comparison of these configurations reveals the problem, although it might not be readily apparent. Stockholm,
Copenhagen, and Helsinki are all configured with point-to-point subinterfaces. Oslo is not using subinterfaces. By default, a
Cisco serial interface with Frame Relay encapsulation is a multi-point interface. Therefore, Stockholm, Copenhagen, and
Helsinki are sending point-to-point IS-IS Hellos, and Oslo is sending L1 and L2 IS-IS LAN Hellos.

IS-IS does not have a configuration option similar to OSPF's ip ospf network command; therefore, Oslo must be
reconfigured with point-to-point subinterfaces, and the IP addresses must be changed so that each PVC is a different
subnet (Example 10-86).

Example 10-86. After Oslo has been configured with point-to-point subinterfaces and the PVCs have been
readdressed as individual subnets, IS-IS routing is functioning.

Oslo#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
C    192.168.1.0 is directly connected, TokenRing0
i L1 192.168.2.0 [115/20] via 192.168.5.5, Serial0.16
i L1 192.168.3.0 [115/20] via 192.168.5.9, Serial0.17
i L1 192.168.4.0 [115/20] via 192.168.5.13, Serial0.18
     192.168.5.0 is variably subnetted, 4 subnets, 2 masks
C       192.168.5.12 255.255.255.252 is directly connected, Serial0.18
C       192.168.5.8 255.255.255.252 is directly connected, Serial0.17
C       192.168.5.4 255.255.255.252 is directly connected, Serial0.16
C       192.168.5.0 255.255.255.0 is directly connected, Serial0
Oslo#



Looking Ahead

Now that all of the IP IGPs have been examined, the next step is to study the tools available to help you
control your network. Part III, "Route Control and Interoperability," covers redistribution, default routes,
On-Demand Routing, route filters, and route maps.



Summary Table: Chapter 10 Command Review

Command Description
address-family ipv6 Specifies that the following

commands apply to the IPv6
address family.

area-password
password

Configures IS-IS area (level 1)
authentication.

authentication key-
chain name-of-chain
[level-1 | level-2]

Specifies the preconfigured key-
chain to use for authenticating either
level-1 or level-2 router. Level-1
indicates area-wide authentication,
level-2 indicates domain-wide
authentication.

authentication mode
{md5 | text} [level-1 |
level-2]

Specifies the authentication mode to
use between routers in an area or
domain.

authentication send-
only [level-1 | level-2]

Used when configuring
authentication without invalidating
existing databases, this command
sends authentication information,
but doesn't expect to receive
matching authentication information.

debug isis adj-packets Displays IS-IS Hello PDU activity.
debug isis spf-events Displays details of events triggering

an IS-IS SPF calculation.
debug isis snp-
packets

Displays information about SNPs
sent and received by the router.

debug isis spf-
statistics

Displays statistical information about
IS-IS SPF calculations.

debug isis spf-triggers Displays events that trigger IS-IS
SPF calculations.

debug isis update-
packets

Displays information about LSPs,
CSNPs, and PSNPs sent and
received by the router.

default-information
originate [route-map
map-name]

Generates a default IP route into an
IS-IS domain.

domain-password
password

Configures IS-IS domain (level 2)
authentication.

ignore-lsp-errors Configures an IS-IS router to ignore
errored LSPs rather than triggering
a purge of the LSPs.

ip router isis [tag] Enables IPv4 IS-IS routing on an
interface.

ipv6 router isis [tag] Enables IPv6 IS-IS routing on an
interface.

isis authentication Specifies the preconfigured key-



isis authentication
key-chain name-of-
chain [level-1 | level-2]

Specifies the preconfigured key-
chain to use for authenticating either
level-1 or level-2 on an interface.

isis authentication
mode {md5 | text}
[level-1 | level-2]

Specifies the authentication mode to
use on an interface.

isis authentication
send-only [level-1 |
level-2]

Used when configuring
authentication without breaking
existing adjacencies, this command
sends authentication information,
but doesn't expect to receive
matching authentication information.

isis csnp-interval
seconds {level-1 |
level-2}

Specifies the interval in which an IS-
IS Designated Router sends
CSNPs.

isis hello-interval
seconds {level-1 |
level-2}

Specifies the interval between
transmissions of IS-IS Hello PDUs.

isis hello-multiplier
multiplier  {level-1 |
level-2}

Specifies the number of IS-IS Hello
PDUs a neighbor must miss before
declaring its adjacency to the
originating router down.

isis lsp-interval
milliseconds

Changes the default delay between
transmissions of LSPs on an
interface.

isis mesh-group
[number  | blocked]

Assigns an interface to a numbered
mesh group, or entirely blocks LSP
flooding on the interface.

isis metric default-
metric {level-1 | level-
2}

Specifies an interface's IS-IS default
metric.

isis password
password {level-1 |
level-2}

Configures authentication between
two IS-IS neighbors.

isis priority value
{level-1 | level-2}

Specifies the priority of an interface
to be used for DR election.

isis retransmit-interval
seconds

Specifies the time a router will wait
for an acknowledgment after
sending an LSP on a point-to-point
link before retransmitting the LSP.

is-type {level-1 | level-
1-2 | level-2-only}

Configures the router as an L1,
L1/L2, or L2 IS-IS router.

log-adjacency-
changes

Sends all adjacency change events
to the log.

lsp-refresh-interval
seconds

Changes the default period between
refreshes of locally originated LSPs.

lsp-gen-interval [level-
1 | level-2] lsp-max-wait
[lsp-initial-wait lsp-
second-wait]

Changes the default values for the
exponential backoff algorithm
regulating the generation of LSPs.

max-lsp-lifetime Changes the default value of the



seconds Remaining Lifetime of locally
originated LSPs.

Metric-style [narrow |
wide | transition]
(level-1 | level-2 |
level-1-2}

Specifies the type of metric style to
use.

Multi-topology
{transition}

Enables multi-topology for IPv6.

net network-entity-title Configures an IS-IS router's NET.

prc-interval prc-max-
wait [prc-initial-wait
prc-second-wait]

Changes the default values for the
exponential backoff algorithm used
with partial route calculations.

Redistribute isis {ip}
level-2 into level-2
distribute-list [access-
list number | prefix-list
name]

Enables leaking of routes from IS-IS
level-2 into level-1 areas.

router isis [tag] Enables an IS-IS routing process.

set-overload-bit [on-
startup {seconds} |
wait-for-bgp]
[suppress {[interlevel]
| [external]}]

Manually sets the Overload bit in a
router's LSP to one.

show clns is-neighbor
[type number ] [detail]

Displays the IS-IS neighbor table.

show clns protocol Displays information about how clns
and integrated IS-IS is configured on
the router.

show isis database
[level-1] [level-2] [l1]
[l2] [detail] [lspid]

Displays an IS-IS link-state
database.

show isis hostname Displays the system IDs and
hostnames of routers in the network.
The information is obtained from
type 137 TLVs.

show isis ipv6
topology

Displays the IPv6 topology.

show isis spf-log Displays how often and why the
router has run a full SPF calculation.

show isis topology Displays the IPv4/CLNS topology.
spf-interval [level-1 |
level-2] spf-max-wait
[spf-initial-wait spf-
second-wait]

Changes the default parameters of
the exponential backoff algorithm
used by the SPF calculation.

summary-address
address-mask {level-1 |
level-1-2 | level-2}

Configures IP address
summarization.

summary-prefix
ipv6_prefix/prefix_length
{level-1 | level-1-2 |

Configures IPv6 address
summarization.



level-2}
which-route {nsap-
address | clns-name}

Displays the routing table in which
the specified CLNS destination is
found and displays details of the
associated IP addresses and area
addresses.



Review Questions

1 What is an intermediate system?

2 What is a Network Protocol Data Unit?

3 What is the difference between an L1, an L2, and an L1/L2 router?

4 What is the default level of a Cisco router?

5 Explain the basic difference between an IS-IS area and an OSPF area.

6 What adjacency types, if any, are formed between two L1/L2 routers with the same Area
IDs? What if the AIDs of the L1/L2 routers are different?

7 What adjacency types, if any, are formed between two L2-only routers with the same AIDs?
What if the AIDs of the L2-only routers are different?

8 What is a network entity title (NET)?

9 To what value must the NSAP Selector be set in a NET?

10 What is the purpose of a System ID?

11 How does a router determine what area it is in?

12 Does IS-IS elect a Backup Designated Router on a broadcast subnetwork?

13 What is the purpose of the Pseudonode ID?

14 What is the default maximum age (MaxAge) of an IS-IS LSP? What is the maximum
configurable MaxAge?

15 What is the basic difference between the way OSPF ages its LSAs and the way IS-IS ages
its LSPs?

16 How often does an IS-IS router refresh its LSPs?

17 What is a Complete Sequence Number Packet (CSNP)? How is it used?

18 What is a Partial Sequence Number Packet (PSNP)? How is it used?

19 What is the purpose of the Overload (OL) bit?

20 What is the purpose of the Attached (ATT) bit?

21 What is the purpose of the Up/Down bit?

22 What metrics are specified by the ISO for IS-IS? How many of these metrics does the
Cisco IOS support?

23 What are the two default metric styles and what are their maximum values?

24 What is the maximum metric value of an IS-IS route?

25 What is the difference between a level 1 IS-IS metric and a level 2 IS-IS metric?

26 What is the difference between an internal IS-IS metric and an external IS-IS metric?

27 How many adjacencies are created on a single link between two routers running both IPv4
and IPv6 in single topology mode? How many in multi-topology mode?



28 How many L1 areas can be active on a single router? How many L2 areas?

29 What are the two mesh group modes other than Inactive, and what are the advantages and
disadvantages of each?



Configuration Exercises

1 Table 10-8 shows the interfaces, interface addresses, and subnet masks of 11 routers.
The table also designates that routers belong in the same area. Write Integrated IS-IS
configurations for the routers, using the following guidelines:

a. Make up your own System IDs for the routers.

b. Use the shortest NETs possible.

c. Configure routers as L1, L2, or L1/L2 as appropriate.

Table 10-8. Router information for Configuration
Exercises 1 through 5.

Router Area Interface Address/Mask
A 0 E0

E1

192.168.1.17/28

192.168.1.50/28
B 0 E0

E1

192.168.1.33/28

192.168.1.51/28
C 0 E0

S0

192.168.1.49/28

192.168.1.133/30
D 2 S0

S1

192.168.1.134/30

192.168.1.137/30
E 2 S0

S1

S2

192.168.1.142/30

192.168.1.145/30

192.168.1.138/30
F 2 S0

S1

192.168.1.141/30

192.168.1.158/30
G 1 E0

S0

192.168.1.111/27

192.168.1.157/30
H 1 E0

E1

192.168.1.73/27

192.168.1.97/27
I 3 E0

E1

S0

S1

192.168.1.225/29

192.168.1.221/29

192.168.1.249/30

192.168.1.146/30
J 3 E0

E1

192.168.1.201/29

192.168.1.217/29
K 3 EO 192.168.1.209/29



S0 192.168.1.250/30

Tip: Draw a picture of the routers and subnets first.

2 Configure IPv6 on each router, in multi-topology mode. Use the address 2001:db8:0:x::/64,
where x is the hexadecimal value of the subnet (4th octet only) of the corresponding IPv4
address on each link.

3 Configure authentication between all routers in area 2 of Table 10-8. Use the password
"Eiffel" between routers D and E; use the password "Tower" between routers E and F. Use
type md5 authentication.

4 Configure level 1 authentication in area 1 of Table 10-8. Use the password "Scotland." Use
cleartext passwords with no key chains.

5 Configure level 2 authentication on the routers in Table 10-8. Use the password "Vienna."
Use cleartext passwords with key chains.

6 Configure the L1/L2 routers in areas 0, 1, and 3 in Table 10-8 to summarize their L1
addresses, both IPv4 and IPv6.



Troubleshooting Exercises

1 Example 10-87 and Example 10-88 show the IS-IS neighbor tables of two routers, router A and router B,
connected to via a serial interface. What is wrong?

Example 10-87. The IS-IS neighbor table of router A, Troubleshooting Exercise 1.

Router_A#show clns is-neighbors detail
System Id      Interface  State  Type Priority  Circuit Id         Format
0000.00EF.DCBA To0        Up     L1L2 64/64     0000.00EF.DCBA.04  Phase V
  Area Address(es): 01
  IP Address(es): 192.168.11.2
  Uptime: 0:09:25
0000.00EF.5678 Se0.17     Up     IS   0 /0      00                 Phase V
  Area Address(es): 01
  IP Address(es): 192.168.5.9
  Uptime: 1:28:22
0000.00EF.9ABC Se0.18     Up     L1L2 0 /0      07                 Phase V
  Area Address(es): 01
  IP Address(es): 192.168.5.13
  Uptime: 1:29:45
0000.00EF.1234 Se0.16     Up     L1L2 0 /0       06                 Phase V
  Area Address(es): 01
  IP Address(es): 192.168.5.5
  Uptime: 1:29:45
Router_A#

Example 10-88. The IS-IS neighbor table of router B, Troubleshooting Exercise 1.

Router_B#show clns is-neighbors detail
System Id      Interface  State  Type Priority  Circuit Id          Format
0000.00EF.DEF1 Se0.17     Up     IS 0 /0        00                  Phase V
  Area Address(es): 01
  IP Address(es): 10.1.1.1
  Uptime: 0:11:06
Router_B#

2 Example 10-89 shows debug messages from a router that is not establishing an adjacency with a neighbor on
its interface TO0. What is wrong?

Example 10-89. The debug output for Troubleshooting Exercise 2.

Router_B#debug isis adj-packets
IS-IS Adjacency related packets debugging is on
Router_B#
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Sending L1 IIH on TokenRing1
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Sending L1 IIH on TokenRing1
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Sending L1 IIH on TokenRing1
ISIS-Adj: Rec L2 IIH from 0000.3090.c7df (TokenRing0), cir type 2, cir id 0000.0
0EF.DCBA.04
ISIS-Adj: is-type mismatch
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Sending L1 IIH on TokenRing1
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Sending L1 IIH on TokenRing1
ISIS-Adj: Sending L1 IIH on TokenRing1
ISIS-Adj: Sending L1 IIH on TokenRing0



ISIS-Adj: Rec L2 IIH from 0000.3090.c7df (TokenRing0), cir type 2, cir id 0000.0
0EF.DCBA.04
ISIS-Adj: is-type mismatch
ISIS-Adj: Sending L1 IIH on TokenRing1
ISIS-Adj: Sending L1 IIH on TokenRing0
ISIS-Adj: Sending L1 IIH on TokenRing1
ISIS-Adj: Sending L1 IIH on TokenRing0
 IIH on TokenRing0L1 IIH on TokenRing1



Part III: Route Control and Interoperability
 Chapter 11 Route Redistribution
 Chapter 12 Default Routes and On-Demand Routing
 Chapter 13 Route Filtering
 Chapter 14 Route Maps



Chapter 11. Route Redistribution
This chapter covers the following subjects:

Principles of Redistribution

Configuring Redistribution

A router performs redistribution when it uses a routing protocol to advertise routes that were learned by
some other means. Those "other means" might be another routing protocol, static routes, or a direct
connection to the destination network. For example, a router might be running both an Open Shortest
Path First (OSPF) process and a Routing Information Protocol (RIP) process. If the OSPF process is
configured to advertise routes learned by the RIP process, it is said to be "redistributing RIP."

Running a single routing protocol throughout the entire IP network is usually more desirable than
running multiple protocols, both from a configuration management perspective and from a fault
management perspective. However, the realities of modern networking frequently force the acceptance
of multiprotocol IP routing domains. As departments, divisions, and entire companies merge, their
formerly autonomous networks must be consolidated.

In most cases, the networks that are to be consolidated were implemented differently and have evolved
differently, to meet different needs or merely as the result of different design philosophies. This
diversity can make the migration to a single routing protocol a complex undertaking. In some cases,
corporate politics can force the use of multiple routing protocols. And in a few cases, multiple routing
protocols might be the result of network administrators who do not work and play well together.

Multi-vendor environments are another factor that can necessitate redistribution. For example, a
network running the Cisco EIGRP might be merged with a network using another manufacturer's
routers, which support only RIP or OSPF. Without redistribution, either the Cisco routers would have to
be reconfigured to an open protocol, or the non-Cisco routers would have to be replaced with Cisco
routers.

Redistribution is necessary when multiple routing protocols are "thrown together," but redistribution can
also be part of a well-thought-out network design. Figure 11-1 shows an example. Here two OSPF
process domains are connected, but the OSPF processes do not communicate directly. Instead, static
routes are configured on each router to selected networks in the other OSPF domain.

Figure 11-1. In this network, static routes are configured on each router and redistributed into
OSPF. As a result, the advertisement of prefixes between the two OSPF domains is carefully

controlled.

For instance, router Spalding has static routes to networks 192.168.11.0 and 192.168.12.0. Spalding



then redistributes these static routes into OSPF, and OSPF advertises the routes to the other routers in
OSPF 10. The result is that the other networks in OSPF 20 are hidden from OSPF 10. Redistribution
has allowed the dynamic characteristics of OSPF to be mixed with the precise control of static routes.

Static routes redistributed into a dynamic routing protocol are also very useful, if not essential, in dial-
up environments. The periodic management traffic of a dynamic protocol can cause the dial-up line to
be "always up." By blocking routing updates or Hellos across the link and configuring static routes on
each side, the administrator can ensure that the link will come up only when user traffic must traverse it.
And by redistributing the static routes into the dynamic routing protocol, all routers on both sides of the
dial-up link have full knowledge of all subnets on the opposite side of the link.

Note that with few exceptions,[1] the existence of more than one routing protocol on the same router
does not mean that redistribution will occur automatically. Redistribution must be explicitly configured.
The configuration of multiple routing protocols on a single router without redistribution is called ships in
the night (SIN) routing. The router will pass routes to its peers in each process domain, but the process
domains will have no knowledge of each otherlike ships passing in the night. Although SIN routing
usually refers to multiple routing protocols routing multiple routed protocols on the same router (such as
OSPF routing IP and NLSP routing IPX), it can also refer to two IP protocols routing for separate IP
domains on a single router.

[1] Within IP, IGRP and EIGRP processes with the same autonomous system number will
redistribute automatically.



Principles of Redistribution

The capabilities of the IP routing protocols vary widely. The protocol characteristics that have the most
bearing on redistribution are the differences in metrics and administrative distances, and each protocol's
classful or classless capabilities. Failure to give careful consideration to these differences when redistributing
can lead to, at best, a failure to exchange some or all routes or, at worst, routing loops and black holes.

Metrics

The routers of Figure 11-1 are redistributing static routes into OSPF, which then advertises the routes to
other OSPF-speaking routers. Static routes have no metric associated with them, but every OSPF route must
have a cost. Another example of conflicting metrics is the redistribution of RIP routes into EIGRP. RIP's metric
is hop count, whereas EIGRP uses bandwidth and delay. In both cases, the protocol into which routes are
redistributed must be able to associate its own metrics with those routes.

So the router performing the redistribution must assign a metric to the redistributed routes. Figure 11-2 shows
an example. Here EIGRP is being redistributed into OSPF, and OSPF is being redistributed into EIGRP.
OSPF does not understand the composite metric of EIGRP, and EIGRP does not understand OSPF cost. As
a result, part of the redistribution process is that the router must assign a cost to each EIGRP route before
passing it to OSPF. Likewise, the router must assign a bandwidth, delay, reliability, load, and MTU to each
OSPF route before passing it to EIGRP. If incorrect metrics are assigned, redistribution will fail.

Figure 11-2. When routes are redistributed, a metric that is understandable to the receiving protocol
must be assigned to the routes.

Case studies later in this chapter show how to configure routers to assign metrics for purposes of
redistribution.

Administrative Distances

The diversity of metrics presents another problem: If a router is running more than one routing protocol and
learns a route to the same destination from each of the protocols, which route should be selected? Each
protocol uses its own metric scheme to define the best route. Comparing routes with different metrics, such
as cost and hop count, is like comparing apples and oranges.

The answer to the problem is administrative distances. Just as metrics are assigned to routes so that the
most preferred route may be determined, administrative distances are assigned to route sources so that the
most preferred source may be determined. Think of an administrative distance as a measure of believability.
The lower the administrative distance, the more believable the protocol.

For example, suppose a router running RIP and EIGRP learns of a route to network 192.168.5.0 from a RIP-
speaking neighbor and another route to the same destination from an EIGRP-speaking neighbor. Because of



EIGRP's composite metric, that protocol is more likely to have determined the optimum route. Therefore,
EIGRP should be believed over RIP.

Table 11-1 shows the default Cisco administrative distances. EIGRP has an administrative distance of 90,
whereas RIP has an administrative distance of 120. Therefore, EIGRP is deemed more trustworthy than RIP.

Table 11-1. Cisco default administrative distances.
Route Source Administrative Distance

Connected interface[*] 0

Static route 1

EIGRP summary route 5

External BGP 20

EIGRP 90

IGRP 100

OSPF 110

IS-IS 115

RIP 120

EGP 140

External EIGRP 170

Internal BGP 200

Unknown 255

[*] Recall from Chapter 3, "Static Routing," that when a static route refers to an interface instead of
a next-hop address, the destination is considered to be a directly connected network.

Although administrative distances help resolve the confusion of diverse metrics, they can cause problems for
redistribution. For example, in Figure 11-3, both Gehrig and Ruth are redistributing RIP-learned routes into
IGRP. Gehrig learns about network 192.168.1.0 via RIP and advertises the network into the IGRP domain. As
a result, Ruth learns about network 192.168.1.0 not only from Combs via RIP, but also from Meusel via IGRP.

Figure 11-3. Network 192.168.1.0 is being advertised to Ruth via both RIP and IGRP.



Example 11-1 shows Ruth's route table. Notice that the route to 192.168.1.0 is an IGRP route. Ruth has
chosen the IGRP route because, compared to RIP, IGRP has a lower administrative distance. Ruth will send
all packets to 192.168.1.0 over the "scenic route" through Meusel, instead of sending them directly to Combs.

Example 11-1. Although the optimal route to network 192.168.1.0 from Ruth is through Combs, out
S0, Ruth is instead routing to that network through Meusel, out S1.

Ruth#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
I    192.168.1.0/24 [100/16100] via 192.168.5.1, 00:00:00, Serial1
I    192.168.2.0/24 [100/12576] via 192.168.5.1, 00:00:00, Serial1
I    192.168.3.0/24 [100/12476] via 192.168.5.1, 00:00:01, Serial1
I    192.168.4.0/24 [100/10476] via 192.168.5.1, 00:00:01, Serial1
C    192.168.5.0/24 is directly connected, Serial1
C    192.168.6.0/24 is directly connected, Serial0
Ruth#

Split horizon prevents a routing loop in the network of Figure 11-3. Both Gehrig and Ruth initially advertise
subnet 192.168.1.0 into the IGRP domain, and the four IGRP routers eventually converge on a single path to
that subnet. However, the convergence is unpredictable. This condition can be seen by rebooting routers
Lazzeri and Meusel. After the reboot, Ruth's route table shows that it is using Combs as the next-hop router to
reach 192.168.1.0 (Example 11-2).

Example 11-2. The convergence of the network in Figure 11-3 is unpredictable. After a reboot of the
routers, Ruth is now routing to 192.168.1.0 through Combs.

Ruth#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
R    192.168.1.0/24 [120/1] via 192.168.6.2, 00:00:23, Serial0
I    192.168.2.0/24 [100/12576] via 192.168.5.1, 00:00:22, Serial1
I    192.168.3.0/24 [100/12476] via 192.168.5.1, 00:00:22, Serial1
I    192.168.4.0/24 [100/10476] via 192.168.5.1, 00:00:22, Serial1
C    192.168.5.0/24 is directly connected, Serial1
C    192.168.6.0/24 is directly connected, Serial0
Ruth#

Convergence after the reboot is not only unpredictable but also slow. Example 11-3 shows Gehrig's route
table approximately three minutes after the reboot. It is using Lazzeri as a next-hop router to subnet
192.168.1.0, but pings to a working address on that link fail. Lazzeri's route table (Example 11-4) shows the
problem: Lazzeri is using Gehrig as a next-hop router. A routing loop exists.

Example 11-3. Soon after the reboot, Gehrig is routing packets to 192.168.1.0 via Lazzeri.

Gehrig#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2



       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
I    192.168.1.0/24 [100/16100] via 192.168.3.2, 00:02:38, Serial0
C    192.168.2.0/24 is directly connected, Ethernet0
C    192.168.3.0/24 is directly connected, Serial0
I    192.168.4.0/24 [100/10476] via 192.168.3.2, 00:00:29, Serial0
I    192.168.5.0/24 [100/12476] via 192.168.3.2, 00:00:29, Serial0
I    192.168.6.0/24 [100/14476] via 192.168.3.2, 00:00:39, Serial0
Gehrig#ping 192.168.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.1, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Gehrig#

Example 11-4. Lazzeri is routing packets to 192.168.1.0 via Gehrig, creating a routing loop. Notice
the age of the route.

Lazzeri#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
I    192.168.1.0/24 [100/12100] via 192.168.3.1, 00:04:21, Serial0
I    192.168.2.0/24 [100/8576] via 192.168.3.1, 00:00:33, Serial0
C    192.168.3.0/24 is directly connected, Serial0
C    192.168.4.0/24 is directly connected, Serial1
I    192.168.5.0/24 [100/10476] via 192.168.4.2, 00:00:53, Serial1
I    192.168.6.0/24 [100/12100] via 192.168.3.1, 00:02:32, Serial0
Lazzeri#

Here's the sequence of events leading to the loop:

1. While Lazzeri and Meusel are rebooting, both Gehrig and Ruth have route table entries showing network
192.168.1.0 as reachable via Combs.

2. As Lazzeri and Meusel become active, both Gehrig and Ruth send IGRP updates that include subnet
192.168.1.0. Simply by the "luck of the draw," Ruth sends its update slightly earlier than Gehrig does.

3. Meusel, receiving Ruth's update, makes Ruth the next-hop router and sends an update to Lazzeri.

4. Lazzeri, receiving Meusel's update, makes Meusel the next-hop router.

5. Lazzeri and Gehrig send updates to each other at about the same time. Lazzeri makes Gehrig the next-
hop router to 192.168.1.0 because its route is metrically closer than Meusel's route. Gehrig makes
Lazzeri the next-hop router to 192.168.1.0 because its IGRP advertisement has a lower administrative
distance than Combs RIP advertisement. The loop is now in effect.

Split horizon and the invalid timers will eventually sort things out. Lazzeri is advertising 192.168.1.0 to
Meusel, but Meusel continues to use the metrically closer route via Ruth. And since Ruth is the next-hop
router, split horizon is in effect for 192.168.1.0 at Meusel's S1 interface. Meusel is also advertising
192.168.1.0 to Lazzeri, but Lazzeri sees Gehrig as metrically closer.

Lazzeri and Gehrig see each other as the next-hop router to 192.168.1.0, so they will not advertise the route
to each other. The route will age in both of their route tables until the invalid timer expires (Example 11-5).



Example 11-5. When the invalid timer for the route to 192.168.1.0 expires, the route is declared
unreachable and the holddown timer is started.

Lazzeri#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
I    192.168.1.0/24 is possibly down, routing via 192.168.3.1, Serial0
I    192.168.2.0/24 [100/8576] via 192.168.3.1, 00:00:57, Serial0
C    192.168.3.0/24 is directly connected, Serial0
C    192.168.4.0/24 is directly connected, Serial1
I    192.168.5.0/24 [100/10476] via 192.168.4.2, 00:01:25, Serial1
I    192.168.6.0/24 is possibly down, routing via 192.168.3.1, Serial0
Lazzeri#

When Lazzeri's invalid timer expires, the route to 192.168.1.0 will be put into holddown. Although Meusel is
advertising a route to that network, Lazzeri cannot accept it until the holddown timer expires. Example 11-6
shows that Lazzeri has finally accepted the route from Meusel, and Example 11-7 shows that Gehrig is
successfully reaching 192.168.1.0 through Lazzeri. It took more than nine minutes for these two routers to
converge, and the route they are using is still not the optimal route.

Example 11-6. After the holddown timer for 192.168.1.0 expires, Lazzeri accepts the route
advertised by Meusel.

Lazzeri#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
I    192.168.1.0/24 [100/14100] via 192.168.4.2, 00:00:27, Serial1
I    192.168.2.0/24 [100/8576] via 192.168.3.1, 00:00:02, Serial0
C    192.168.3.0/24 is directly connected, Serial0
C    192.168.4.0/24 is directly connected, Serial1
I    192.168.5.0/24 [100/10476] via 192.168.4.2, 00:00:28, Serial1
I   192.168.6.0/24 [100/12476] via 192.168.4.2, 00:00:28, Serial1
Lazzeri#

Example 11-7. Gehrig can now reach subnet 192.168.1.0 via Lazzeri.

Gehrig#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
I    192.168.1.0/24 [100/16100] via 192.168.3.2, 00:00:32, Serial0
C    192.168.2.0/24 is directly connected, Ethernet0
C    192.168.3.0/24 is directly connected, Serial0
I    192.168.4.0/24 [100/10476] via 192.168.3.2, 00:00:33, Serial0
I    192.168.5.0/24 [100/12476] via 192.168.3.2, 00:00:33, Serial0
I    192.168.6.0/24 [100/14476] via 192.168.3.2, 00:00:33, Serial0



Gehrig#ping 192.168.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 52/72/108 ms
Gehrig#

Administrative distances can cause even worse problems than the sub-optimal routes, unpredictable
behavior, and slow convergence of the previous example. For example, Figure 11-4 shows essentially the
same network as in Figure 11-3, except that the links between the IGRP routers are Frame Relay PVCs. By
default, IP split horizon is turned off on Frame Relay interfaces. As a result, permanent routing loops will form
between Lazzeri and Gehrig and between Meusel and Ruth. Subnet 192.168.1.0 is unreachable from the
IGRP domain.

Figure 11-4. Because IP split horizon is turned off by default on Frame Relay interfaces, permanent
routing loops will form in this network.

Several tools and strategies exist to prevent routing loops when redistributing. The administrative distances
can be manipulated, and route filters or route maps can be used. Chapter 13 covers route filters, and Chapter
14 covers route maps. These chapters also demonstrate techniques for changing administrative distances.

Redistributing from Classless to Classful Protocols

Careful consideration must be given to the effects of redistributing routes from a classless routing process
domain into a classful domain. To understand why, it is necessary to first understand how a classful routing
protocol reacts to variable subnetting. Recall from Chapter 5, "Routing Information Protocol (RIP)," that
classful routing protocols do not advertise a mask with each route. For every route a classful router receives,
one of two situations will apply:

The router will have one or more interfaces attached to the major network.

The router will have no interfaces attached to the major network.

In the first case, the router must use its own configured mask for that major network to correctly determine the
subnet of a packet's destination address. In the second case, only the major network address itself can be
included in the advertisement because the router has no way of knowing which subnet mask to use.

Figure 11-5 shows a router with four interfaces connected to subnets of 192.168.100.0. The network is
variably subnettedtwo interfaces have 27-bit masks, and two interfaces have 30-bit masks. If the router is
running a classful protocol such as IGRP, it cannot use the 27-bit mask to derive 30-bit subnets, and it cannot



use the 30-bit mask to derive 27-bit subnets. So, how does the protocol cope with the conflicting masks?

Figure 11-5. If this router is running a classful routing protocol, what mask should it choose?

In Example 11-8, debugging is used to observe the IGRP advertisements sent by the router in Figure 11-5.
Notice that subnet 192.168.100.128/27 is advertised out interface E0, which has a 27-bit mask, but neither
192.168.100.4/30 nor 192.168.100.8/30 is advertised out that interface. Similarly, 192.168.100.8/30 is
advertised out interface S1, which has a 30-bit mask, but neither 192.168.100.96/27 nor 192.168.100.128/27
is advertised out that interface. The same situation applies to all four interfaces. Only subnets of
192.168.100.0 whose masks match the interface mask are advertised. As a result, IGRP-speaking neighbors
on interfaces E0 and E1 will have no knowledge of the 30-bit subnets, and IGRP-speaking neighbors on
interfaces S0 and S1 will have no knowledge of the 27-bit subnets.

Example 11-8. A classful routing protocol will not advertise routes between interfaces whose masks
do not match.

O'Neil#debug ip igrp transactions
IGRP protocol debugging is on
O'Neil#
IGRP: sending update to 255.255.255.255 via Ethernet0 (192.168.100.97)
      subnet 192.168.100.128, metric=1100
IGRP: sending update to 255.255.255.255 via Ethernet1 (192.168.100.129)
      subnet 192.168.100.96, metric=1100
IGRP: sending update to 255.255.255.255 via Serial0 (192.168.100.9)
      subnet 192.168.100.4, metric=8476
IGRP: sending update to 255.255.255.255 via Serial1 (192.168.100.5)
      subnet 192.168.100.8, metric=8476
O'Neil#

This behavior of only advertising routes between interfaces with matching masks also applies when
redistributing from a classless routing protocol into a classful routing protocol. In Figure 11-6, the subnets of
the OSPF domain are variably subnetted, and Paige is redistributing OSPF-learned routes into IGRP.

Figure 11-6. Paige is redistributing its OSPF-learned routes into IGRP.

As Example 11-9 shows, Paige knows about all of the subnets in both the OSPF and the IGRP domain. And
because OSPF is classless, the router knows which masks are associated with each subnet connected to
Gibson. Paige's IGRP process is using a 24-bit mask; therefore, 172.20.113.192/26 and 172.20.114.48/28



are not compatible and are not advertised (Example 11-10). Notice that IGRP does advertise 172.20.112.0/24
and 172.20.115.0/24. The result is that the only subnets within the OSPF domain that Leonard knows of are
the ones with a 24-bit mask (Example 11-11).

Example 11-9. Paige knows about all six subnets of Figure 11-6, either from OSPF, IGRP, or a direct
connection.

Paige#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
     172.20.0.0/16 is variably subnetted, 6 subnets, 3 masks
O       172.20.113.192/26 [110/74] via 172.20.112.1, 00:01:35, Ethernet1
C       172.20.112.0/24 is directly connected, Ethernet1
O       172.20.115.0/24 [110/80] via 172.20.112.1, 00:01:35, Ethernet1
I       172.20.110.0/24 [100/1600] via 172.20.111.1, 00:00:33, Ethernet0
C       172.20.111.0/24 is directly connected, Ethernet0
O       172.20.114.48/28 [110/74] via 172.20.112.1, 00:01:35, Ethernet1
Paige#

Example 11-10. Only the OSPF-learned routes with a 24-bit mask are successfully redistributed into
the IGRP domain, which is also using a 24-bit mask.

Paige#debug ip igrp transactions
IGRP protocol debugging is on
Paige#
IGRP: received update from 172.20.111.1 on Ethernet0
      subnet 172.20.110.0, metric 1600 (neighbor 501)
IGRP: sending update to 255.255.255.255 via Ethernet0 (172.20.111.2)
      subnet 172.20.112.0, metric=1100
      subnet 172.20.115.0, metric=1100
Paige#

Example 11-11. The only subnets within the OSPF domain known at Leonard are the ones with a 24-
bit mask. 172.20.113.192/26 and 172.20.114.48/28 are unreachable from here.

Leonard#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
     172.20.0.0/24 is subnetted, 4 subnets
I       172.20.112.0 [100/1200] via 172.20.111.2, 00:00:48, Ethernet1
I       172.20.115.0 [100/1200] via 172.20.111.2, 00:00:48, Ethernet1
C       172.20.110.0 is directly connected, Ethernet0
C       172.20.111.0 is directly connected, Ethernet1
Leonard#

The configuration section includes case studies that demonstrate methods for reliably redistributing from a



classless routing protocol to a classful routing protocol.



Configuring Redistribution

Redistribution is configured in two steps:

Step 1. In the routing protocol configuration that is to receive the redistributed routes, use the redistribute
command to specify the source of the routes.

Step 2. Specify the metric to be assigned to the redistributed routes.

For example, the EIGRP configuration of Lajoie in Figure 11-7 is displayed in Example 11-12.

Figure 11-7. Configuring redistribution sample network.

[View full size image]

Example 11-12. Lajoie's EIGRP configuration shows OSPF being redistributed into the EIGRP process.

router eigrp 1
 redistribute ospf 1 metric 10000 100 255 1 15003
 passive-interface Ethernet1
 network 172.20.0.0

This configuration redistributes routes discovered by OSPF process 1 into EIGRP process 1. The metric
portion of the command assigns EIGRP metrics to the routes. In order, the numbers specify the following:

Bandwidth, in kilobits per second

Delay, in tens of microseconds

Reliability, as a fraction of 255

Load, as a fraction of 255

MTU, in octets

The OSPF configuration of Lajoie is in Example 11-13

Example 11-13. Lajoie's OSPF configuration shows the redistribution of EIGRP routes into OSPF.

router ospf 1
 redistribute eigrp 1 metric 30 metric-type 1 subnets
 network 172.20.11.2 0.0.0.0 area 0

This configuration redistributes routes discovered by EIGRP process 1 into OSPF process 1. The metric
portion of the command assigns an OSPF cost of 30 to each redistributed route. The redistribution makes Lajoie
an ASBR in the OSPF domain, and the redistributed routes are advertised as external routes. The metric-type
portion of the command specifies that the external type of the routes is E1. The subnets keyword, used only



when redistributing routes into OSPF, specifies that subnet details will be redistributed. Without it, only major
network addresses are redistributed. More will be said about the subnets keyword in the case studies.

An alternative method of specifying the metrics to be assigned to redistributed routes is to use the default-
metric command. For example, the previous OSPF configuration can also be written as in Example 11-14.

Example 11-14. Lajoie's OSPF configuration uses the default-metric command to assign an OSPF
metric to all routes redistributed into OSPF.

router ospf 1
 redistribute eigrp 1 metric-type 1 subnets
 default-metric 30
 network 172.20.11.2 0.0.0.0 area 0

The results of this configuration are exactly the same as the previous configuration. The default-metric
command is useful when routes are being redistributed from more than one source. For example, suppose
router Lajoie in Figure 11-7 was running not only EIGRP and OSPF but also RIP. The OSPF configuration might
be as displayed in Example 11-15.

Example 11-15. Lajoie's OSPF configuration uses the default-metric command to assign an OSPF
metric to routes redistributed from both EIGRP and RIP.

router ospf 1
 redistribute eigrp 1 metric-type 1 subnets
 redistribute rip metric-type 1 subnets
default-metric 30
 network 172.20.11.2 0.0.0.0 area 0

Here an OSPF cost of 30 will be assigned to all EIGRP- and RIP-learned routes.

The two methods of assigning metrics can also be used with each other. For example, suppose Lajoie were to
be configured to redistribute OSPF and RIP into EIGRP, but that RIP routes were to be advertised with a
different set of metrics than the OSPF routes. The configuration might be like Example 11-16.

Example 11-16. Lajoie's EIGRP configuration uses a metric with the redistribution command to assign
metrics to addresses redistributed from RIP, and uses the default metric command to assign the
EIGRP metric to all other redistributed addresses.

router eigrp 1
 redistribute ospf 1
 redistribute rip metric 50000 500 255 1 1500
 default-metric 10000 100 255 1 1500
 passive-interface Ethernet1
 network 172.20.0.0

The metrics assigned using the metric keyword with the redistribute command take precedence over metrics
assigned with the default-metric command. RIP-learned routes will be advertised into EIGRP with the metrics
specified on the redistribute rip line, and the OSPF-learned routes will be advertised with the metrics specified
by the default-metric command.

If neither the metric keyword nor the default-metric command specifies a metric, the metric will default to 20
for routes redistributed into OSPF and to 0 for routes redistributed into other protocols. The 0 metric will be
understood by IS-IS, but not by RIP, whose hop count must be between 1 and 16. The 0 metric is also
incompatible with the EIGRP multi-metric format. These two protocols must have the appropriate metrics
assigned to any redistributed routes, or redistribution will not work. The following case studies examine
techniques for configuring redistribution into the various IP IGPs. In addition, they are arranged so that the more



generic issues of redistributing classful to classful, classless to classless, and classless to classful can be
examined.

Case Study: Redistributing IGRP and RIP

In the network of Figure 11-8, Ford is running IGRP, and Berra is running RIP. Mantle's routing configuration is
shown in Example 11-17.

Figure 11-8. Ford is running IGRP, and Berra is running RIP. Mantle is performing redistribution.

[View full size image]

Example 11-17. Mantle is running both IGRP and RIP and performing redistribution between the two
protocols, using both the default metric and the metric assigned with the redistribution command.

router rip
 redistribute igrp 1 metric 5
 passive-interface Ethernet1
 network 10.0.0.0
!
router igrp 1
 redistribute rip
 default-metric 1000 100 255 1 1500
 passive-interface Ethernet0
 network 10.0.0.0

Both methods of assigning metrics are used here for demonstration purposes. In most cases, a redistribution
scheme as simple as this will use one method or the other.

Notice that Mantle is also connected to a stub network (192.168.10.0/24). In this case, the stub network should
be advertised into the IGRP domain, but not into the RIP domain. One way to accomplish this configuration is to
simply add the appropriate network statement under IGRP. However, doing so will create unnecessary IGRP
broadcasts on the stub network. Another way to achieve the desired configuration is to use redistribution as in
Example 11-18.

Example 11-18. Mantle redistributes the connected stub network into IGRP.

router rip
 redistribute igrp 1 metric 5
 passive-interface Ethernet1
 network 10.0.0.0
!
router igrp 1
 redistribute connected
 redistribute rip
 default-metric 1000 100 255 1 1500
 passive-interface Ethernet0
 network 10.0.0.0

The redistribute connected command will redistribute all directly connected networks. If network



192.168.10.0/24 is to be advertised into the IGRP domain and the RIP domain, the configuration would be as in
Example 11-19.

Example 11-19. Mantle's configuration shows the connected stub network advertised into both RIP,
assigning the metric during redistribution, and IGRP, assigning the metric using the default metric
command.

router rip
 redistribute connected metric 5
 redistribute igrp 1 metric 5
 passive-interface Ethernet1
 network 10.0.0.0
!
router igrp 1
 redistribute connected
 redistribute rip
 default-metric 1000 100 255 1 1500
 passive-interface Ethernet0
 network 10.0.0.0

Case Study: Redistributing EIGRP and OSPF

The network of Figure 11-9 has an OSPF domain and two EIGRP domains. Router Hodges is running OSPF
process 1. Podres is running EIGRP process 1, and on Snider and Campanella, EIGRP process 2 is running.

Figure 11-9. Hodges is running OSPF, and Podres is running EIGRP 1. Snider and Campanella are
running EIGRP 2.

[View full size image]

Robinson has the configuration in Example 11-20.

Example 11-20. Robinson is redistributing the EIGRP1, EIGRP2, and OSPF processes.

router eigrp 1
 redistribute ospf 1 metric 1000 100 1 255 1500
 redistribute eigrp 2 passive-interface FastEthernet0/0
 network 192.168.3.0
!
router eigrp 2
 redistribute ospf 1 metric 1000 100 1 255 1500
 redistribute eigrp 1 network 192.168.4.0
 network 172.16.0.0
!
router ospf 1
 redistribute eigrp 1
 redistribute eigrp 2 metric 100
 default-metric 50



 network 192.168.3.33 0.0.0.0 area 0

Notice that although redistribution must be configured between the EIGRP processes, no metrics are
configured. The processes use the same metrics, so the metrics can be tracked accurately across the
redistribution boundary. Example 11-21 shows Podres' route table. The redistributed routes are tagged as
EIGRP external routes.

Example 11-21. The route table of Podres in Figure 11-9.

Podres#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E  EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o  ODR
       P - periodic downloaded static route

Gateway of last resort is not set

172.16.0.0/16 is variably subnetted, 3 subnets, 3 masks
D EX    172.16.2.20/30 [170/2195456] via 192.168.3.129, 00:00:26, Ethernet0
D EX    172.16.0.0/16 [170/2195456] via 192.168.3.129, 00:00:26, Ethernet0
D EX    172.16.1.0/24 [170/2221056] via 192.168.3.129, 00:00:26, Ethernet0
     192.168.4.0/24 is variably subnetted, 3 subnets, 3 masks
D EX    192.168.4.72/29 [170/2221056] via 192.168.3.129, 00:00:26, Ethernet0
D EX    192.168.4.4/30 [170/2195456] via 192.168.3.129, 00:00:26, Ethernet0
D EX    192.168.4.0/24 [170/2195456] via 192.168.3.129, 00:00:27, Ethernet0
D EX 192.168.1.0/24 [170/2611200] via 192.168.3.129, 00:00:28, Ethernet0
C    192.168.2.0/24 is directly connected, Ethernet3
     192.168.3.0/24 is variably subnetted, 7 subnets, 2 masks
D EX    192.168.3.96/27 [170/2611200] via 192.168.3.129, 00:00:28, Ethernet0
D EX    192.168.3.64/27 [170/2611200] via 192.168.3.129, 00:00:28, Ethernet0
D       192.168.3.32/27 [90/284160] via 192.168.3.129, 00:00:35, Ethernet0
D       192.168.3.0/24 is a summary, 00:07:18, Null0
C       192.168.3.192/27 is directly connected, Ethernet2
C       192.168.3.160/27 is directly connected, Ethernet1
C       192.168.3.128/27 is directly connected, Ethernet0
Podres#

Example 11-22 shows Hodges' route table, which has some problems. Recall from Chapter 8, "OSPFv2," that
routes redistributed into OSPF are either type 1 (E1) or type 2 (E2) external routes. The only routes that seem to
have been redistributed, indicated by the E2 tag, are the major network addresses 192.168.2.0/24,
172.16.0.0/16, and 192.168.4.0/24. The reason for this is the absence of the subnets keyword in Robinson's
redistribution statements. Without this keyword, only major network addresses within the non-OSPF process will
be redistributed.

Example 11-22. The route table of Hodges contains only major network redistributed routes, indicated
by the E2 tag.

Hodges#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set



O E2 172.16.0.0/16 [110/100] via 192.168.3.33, 00:24:41, FastEthernet0/0
O E2 192.168.4.0/24 [110/100] via 192.168.3.33, 00:24:41, FastEthernet0/0
C    192.168.1.0/24 is directly connected, Serial0/0
O E2 192.168.2.0/24 [110/50] via 192.168.3.33, 00:02:57, FastEthernet0/0
     192.168.3.0/27 is subnetted, 3 subnets
C       192.168.3.96 is directly connected, Serial0/0
C       192.168.3.64 is directly connected, Serial0/0
C       192.168.3.32 is directly connected, FastEthernet0/0
Hodges#

Robinson's configuration is changed to include the subnets keyword as displayed in Example 11-23.

Example 11-23. Robinson uses the subnets keyword when redistributing routes into OSPF so that
subnets in addition to major network addresses will be redistributed.

router eigrp 1
 redistribute ospf 1 metric 1000 100 1 255 1500
 redistribute eigrp 2
 passive-interface FastEthernet0/0
 network 192.168.3.0
!
router eigrp 2
 redistribute ospf 1 metric 1000 100 1 255 1500
 redistribute eigrp 1
 network 192.168.4.0
 network 172.16.0.0
!
router ospf 1
 redistribute eigrp 1 subnets
 redistribute eigrp 2 metric 100 subnets
 default-metric 50 network 192.168.3.33 0.0.0.0 area 0

As a result of this change, the subnets in Figure 11-9 are in Hodges' route table (Example 11-24).

Example 11-24. After the subnets keyword is added to Robinson's redistribution configuration, Hodges
has knowledge of all subnets.

Hodges#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/16 is variably subnetted, 3 subnets, 3 masks
O E2    172.16.2.20/30 [110/100] via 192.168.3.33, 00:00:59, FastEthernet0/0
O E2    172.16.0.0/16 [110/100] via 192.168.3.33, 00:30:20, FastEthernet0/0
O E2    172.16.1.0/24 [110/100] via 192.168.3.33, 00:00:59, FastEthernet0/0
     192.168.4.0/24 is variably subnetted, 3 subnets, 3 masks
O E2    192.168.4.72/29 [110/100] via 192.168.3.33, 00:00:59, FastEthernet0/0
O E2    192.168.4.4/30 [110/100] via 192.168.3.33, 00:01:00, FastEthernet0/0
O E2    192.168.4.0/24 [110/100] via 192.168.3.33, 00:30:22, FastEthernet0/0
C    192.168.1.0/24 is directly connected, Serial0/0
O E2 192.168.2.0/24 [110/50] via 192.168.3.33, 00:08:38, FastEthernet0/0
     192.168.3.0/27 is subnetted, 6 subnets

C       192.168.3.96 is directly connected, Serial0/0
C       192.168.3.64 is directly connected, Serial0/0



C       192.168.3.32 is directly connected, FastEthernet0/0
O E2    192.168.3.192 [110/50] via 192.168.3.33, 00:01:12, FastEthernet0/0
O E2    192.168.3.160 [110/50] via 192.168.3.33, 00:01:12, FastEthernet0/0
O E2    192.168.3.128 [110/50] via 192.168.3.33, 00:01:12, FastEthernet0/0
Hodges#

By default, external routes are redistributed into OSPF as type 2 routes. As discussed in Chapter 8, E2 routes
include only the external cost of the route. This fact can be important when a single destination is reachable by
more than one external route, as shown in Figure 11-10. In this network, one router is redistributing the route to
10.2.3.0/24 with a cost of 50, and the other router is redistributing a different route to the same destination with
a cost of 100. If the routes are advertised as E2, the costs of the links within the OSPF domain will not be
added. As a result, the router internal to the OSPF domain will choose route 1 to reach 10.2.3.0/24.

Figure 11-10. If the routes to 10.2.3.0/24 are advertised as E2, route 1 will have a cost of 50 and route 2
will have a cost of 100. If the routes are advertised as E1, route 1 will have a cost of 150 and route 2

will have a cost of 110.

If the routes to 10.2.3.0/24 in Figure 11-10 are redistributed as E1, the costs of the links within the OSPF
domain will be added to the redistributed costs. As a result, the router internal to the OSPF domain would
choose route 2, with a cost of 110 (100 + 10) over route 1, with a cost of 150 (50 + 100).

Robinson, in Figure 11-9, is redistributing EIGRP 1 with a cost of 50 and redistributing EIGRP 2 with a cost of
100. Example 11-24 shows that, at Hodges, the routes to the EIGRP 1 subnets still have a cost of 50, and the
routes to the EIGRP 2 subnets still have a cost of 100. The cost of the FastEthernet link between Hodges and
Robinson has not been added to the routes.

To redistribute routes into OSPF as E1, the keyword metric-type 1 is added to the redistribution command. In
the configuration in Example 11-25, Robinson continues to redistribute EIGRP 1 as E2, but EIGRP 2 is
redistributed as E1.

Example 11-25. Robinson configures routes redistributed into OSPF from EIGRP2 as external type 1
routes.

router eigrp 1
 redistribute ospf 1 metric 1000 100 1 255 1500
 redistribute eigrp 2
 passive-interface FastEthernet0/0
 network 192.168.3.0
!
router eigrp 2
 redistribute ospf 1 metric 1000 100 1 255 1500
 redistribute eigrp 1
 network 192.168.4.0
 network 172.16.0.0
!



router ospf 1
 redistribute eigrp 1 subnets
 redistribute eigrp 2 metric 100 metric-type 1 subnets
 default-metric 50 network 192.168.3.33 0.0.0.0 area 0

Example 11-26 shows Hodges's route table after Robinson is reconfigured. All the routes to destinations within
the EIGRP 1 domain still have a cost of 50, but the routes to destinations within the EIGRP 2 domain now have
a cost of 101 (the redistributed cost plus the default cost of 1 for the FastEthernet link between Robinson and
Hodges).

Example 11-26. Robinson's configuration has been changed so that the subnets of 192.168.4.0 and
172.16.0.0 are being advertised as type 1 external routes.

Hodges#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/16 is variably subnetted, 3 subnets, 3 masks
O E1    172.16.2.20/30 [110/101] via 192.168.3.33, 09:01:00, FastEthernet0/0
O E1    172.16.0.0/16 [110/101] via 192.168.3.33, 00:01:02, FastEthernet0/0
O E1    172.16.1.0/24 [110/101] via 192.168.3.33, 09:01:00, FastEthernet0/0
     192.168.4.0/24 is variably subnetted, 3 subnets, 3 masks
O E1    192.168.4.72/29 [110/101] via 192.168.3.33, 00:00:57, FastEthernet0/0
O E1    192.168.4.4/30 [110/101] via 192.168.3.33, 00:01:03, FastEthernet0/0
O E1    192.168.4.0/24 [110/101] via 192.168.3.33, 00:01:03, FastEthernet0/0
C    192.168.1.0/24 is directly connected, Serial0/0
O E2 192.168.2.0/24 [110/50] via 192.168.3.33, 09:01:01, FastEthernet0/0
     192.168.3.0/27 is subnetted, 6 subnets
C       192.168.3.96 is directly connected, Serial0/0
C       192.168.3.64 is directly connected, Serial0/0
C       192.168.3.32 is directly connected, FastEthernet0/0
O E2    192.168.3.192 [110/50] via 192.168.3.33, 09:01:06, FastEthernet0/0
O E2    192.168.3.160 [110/50] via 192.168.3.33, 09:01:06, FastEthernet0/0
O E2    192.168.3.128 [110/50] via 192.168.3.33, 09:01:06, FastEthernet0/0
Hodges#

Case Study: Redistribution and Route Summarization

The Cisco EIGRP, OSPFv2, OSPFv3, and IS-IS implementations have the capability to summarize redistributed
routes. This case study examines summarization for EIGRP and OSPF for IPv4; the following two case studies
examine OSPFv3 for IPv6 and IS-IS summarization.

The first thing to note is that summarization is useful only if the IP subnet addresses have been planned for
summarization. For example, the subnets of 192.168.3.0 within the OSPF domain in Figure 11-9 all fall under the
summary address 192.168.3.0/25. The subnets of the same major address within the EIGRP 1 domain all fall
under the summary address 192.168.3.128/25. If subnet 192.168.3.0/27 were to be connected to Podres, that
single destination would have to be advertised separately from the summary address. Although advertising such
a single destination will have little adverse impact, advertising a large number of subnets outside of the range of
the summary address will reduce the benefits of summarization.

The command summary-address specifies a summary address and mask to an OSPF process. Any more-
specific subnet addresses that fall within the range of the specified summary address will be suppressed. Note
that this command is used only to summarize external routes at ASBRs; summarization of internal OSPF routes
at ABRs is accomplished with the area range command, as discussed in Chapter 8.



At Robinson in Figure 11-9, the EIGRP 1 subnets are summarized into the OSPF domain with 192.168.3.128/25,
and the EIGRP 2 subnets are summarized with 172.16.0.0/16, as displayed in Example 11-27.

Example 11-27. Robinson summarizes external addresses advertised into OSPF.

router eigrp 1
 redistribute ospf 1 metric 1000 100 1 255 1500
 redistribute eigrp 2
 passive-interface FastEthernet0/0
 network 192.168.3.0
!
router eigrp 2
 redistribute eigrp 1
 network 192.168.4.0
 network 172.16.0.0
!
router ospf 1
 summary-address 192.168.3.128 255.255.255.128
 summary-address 172.16.0.0 255.255.0.0
 redistribute eigrp 1 subnets
 redistribute eigrp 2 metric 100 metric-type 1 subnets
 default-metric 50
 network 192.168.3.33 0.0.0.0 area 0

Compare Example 11-28 with Example 11-26. In Example 11-28, Hodges' route table contains the specified
summary addresses. The subnet addresses within the summary range have been suppressed at the
redistribution point. Notice, also, that no summarization was configured for 192.168.4.0/24, so the subnets of
that major address are still in the route table.

Example 11-28. Robinson is summarizing 192.168.3.128/25 and 172.16.0.0/16, so no more-specific
subnets within those ranges appear in the route table of Hodges.

Hodges#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
O E1 172.16.0.0/16 [110/101] via 192.168.3.33, 00:11:55, FastEthernet0/0
     192.168.4.0/24 is variably subnetted, 3 subnets, 3 masks
O E1    192.168.4.72/29 [110/101] via 192.168.3.33, 00:03:56, FastEthernet0/0
O E1    192.168.4.4/30 [110/101] via 192.168.3.33, 00:11:55, FastEthernet0/0
O E1    192.168.4.0/24 [110/101] via 192.168.3.33, 00:11:55, FastEthernet0/0
C    192.168.1.0/24 is directly connected, Serial0/0
O E2 192.168.2.0/24 [110/50] via 192.168.3.33, 00:03:57, FastEthernet0/0
     192.168.3.0/24 is variably subnetted, 4 subnets, 2 masks
C       192.168.3.96/27 is directly connected, Serial0/0
C       192.168.3.64/27 is directly connected, Serial0/0
C       192.168.3.32/27 is directly connected, FastEthernet0/0
O E2    192.168.3.128/25 [110/50] via 192.168.3.33, 00:00:37, FastEthernet0/0

Summarization for EIGRP is interface-specific. That is, instead of specifying the summary address and mask
under the routing process, they are specified under individual interfaces. This system provides the flexibility to
advertise different summary routes out different interfaces of the same process. The command ip summary-
address eigrp process-id specifies the summary address and mask and the EIGRP process into which the
summary is to be advertised.



In the configuration in Example 11-29, Robinson will advertise summary addresses 192.168.3.0/25,
172.16.0.0/16, and 192.168.4.0/24 into EIGRP 1.

Example 11-29. Robinson summarizes routes advertised into EIGRP 1.

interface FastEthernet0/0
 ip address 192.168.3.33 255.255.255.224
!
interface FastEthernet0/1
 ip address 192.168.3.129 255.255.255.224
 ip summary-address eigrp 1 192.168.3.0 255.255.255.128
 ip summary-address eigrp 1 172.16.0.0 255.255.0.0
 ip summary-address eigrp 1 192.168.4.0 255.255.255.0
!
interface Serial0/0.1
 ip address 192.168.4.5 255.255.255.252
 ip summary-address eigrp 2 192.168.3.0 255.255.255.0
!
interface Serial0/0.2
 ip address 172.16.2.21 255.255.255.252
 ip summary-address eigrp 2 192.168.0.0 255.255.0.0
!
router eigrp 1
 redistribute ospf 1 metric 1000 100 1 255 1500
 redistribute eigrp 2
 passive-interface FastEthernet0/0
 network 192.168.3.0
!
router eigrp 2
 redistribute eigrp 1
 network 192.168.4.0
 network 172.16.0.0
!
router ospf 1
 summary-address 192.168.3.128 255.255.255.128
 summary-address 172.16.0.0 255.255.0.0
 redistribute eigrp 1 subnets
 redistribute eigrp 2 metric 100 metric-type 1 subnets
 default-metric 50
 network 192.168.3.33 0.0.0.0 area 0

Example 11-30 shows the route table of Podres. As with OSPF summarization, EIGRP summarization
suppresses the advertisement of subnets within the summary range. Unlike OSPF, Podres' route table shows
that summary routes advertised into EIGRP are not tagged as external routes.

Example 11-30. The route table of Podres, showing summary routes 192.168.3.0/25, 192.168.4.0/24, and
172.16.0.0/16.

Podres#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E  EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o  ODR
       P - periodic downloaded static route
Gateway of last resort is not set
D    172.16.0.0/16 [90/2195456] via 192.168.3.129, 00:00:12, Ethernet0
D    192.168.4.0/24 [90/2195456] via 192.168.3.129, 00:00:12, Ethernet0
D EX 192.168.1.0/24 [170/2611200] via 192.168.3.129, 00:00:12, Ethernet0
C    192.168.2.0/24 is directly connected, Ethernet3



     192.168.3.0/24 is variably subnetted, 6 subnets, 3 masks
D       192.168.3.0/25 [90/284160] via 192.168.3.129, 00:00:12, Ethernet0
D       192.168.3.0/24 is a summary, 00:00:12, Null0
C       192.168.3.192/27 is directly connected, Ethernet2
C       192.168.3.160/27 is directly connected, Ethernet1
D EX    192.168.3.128/25 [170/2611200] via 192.168.3.129, 00:00:13, Ethernet0
C       192.168.3.128/27 is directly connected, Ethernet0
D EX 192.168.0.0/16 [170/284160] via 192.168.3.129, 00:00:13, Ethernet0
Podres#

Robinson is advertising EIGRP summary routes of 192.168.3.0/24 to Campanella and 192.168.0.0/16 to Snider.
Example 11-31 shows Campanella's route table, and Example 11-32 shows Snider's route table.

Example 11-31. Campanella's route table after summarization is configured at Robinson.

Campanella#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E  EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o  ODR
       P - periodic downloaded static route
Gateway of last resort is not set
D EX 172.16.0.0/16 [170/2681856] via 192.168.4.5, 00:35:12, Serial0.1
     192.168.4.0/24 is variably subnetted, 3 subnets, 3 masks
C       192.168.4.72/29 is directly connected, Ethernet0
C       192.168.4.4/30 is directly connected, Serial0.1
D EX    192.168.4.0/24 [170/2681856] via 192.168.4.5, 00:35:12, Serial0.1
D EX 192.168.1.0/24 [170/3097600] via 192.168.4.5, 00:35:12, Serial0.1
D EX 192.168.2.0/24 [170/2300416] via 192.168.4.5, 00:35:12, Serial0.1
D    192.168.3.0/24 [90/2172416] via 192.168.4.5, 00:35:13, Serial0.1
Campanella#

Example 11-32. Snider's route table after summarization is configured at Robinson.

Snider#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/16 is variably subnetted, 3 subnets, 3 masks
C       172.16.2.20/30 is directly connected, Serial0/0.1
D EX    172.16.0.0/16 [170/2681856] via 172.16.2.21, 00:07:59, Serial0/0.1
C       172.16.1.0/24 is directly connected, Ethernet0/0
D    192.168.0.0/16 [90/2195456] via 172.16.2.21, 00:07:59, Serial0/0.1
Snider#

Looking again at Example 11-30, notice the entry for the summary route 192.168.3.128/25. This entry might
surprise you because that summary address is advertised into OSPF, not EIGRP. Notice also that the route is
marked as an external route, indicating that it was redistributed into the EIGRP domain. What has happened is
that the summary route was advertised into OSPF and was then redistributed back into EIGRP from the OSPF
domain. Hence, the unexpected entry at Podres. This is the same reason why you see 172.16.0.0/16 and
192.168.4.0/24 as external routes on Campanella. These summary addresses are advertised to Podres, in
EIGRP 1, and then redistributed back into EIGRP 2. Snider's route table shows the route to 172.16.0.0/16, but



not 192.168.4.0/24, because Snider has an entry for the summarized address 192.168.0.0/16.

Now suppose subnet 192.168.3.192/27 were to become inaccessible. Podres would forward packets destined
for that subnet to the less-specific route 192.168.3.128/25. The packet would be sent into the OSPF domain,
where you might expect the summary route 192.168.3.128/25 to cause the packet to be sent right back to
Podres.

In fact, this situation will not occur.

Robinson's route table (Example 11-33) has numerous entries for summary routes that show interface Null0 as a
connected interface. The null interface is a software-only interface to nowherepackets routed to it are dropped.
With some exceptions,[2] whenever a router generates a summary address, the router will also create a route
for that address that goes to the null interface. If Robinson receives a packet destined for 192.168.3.192/27 and
that subnet is no longer reachable, the router will forward the packet to the null interface. The routing loop is
broken in one hop.

[2] In some older versions of IOS, OSPF inter-area summarization, for example, does not automatically
create a summary route to the null interface. It must be configured statically.

Example 11-33. Robinson's route table. Because the router is originating many summary routes, there
are many entries for summaries whose connected interface is Null0. This is a safeguard against
routing loops.

Robinson#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E  EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o  ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/16 is variably subnetted, 3 subnets, 3 masks
C       172.16.2.20/30 is directly connected, Serial0/0.2
D       172.16.0.0/16 is a summary, 00:19:44, Null0
D       172.16.1.0/24 [90/2195456] via 172.16.2.22, 00:17:08, Serial0/0.2
     192.168.4.0/24 is variably subnetted, 3 subnets, 3 masks
D       192.168.4.72/29 [90/2172416] via 192.168.4.6, 00:15:17, Serial0/0.1
C       192.168.4.4/30 is directly connected, Serial0/0.1
D       192.168.4.0/24 is a summary, 00:20:53, Null0
O    192.168.1.0/24 [110/74] via 192.168.3.34, 00:21:14, FastEthernet0/0
D    192.168.2.0/24 [90/665600] via 192.168.3.130, 00:19:41, FastEthernet0/1
     192.168.3.0/24 is variably subnetted, 8 subnets, 3 masks
O       192.168.3.96/27 [110/74] via 192.168.3.34, 00:21:15, FastEthernet0/0
O       192.168.3.64/27 [110/74] via 192.168.3.34, 00:21:15, FastEthernet0/0
C       192.168.3.32/27 is directly connected, FastEthernet0/0
D       192.168.3.0/24 is a summary, 00:19:01, Null0
D       192.168.3.0/25 is a summary, 00:19:47, Null0
D       192.168.3.192/27 [90/665600] via 192.168.3.130, 00:19:42, FastEthernet0/1
D       192.168.3.160/27 [90/665600] via 192.168.3.130, 00:19:42, FastEthernet0/1
C       192.168.3.128/27 is directly connected, FastEthernet0/1
D    192.168.0.0/16 is a summary, 00:19:00, Null0
Robinson#

Summary routes to null interfaces are very helpful for preventing loops, and their use is described in greater
detail in Chapter 12, "Default Routes and On-Demand Routing." However, the redistribution of incorrect routing
information should not be allowed to happen at all. Suppose that instead of being one hop away from Robinson,
Podres is 10 hops away. The misdirected packet would have to travel a long way before being dropped. This
example demonstrates the need to carefully regulate route advertisements when using mutual redistributionthat
is, when two routing protocols are redistributing their routes into each other. In such cases the use of route
filters, described in Chapter 13, "Route Filtering," or route maps, as described in Chapter 14, "Route Maps," is
essential.



The previous scenario also demonstrates the trade-off of using summarization. Although the size of the route
table is reduced, saving memory and processor cycles, route precision is also reduced. As the network grows
more complex, that loss of detail increases the possibility of routing errors.

Case Study: Redistributing OSPFv3 and RIPng

IPv6 is running on the network in Figure 11-11. Router Griffey is the connection point between three distinct
networks. Two networks are running OSPFv3, the other is running RIPng. Routes are redistributed between the
routing processes by Griffey.

Figure 11-11. IPv6 is being routed with both OSPFv3 and RIPng, and a single router is redistributing
between the routing protocols.

[View full size image]

Griffey's configuration is displayed in Example 11-34.

Example 11-34. Griffey is configured with IPv6, OSPFv3 process 1, OSPFv3 process 2, and RIPng, and
is redistributing between the processes.

interface Ethernet 0/0
 ipv6 address 2001:db8:0:21::1/64
 ipv6 rip Mariners enable
!
interface Serial 0/0.1 point-to-point
 ipv6 address 2001:db8:0:31::1/64
 ipv6 ospf 1 area 1
!
interface Serial 0/0.4 point-to-point
 ipv6 address 2001:db8:0:30::1/64
 ipv6 ospf 2 area 20
!
ipv6 router ospf 1
 redistribute rip Mariners metric-type 1 tag 4
!
ipv6 router ospf 2
 redistribute rip Mariners
!
ipv6 router rip Mariners
 redistribute ospf 1 metric 5
 redistribute ospf 2 metric 10

Griffey is redistributing routes known via the RIPng process called Mariners into OSPFv3 process ID 1 with a
metric-type of external, type 1. Also, a tag value of 4 is added to these routes. The tag can later be used to
identify routes advertised by this RIPng process. Boone's IPv6 route table (Example 11-35) shows these routes.



Example 11-35. IPv6 route table shows routes redistributed into OSPF from RIP, with a tag of 4 and
external type 1 metrics.

Boone#show ipv6 route ospf
IPv6 Routing Table - 26 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
OE1  2001:DB8:0:22::/64 [110/84], tag 4
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE1  2001:DB8:0:23::/64 [110/84], tag 4
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE1  2001:DB8:0:24::/64 [110/84], tag 4
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE1  2001:DB8:0:25::/64 [110/84], tag 4
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE1  2001:DB8:0:26::/64 [110/84], tag 4
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE1  2001:DB8:0:27::/64 [110/84], tag 4
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
Boone#

Griffey advertises the RIPng routes into OSPFv3 process ID 2 with the default metric-type (external type 2) and
no tag value. Garcia's route table (Example 11-36) shows the redistributed routes.

Example 11-36. IPv6 route table shows redistributed routes with the default metric-type of external
type 2.

Garcia#show ipv6 route ospf
IPv6 Routing Table - 26 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
OE2  2001:DB8:0:22::/64 [110/20]
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE2  2001:DB8:0:23::/64 [110/20]
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE2  2001:DB8:0:24::/64 [110/20]
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE2  2001:DB8:0:25::/64 [110/20]
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE2  2001:DB8:0:26::/64 [110/20]
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
OE2  2001:DB8:0:27::/64 [110/20]
     via  FE80::207:85FF:FE6B:EA20, Serial0/0.1
Garcia#

The subnets keyword is not used with OSPFv3 for IPv6. All IPv6 routing protocols include IPv6 prefixes, which
always include the address and the prefix length. Redistribution between protocols includes all prefixes unless
filtering is performed to limit the prefixes advertised. Route filtering is discussed in Chapter 13 and Chapter 14.

Griffey also redistributes the routes known via both OSPFv3 processes into RIPng. OSPF 1 routes are
advertised with a metric of 5 and OSPF 2 routes are advertised with a metric of 10. Example 11-37 shows
Suzuki's IPv6 route table.

Example 11-37. The RIPng route table shows routes redistributed into RIPng with different metrics.



Suzuki#show ipv6 route rip
IPv6 Routing Table - 19 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R   2001:DB8:0:11::/64 [120/11]
     via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R   2001:DB8:0:12::/64 [120/11]
     via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R   2001:DB8:0:13::/64 [120/11]
     via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R   2001:DB8:0:14::/64 [120/11]
     via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R   2001:DB8:0:AA01::/64 [120/6]
     via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R   2001:DB8:0:AA02::/64 [120/6]
     via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R   2001:DB8:0:AA03::/64 [120/6]
     via FE80::207:85FF:FE6B:EA20, Ethernet0/0
Suzuki#

The routes from Boone have a metric of 6 and the routes from Garcia have a metric of 11.

Route summarization is now going to be configured on Griffey. RIPng does not have a method for summarizing
the routes that are advertised into it when redistributing from another protocol, but Griffey's Ethernet interface
connecting to Suzuki can be configured to summarize the RIPng prefixes that are advertised out the interface.
OSPFv3 summarizes the RIPng prefixes as they are redistributed into the routing process. Griffey's configuration
is displayed in Example 11-38.

Example 11-38. Griffey summarizes RIPng routes as they are advertised out Ethernet0/0, and also
summarizes routes as they are redistributed into OSPFv3.

interface Ethernet 0/0
 ipv6 address 2001:db8:0:21::1/64
 ipv6 rip Mariners enable
 ipv6 rip Mariners summary-address 2001:DB8:0:AA00::/62
 ipv6 rip Mariners summary-address 2001:DB8:0:10::/61
!
interface Serial 0/0.1 point-to-point
 ipv6 address 2001:db8:0:31::1/64
 ipv6 ospf 1 area 1
!
interface Serial 0/0.4 point-to-point
 ipv6 address 2001:db8:0:30::1/64
 ipv6 ospf 2 area 20
!
ipv6 router ospf 1
 redistribute rip Mariners metric-type 1 tag 4
 summary-prefix 2001:DB8:0:20::/61 tag 4
!
ipv6 router ospf 2
 redistribute rip Mariners
 summary-prefix 2001:DB8:0:20::/61
!
ipv6 router rip Mariners
 redistribute ospf 1 metric 5
 redistribute ospf 2 metric 10



The new route tables show the summarized routes and show that the more specific routes have been removed
(Example 11-39).

Example 11-39. Route tables include summarized routes but no longer include the more specific
routes that fall into the summarized range.

Boone#show ipv6 route ospf
IPv6 Routing Table - 21 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
OE1  2001:DB8:0:20::/61 [110/84], tag 4
     via FE80::207:85FF:FE6B:EA20, Serial0/0.1
Boone#
___________________________________________________________________________
Garcia#show ipv6 route ospf
IPv6 Routing Table - 21 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
OE2  2001:DB8:0:20::/61 [110/20]
     via FE80::207:85FF:FE6B:EA20, Serial0/0.1
Garcia#
___________________________________________________________________________
Suzuki#show ipv6 route rip
IPv6 Routing Table - 19 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R    2001:DB8:0:10::/61 [120/11]
      via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R    2001:DB8:0:20::/61 [120/6]
      via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R    2001:DB8:0:AA00::/62 [120/6]
      via FE80::207:85FF:FE6B:EA20, Ethernet0/0
Suzuki#

Notice that the summary route 2001:db8:0:20::/61 is being advertised by Griffey to Suzuki. This is the summary
route created for the prefixes advertised into OSPFv3. This summary route is being advertised from OSPF back
into RIPng. The routers in the RIPng domain will still be able to route to the more specific prefixes correctly.
Suzuki's full IPv6 route table (Example 11-40) shows that the prefixes that are included in the summary
2001:db8:0:20::/61 are directly connected to the router. The router will forward traffic to the more specific
prefixes, rather than to the summary. A downside of having this summary re-advertised back into the RIPng
domain is that packets destined to an address that falls into the summary range, but does not actually exist in
the network, will get forwarded to Griffey before being dropped. The route can be filtered during route
redistribution so that only prefixes known to reside in the OSPFv3 domain are advertised into the RIPng domain.
Route filtering during redistribution is discussed in Chapter 13 and Chapter 14.

Example 11-40. Suzuki's RIPng route table shows a summary route and more specific routes that fall
within the summary route's range. The router will forward traffic to the more specific routes when
possible.

Suzuki#show ipv6 route
IPv6 Routing Table - 19 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route



       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R    2001:DB8:0:10::/61 [120/11]
      via FE80::207:85FF:FE6B:EA20, Ethernet0/0
R    2001:DB8:0:20::/61 [120/6]
      via FE80::207:85FF:FE6B:EA20, Ethernet0/0
C    2001:DB8:0:21::/64 [0/0]
      via ::, Ethernet0/0
L    2001:DB8:0:21::2/128 [0/0]
      via ::, Ethernet0/0
C    2001:DB8:0:22::/64 [0/0]
      via ::, Serial0/0
L    2001:DB8:0:22::1/128 [0/0]
      via ::, Serial0/0
C    2001:DB8:0:23::/64 [0/0]
      via ::, Serial0/0
L    2001:DB8:0:23::1/128 [0/0]
      via ::, Serial0/0
C    2001:DB8:0:24::/64 [0/0]
      via ::, Serial0/0
L    2001:DB8:0:24::1/128 [0/0]
      via ::, Serial0/0
C    2001:DB8:0:25::/64 [0/0]
      via ::, Serial0/0
L    2001:DB8:0:25::1/128 [0/0]
      via ::, Serial0/0
C    2001:DB8:0:26::/64 [0/0]
      via ::, Serial0/0
L    2001:DB8:0:26::1/128 [0/0]
      via ::, Serial0/0
C    2001:DB8:0:27::/64 [0/0]
      via ::, Serial0/0
L    2001:DB8:0:27::1/128 [0/0]
      via ::, Serial0/0
R    2001:DB8:0:AA00::/62 [120/6]
      via FE80::207:85FF:FE6B:EA20, Ethernet0/0
L    FE80::/10 [0/0]
      via ::, Null0
L    FF00::/8 [0/0]
      via ::, Null0
Suzuki#

Case Study: Redistributing IS-IS and RIP/RIPng

In the network of Figure 11-12, Aaron is running IS-IS, Williams is running RIPv1 for IPv4 and RIPng for IPv6,
and Mays is redistributing.

Figure 11-12. Router Mays is redistributing RIP into IS-IS and IS-IS into RIP.

[View full size image]

Mays's IS-IS and RIP IPv4 and IPv6 configuration is displayed in Example 11-41.

Example 11-41. Mays is configured for IS-IS, RIP, and RIPng.



interface Ethernet1
 description to Williams
 ip address 10.2.1.1 255.255.255.0
 ipv6 address 2001:db8:0:21::1/64
 ipv6 rip baseball enable
!
interface Ethernet0
 description to Aaron
 ip address 10.1.4.2 255.255.255.0
 ip router isis
 ipv6 address 2001:db8:0:14::2/64
 ipv6 router isis
router rip
 passive-interface Ethernet0
 network 10.0.0.0
 redistribute isis level-1-2 metric 1
!
router isis
 net 01.0001.0000.0c76.5432.00
 redistribute rip metric 0 metric-type internal level-2
 address-family ipv6
  redistribute rip baseball metric 0 metric-type internal level-2
!
ipv6 router rip baseball
 redistribute isis level-1-2 metric 1

Routes may be redistributed into IS-IS with either internal or external metrics (internal is the default) and as
either level 1 or level 2 routes (level 2 is the default). The metric type determines the base metric value of the
redistributed routes. The metric value of an internal metric type will be lower then 64. The metric value of an
external metric will be between 64 and 128. If the metric type is internal, the initial metric of the redistributed
route will be the number specified by the metric value (0 in this example), or 0 if no metric is specified. The
redistributed route in this example gets added to Mays's IS-IS database entry with a metric of 0. If the metric
value of 5 were specified, the entry in Mays's IS-IS database would be 5. An external type of metric starts with a
base value of 64. If the metric value of 5 is specified, the metric value for the entry in Mays's IS-IS database
would be 64 + 5, or 69. In the example shown, the RIP routes are redistributed as internal, level 2 routes with
the default metric of 0. Example 11-42 shows the redistributed routes in Aaron's IPv4 route table, and Example
11-43 shows the redistributed route in the IPv6 route table.

Example 11-42. Aaron's IPv4 route table shows the redistributed RIP routes.

Aaron#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks
C     10.1.3.0/24 is directly connected, Ethernet4
i L2  10.2.1.0/24 [115/10] via 10.1.4.2, Ethernet0
i L2  10.2.2.0/24 [115/10] via 10.1.4.2, Ethernet0
C     10.1.1.0/24 is directly connected, Ethernet1
C     10.1.4.0/24 is directly connected, Ethernet0
C     10.1.2.160/28 is directly connected, Ethernet2
C     10.1.2.224/28 is directly connected, Ethernet3
Aaron#



Example 11-43. Aaron's IPv6 route table shows the redistributed RIP routes.

Aaron#show ipv6 route isis
IPv6 Routing Table - 13 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
I2 2001:DB8:0:22::/64 [115/10]
    via FE80::204:C1FF:FE50:E700, Ethernet0
Aaron#

The IPv6 route table on Aaron shows that the address connected to Mays, 2001:db8:0:21::/64, is not advertised
into IS-IS. An additional command, redistribute connected, is added to Mays in Example 11-44 to redistribute
the connected addresses, and the resulting IPv6 route table is shown in Example 11-45.

Example 11-44. redistribute connected is added to Mays, so the directly connected IPv6 prefix can be
advertised into IS-IS.

router isis
 net 01.0001.0000.0c76.5432.00
 redistribute rip metric 0 metric-type internal level-2
 address-family ipv6
  redistribute rip baseball metric 0 metric-type internal level-2
  redistribute connected metric 0 metric-type internal level-2
!
ipv6 router rip baseball
 redistribute isis level-1-2 metric 1
 redistribute connected metric 1

Example 11-45. Aaron's IPv6 route table shows redistributed RIP and connected addresses.

Aaron#show ipv6 route isis
IPv6 Routing Table - 14 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
I2  2001:DB8:0:21::/64 [115/10]
     via FE80::204:C1FF:FE50:E700, Ethernet0
I2  2001:DB8:0:22::/64 [115/10]
     via FE80::204:C1FF:FE50:E700, Ethernet0
Aaron#

Because the RIP routes are external to the IS-IS routing domain, it is best to reflect this by having them
redistributed into the domain as external routes, as in Example 11-46.

Example 11-46. Mays configures the routes redistributed from RIP to IS-IS to external routes.

router isis
 redistribute rip metric 0 metric-type external level-2
 net 01.0001.0000.0c76.5432.00
 address-family ipv6
  redistribute rip baseball metric 0 metric-type external level-2



  redistribute connected metric 0 metric-type external level-2
!
router rip
 redistribute isis level-1-2 metric 1
 passive-interface Ethernet0
 network 10.0.0.0
!
ipv6 router rip baseball
 redistribute isis level-1-2 metric 1
 redistribute connected metric 1

Example 11-47 shows Aaron's IPv4 route table after the change. The only change from Example 11-42 is that
the metrics of the redistributed routes have increased to greater than 64, indicating (in this small network)
external routes. Example 11-48 displays the IS-IS database entry for Mays. The entries for the redistributed
routes are shown as IP-External and IPv6-Ext.

Example 11-47. The metrics of the routes to 10.2.1.0/24 and 10.2.2.0/24 change to 138 after the routes
are advertised as external.

Aaron#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B  BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
       10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks
C         10.1.3.0/24 is directly connected, Ethernet4
i L2      10.2.1.0/24 [115/74] via 10.1.4.2, Ethernet0
i L2      10.2.2.0/24 [115/74] via 10.1.4.2, Ethernet0
C         10.1.1.0/24 is directly connected, Ethernet1
C         10.1.4.0/24 is directly connected, Ethernet0
C         10.1.2.160/28 is directly connected, Ethernet2
C         10.1.2.224/28 is directly connected, Ethernet3
Aaron#

Example 11-48. Redistributed routes are displayed as IP-External and IPv6-Ext in Mays's IS-IS
database.

Mays# show isis database detail level-2 Mays.00-00
IS-IS Level-2 LSP Mays.00-00
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime     ATT/P/OL
Mays.00-00          * 0x0000005F   0xA0E5        1186             0/0/0
  Area Address: 01.0001
  NLPID:        0xCC 0x8E
  Hostname:     Mays
  IP Address:   10.1.4.2
  IPv6 Address: 2001:DB8:0:14::2
  Metric:10          IS Aaron.00
  Metric:20          IP 10.1.3.0 255.255.255.0
  Metric:64          IP-External 10.2.1.0 255.255.255.0
  Metric:64          IP-External 10.2.2.0 255.255.255.0
  Metric:20          IP 10.1.1.0 255.255.255.0
  Metric:10          IP 10.1.4.0 255.255.255.0
  Metric:20          IP 10.1.2.160 255.255.255.240
  Metric:20          IP 10.1.2.224 255.255.255.240
  Metric:20          IPv6 2001:DB8:0:11::/64
  Metric:20          IPv6 2001:DB8:0:13::/64



  Metric:10          IPv6 2001:DB8:0:14::/64
  Metric:0           IPv6-Ext 2001:DB8:0:21::/64
  Metric:0           IPv6-Ext 2001:DB8:0:22::/64
  Metric:20          IPv6 2001:DB8:0:12A::/64
  Metric:20          IPv6 2001:DB8:0:12B::/64
Mays#

Another look at Figure 11-12 shows that both subnets of the RIP domain, IPv4 and IPv6, can be summarized
with a single address of 10.2.0.0/16 and 2001:db8:0:20::/62. IPv4 route summarization into IS-IS is configured
with the same summary-address command that is used with OSPF. However, the level into which the
summary is being sent can also be specified. If the level is not specified, the addresses will be summarized into
level 2. As with OSPFv3 for IPv6, IPv6 routes are summarized into IS-IS using the summary-prefix command
for the IPv6 address-family. In the configuration in Example 11-49, RIP IPv4 routes are redistributed as level 1
and summarized, and RIPng IPv6 routes are redistributed as level 2 and summarized.

Example 11-49. Mays summarizes the RIP routes after they have been redistributed into IS-IS.

router isis
 summary-address 10.2.0.0 255.255.0.0 level-1
 redistribute rip metric 0 metric-type external level-1
 net 01.0001.0000.0c76.5432.00
 address-family ipv6
  redistribute rip baseball metric 0 metric-type external level-2
  redistribute connected metric 0 metric-type external level-2
  summary-prefix 2001:db8:0:20::/62 level-2
router rip
 redistribute isis level-1-2 metric 1
 passive-interface Ethernet0
 network 10.0.0.0
!
ipv6 router rip baseball
 redistribute isis level-1-2 metric 1
 redistribute connected metric 1

Example 11-50 shows the summary route in Aaron's IPv4 route table. Example 11-51 shows Aaron's IPv6 route
table. Like OSPF and EIGRP, the summarization causes more-specific routes in the summary range to be
suppressed.

Example 11-50. Aaron's IPv4 route table with a level-1 summary route to the subnets within the RIP
domain.

Aaron#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 6 subnets, 3 masks
i L1    10.2.0.0/16 [115/138] via 10.1.4.2, Ethernet0
C       10.1.3.0/24 is directly connected, Ethernet4
C       10.1.1.0/24 is directly connected, Ethernet1
C       10.1.4.0/24 is directly connected, Ethernet0
C       10.1.2.160/28 is directly connected, Ethernet2
C       10.1.2.224/28 is directly connected, Ethernet3
Aaron#



Example 11-51. Aaron's IPv6 route table with a level-2 summary route to the subnets within the RIP
domain.

Aaron#show ipv6 route isis
IPv6 Routing Table - 13 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
I2  2001:DB8:0:20::/62 [115/10]
     via FE80::204:C1FF:FE50:E700, Ethernet0
Aaron#

When IS-IS is redistributed into another protocol, the route level to be redistributed must be specified. In the
examples shown so far, both level 1 and level 2 routes have been specified to be redistributed into RIP.

Case Study: Redistributing Static Routes

Example 11-52 shows the route table of Williams in Figure 11-12. Notice that subnets 10.1.2.160/28 and
10.1.2.224/28 are missing; their subnet masks are inconsistent with the 24-bit mask configured on Mays's E1
interface, so the routes have not been included in the RIP updates sent out that interface. This scenario again
illustrates the problem of redistributing variably subnetted routes from a classless protocol into a classful
protocol, as discussed earlier in this chapter.

Example 11-52. The routes with subnets other than /24 are not redistributed into the RIP domain.

Williams#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
     10.0.0.0/8 is subnetted, 5 subnets
R       10.1.3.0 [120/1] via 10.2.1.2, 00:00:01, Ethernet0
C       10.2.1.0 is directly connected, Ethernet0
R       10.1.1.0 [120/1] via 10.2.1.2, 00:00:02, Ethernet0
C       10.2.2.0 is directly connected, Ethernet1
R       10.1.4.0 [120/1] via 10.2.1.2, 00:00:02, Ethernet0
Williams#

A solution to this problem is to summarize the two 28-bit subnets with a single 24-bit address of 10.1.2.0/24. RIP
does not have a summarization command, so the way to accomplish summarization is to configure a static route
to the summary address and then redistribute that route into RIP, as displayed in Example 11-53.

Example 11-53. Mays is configured with a static route to create a summarized route for IPv4 subnets.
The static route is redistributed into RIP.

router isis
 summary-address 10.2.0.0 255.255.0.0 level-1
 redistribute rip metric 0 metric-type external level-1
 net 01.0001.0000.0c76.5432.00
!
router rip
 redistribute static metric 1
 redistribute isis level-1-2 metric 1
 passive-interface Ethernet0



 network 10.0.0.0
!
ip route 10.1.2.0 255.255.255.0 10.1.4.1

Example 11-54 shows Williams's route table with the summary route included.

Example 11-54. Subnets 10.1.2.160/28 and 10.1.2.224/28 have been summarized with the address
10.1.2.0/24.

Williams#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
   10.0.0.0/8 is subnetted, 6 subnets
R    10.1.3.0 [120/1] via 10.2.1.2, 00:00:03, Ethernet0
R    10.1.2.0 [120/1] via 10.2.1.2, 00:00:03, Ethernet0
C    10.2.1.0 is directly connected, Ethernet0
R    10.1.1.0 [120/1] via 10.2.1.2, 00:00:03, Ethernet0
C    10.2.2.0 is directly connected, Ethernet1
R    10.1.4.0 [120/1] via 10.2.1.2, 00:00:03, Ethernet0
Williams#

As discussed in Chapter 3, a variant of the static route is an entry that points to an outgoing interface instead of
a next-hop address. These static routes can also be redistributed, but the configuration is somewhat different.
For example, the configuration of Mays can be as displayed in Example 11-55.

Example 11-55. Mays is configured with a static route pointing out an interface rather then to a next-
hop address.

router isis
 summary-address 10.2.0.0 255.255.0.0 level-1
 redistribute rip metric 0 metric-type external level-1
 net 01.0001.0000.0c76.5432.00
!
router rip
 redistribute isis level-1-2 metric 1
 passive-interface Ethernet0
 network 10.0.0.0
!
ip route 10.1.2.0 255.255.255.0 Ethernet0

Here the static route now points to Mays's E0 interface instead of to the next-hop address 10.1.4.1. Also, the
redistribute static command is no longer used under the RIP configuration, yet Williams's route table still looks
the same as in Example 11-54.

The reason this static route still gets redistributed is that when a static route points to an outgoing interface, the
destination is considered by the router to be directly connected (Example 11-56). And because a network
statement for 10.0.0.0 appears under the RIP configuration, RIP will advertise this "directly connected" subnet of
10.0.0.0.

Example 11-56. Mays considers the summary address 10.1.2.0/24 to be directly connected to Ethernet
0.



Mays#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 8 subnets, 2 masks
i L1    10.1.3.0/24 [115/20] via 10.1.4.1, Ethernet0
S       10.1.2.0/24 is directly connected, Ethernet0
C       10.2.1.0/24 is directly connected, Ethernet1
i L1    10.1.1.0/24 [115/20] via 10.1.4.1, Ethernet0
R       10.2.2.0/24 [120/1] via 10.2.1.1, 00:00:21, Ethernet1
C       10.1.4.0/24 is directly connected, Ethernet0
i       L1 10.1.2.160/28 [115/20] via 10.1.4.1, Ethernet0
i       L1 10.1.2.224/28 [115/20] via 10.1.4.1, Ethernet0
Mays#

Suppose Williams receives a packet with a destination address of 10.1.2.5. The summary address of
10.1.2.0/24 will be matched, and the packet will be forwarded to Mays. At Mays, the destination address does
not match a more-specific subnet, and therefore will match the static route. Mays will send ARP requests out E0
in an attempt to find host 10.1.2.5 (or a router that will send a Proxy ARP reply). Finding none, the router does
not know what to do with the packet. An ICMP Destination Unreachable message will not be sent to the
originator.

Recall that when the summarization commands are used, they create an entry in the route table to Null 0.

Note

Null interfaces should be configured in conjunction with static summary routes.

The same can and should be done with static summary routes (see Example 11-57).

Example 11-57. Mays's static summary route now points to the null interface.

router isis
 summary-address 10.2.0.0 255.255.0.0 level-1
 redistribute rip metric 0 metric-type external level-1
 net 01.0001.0000.0c76.5432.00
!
router rip
 redistribute isis level-1-2 metric 1
 passive-interface Ethernet0
 network 10.0.0.0
!
ip route 10.1.2.0 255.255.255.0 Null0

Now any destination address that doesn't find a more-specific match at Mays will be routed to the null interface
and dropped, and an ICMP Destination Unreachable message will be sent to the originator.



Looking Ahead

This chapter touches on several problems that can arise when redistributing routes. Avoiding or
correcting trouble in all but the simplest redistribution schemes usually involves the use of route filters,
which are discussed in Chapter 13, or route maps, discussed in Chapter 14. Those chapters include
examples of more complex redistribution schemes and how to troubleshoot them. First, though, Chapter
12 examines default routeswhich may be thought of as the most generic form of summary routes.



Summary Table: Chapter 11 Command Review

Command Description
default-metric
bandwidth delay
reliability load
mtu

Specifies a default metric to be associated
with routes redistributed into IGRP and
EIGRP

default-metric
number

Specifies a default metric to be associated
with routes redistributed into RIP and
OSPF

ip summary-
address eigrp
autonomous-
system-number
address mask

Configures an EIGRP summary route on
an interface

redistribute
connected

Redistributes all directly connected
networks

redistribute
protocol
[process-id]
{level-1| level-1-
2| level-2}
[metric metric-
value] [metric-
type type-value]
[match{internal|
external 1|
external 2}] [tag
tag-value]
[route-map map-
tag] [weight
weight]
[subnets]

Configures redistribution into a routing
protocol and specifies the source of the
redistributed routes

summary-
address address
mask {level-1|
level-1-2| level-
2} prefix mask
[not-advertise]
[tag tag]

Configures route summarization for IS-IS
and OSPF

summary-prefix
prefix/length
{level-1| level-1-
2| level-2}

Configures route summarization for IS-IS
for IPv6

summary-prefix
prefix/length[not-
advertise| tag
tag-value]

Configures route summarization for
OSPFv3 for IPv6





Review Questions

1 From what sources can a route be redistributed?

2 What is the purpose of an administrative distance?

3 How can administrative distances cause problems when redistributing?

4 How can redistribution from a classless to a classful routing protocol cause problems?

5 Which IP IGPs can use the default redistribution metric, and which IGPs must have a metric
configured for redistribution to work?

6 What is the difference between using the metric keyword with the redistribute command
and using the default-metric command?

7 What is the purpose of the subnets keyword when redistributing OSPF?

8 How is the null interface useful when summarizing routes?



Configuration Exercises

1 Router A in Figure 11-13 is running OSPFv2 and v3, and router C is running RIPv1 and
RIPng. Write a configuration for router B that will provide full connectivity for all subnets.

Figure 11-13. The network for Configuration Exercises 1, 2, and 3.

[View full size image]

2 Configure IPv6 summarization on router B in Figure 11-13 wherever possible.

3 Router A in Figure 11-13 is running IS-IS for both IPv4 and IPv6 and router C is running
EIGRP for IPv4, and RIPng for IPv6. At router B, all the IS-IS routes are level 1. Configure
mutual redistribution at router B by using summarization wherever possible. The EIGRP
routes should be advertised into the IS-IS domain as external routes.



Troubleshooting Exercises

1 In the case study "Redistributing IGRP and RIP," the following configuration is given for
router Mantle of Figure 11-8:

router rip
 redistribute igrp 1 metric 5
 passive-interface Ethernet1
 network 10.0.0.0
!
router igrp 1
 redistribute connected
 redistribute rip
 default-metric 1000 100 255 1 1500
 passive-interface Ethernet0
 network 10.0.0.0

Will the RIP domain know about the stub network 192.168.10.0/24 by virtue of the fact that
it is redistributed into IGRP, which is then redistributed into RIP?

2 In Troubleshooting Exercise 1, if the redistribute rip command is eliminated under the
IGRP configuration, will the redistribute connected command be sufficient to advertise
the RIP domain?

3 In Example 11-21, why isn't subnet 192.168.3.32/27 tagged as an EIGRP external route?

4 In Example 11-21, there is a summary route to 192.168.3.0. What caused this entry?

5 Given the following configuration, will a level-1 router in area 1 know about the summary
route?

Router A:

router isis
 net 01.0001.0000.0c76.5432.00
 address-family ipv6
  redistribute rip baseball metric-type external
  summary-prefix 2001:db8:0:20::/62 level-1



Chapter 12. Default Routes and On-Demand Routing
This chapter covers the following subjects:

Fundamentals of Default Routes

Fundamentals of On-Demand Routing

Configuring Default Routes and ODR

Summarization has been examined in several chapters so far. Summarization conserves network
resources by reducing the size of route tables and route advertisements. The smaller, simpler route
tables can also make management and troubleshooting easier.

A summary address is an address that represents several, sometimes many, more-specific addresses.
For example, the following four subnets

     192.168.200.128/27
     192.168.200.160/27
     192.168.200.192/27
     192.168.200.224/27

can be summarized with the single address 192.168.200.128/25.

When examined in binary, the addresses reveal that the summary address is less specific because it
consists of fewer network and subnet bits than the addresses being summarized. So put crudely, it
might be said that as more zeros are added to the host space and as fewer network bits are used, more
addresses are summarized. Taking this concept to its limit, what if so many zeros are added to the host
space that no network bits remain? In other words, what if the summary address consists of 32 zeros
and has a prefix length of 0 (0.0.0.0/0)? This address summarizes every possible IPv4 address.

0.0.0.0/0 is the IPv4 default address, and a route to 0.0.0.0/0 is a default route.[1] Similarly, the default
IPv6 address ::/0 summarizes every possible IPv6 address. Every other IP address is more specific
than the default address, so when a default route exists in a route table, that route will be matched only
if a more specific match cannot be made.

[1] This address is used by all the open IP routing protocols. The Cisco IGRP and EIGRP use
an actual network address, advertised as an external route.



Fundamentals of Default Routes

When a router is connected to the Internet, a default route is immensely useful. With a default route, the
router needs to only recognize destinations that are internal to its own administrative system. The
default route will forward packets destined for any other address to the Internet service provider. This
negates the necessity of running Border Gateway Protocol (BGP) with the service provider to learn all
of the prefixes in the Internet route tablea table which consists of well over 100,000 prefixes, and might
soon be approaching 200,000. In dealing with large route tables, topology changes are an even bigger
concern than the demands on memory. In a large network, topology changes will occur more frequently,
resulting in increased system activity to advertise and process those changes. Using a default route
effectively "hides" the changes of more-specific routes, making the network to which the default points
appear more stable from the point of view of the router using the default route.

Default routes are also useful on a smaller scale, within single autonomous systems. The same
benefits of decreased memory and processor utilization can be gained in smaller networks, although
the benefits decrease as the number of routes decreases.

Default routes are also very useful in hub-and-spoke topologies, such as the one in Figure 12-1. Here,
the hub router has a static route to every remote subnet. Entering new static routes in the hub router
when a new subnet is brought online is a fairly trivial administrative task, but adding the routes to every
spoke router might be much more time-consuming. By using default routes at the spoke routers, only
the hub needs entries for every subnet. When a spoke router receives a packet for an unknown
destination, it will forward the packet to the hub, which can, in turn, forward the packet to the correct
destination.

Figure 12-1. Default routes greatly simplify the administration of static routing in a hub-and-
spoke network.

[View full size image]

The spoke routers in Figure 12-1 are more correctly called "stub" routers. A stub router  has only a
single connection to another router. The routing decisions become very simple in such a device: The
destination is either one of the router's directly connected networks (stub networks), or it is reachable
via its single neighbor. And if the single neighbor is the only next-hop routing choice, the stub router has
little need for a detailed route table. A default route is usually sufficient.

As with other summary routes, the trade-off with default routes is a loss of routing detail. The stub
routers in Figure 12-1, for instance, have no way of knowing whether a destination is unreachable. All



packets to unknown destinations are forwarded to the hub router, and only then is reachability
determined. Packets to nonexistent addresses should be infrequent in a network. If for some reason
they are not, a better design choice might be to allow the stub routers to run a routing protocol and
learn routes from the hub so that unknown destinations can be determined as soon as possible. The
design choice for you to make in a network such as the one in Figure 12-1 is whether it is more
economical to forward packets with unknown destinations to the hub router, which can then drop them,
or whether it is more economical to run a dynamic routing protocol between the hub and stub routers
just to drop packets to unknown destinations at the stub routers. Although the resource and operational
costs of running a dynamic routing protocol are usually small, the default route is still more likely to be
the best choice.

Another problem with loss of routing detail is shown in Figure 12-2. These routers form a nationwide
backbone, and large local networks are connected to each of the backbone routers. The Los Angeles
backbone router has default routes pointing to both San Francisco and San Diego. If Los Angeles must
forward a packet to Seattle and has only the two default routes, it has no way of knowing that the best
route is via San Francisco. Los Angeles might forward the packet to San Diego, in which case the
packet will use a small portion of some very expensive bandwidth, and will incur some unnecessary
propagation delay, before it belatedly reaches its destination. Using default routes on this backbone is
a bad design decision,[2] but it illustrates how hiding route details with a default route can lead to
suboptimal routing.

[2] Having each backbone router advertise only a default route into its local network, on the
other hand, can be a very good design choice, limiting the size of the local route tables.

Figure 12-2. If the Los Angeles router knows only default routes pointing to San Francisco and
San Diego and has no more specific details about the topology behind those two routers, it

cannot route efficiently.



Fundamentals of On-Demand Routing

Although the configuration of static routes is simple in a hub router such as the one in Figure 12-1, many
network administrators still see static routes as administratively undesirable. The difficulty is not so much
adding routes as new stub networks are brought online, as it is remembering to remove routes when stub
networks or stub routers are taken offline. Beginning with IOS 11.2, Cisco offers a proprietary alternative for
hub routers called On-Demand Routing  (ODR).

With ODR, a hub router can automatically discover stub networks while the stub routers still use a default route
to the hub. ODR conveys address prefixesthat is, only the network portion of the addressrather than the entire
addressso VLSM is supported. And because only minimal route information is traversing the link between the
stub and hub routers, bandwidth is conserved.

ODR is not a true routing protocol. It discovers information about stub networks but does not provide any
routing information to the stub routers. The link information is conveyed by a data-link protocol and, therefore,
does not go further than from the stub router to the hub router. However, as a case study will show, ODR-
discovered routes can be redistributed into dynamic routing protocols.

Example 12-1 shows a route table containing ODR entries. The table shows that the administrative distance is
160; the metric of the routes is 1. Because ODR routes are always from a hub router to a stub router, the
metric (hop count) will never be more than 1. The routes also show that VLSM is supported.

Example 12-1. This route table shows several ODR entries.

Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
    192.168.1.0/24 is variably subnetted, 3 subnets, 2 masks
o      192.168.1.40/30 [160/1] via 192.168.1.37, 00:00:27, Serial0
C      192.168.1.36/30 is directly connected, Serial0
C      192.168.1.192/27 is directly connected, Ethernet1
o   192.168.3.0/24 [160/1] via 192.168.1.37, 00:00:27, Serial0
    192.168.4.0/24 is variably subnetted, 2 subnets, 2 masks
o      192.168.4.48/29 [160/1] via 192.168.1.37, 00:00:27, Serial0
o      192.168.4.128/27 [160/1] via 192.168.1.37, 00:00:27, Serial0
Router#

The transport mechanism for ODR routes is Cisco Discovery Protocol  (CDP), a proprietary data link protocol
that gathers information about neighboring network devices.[3] Example 12-2 shows the type of information
collected by CDP.

[3] CDP runs not only on routers but also on Cisco switches and access servers.

Example 12-2. CDP collects information about neighboring Cisco network devices.

Bumble#show cdp neighbors detail
-------------------------
Device ID: P8R1
Entry address(es):
  IP address: 10.131.223.226
Platform: Cisco 2620, Capabilities: Router
Interface: Serial0/0.708, Port ID (outgoing port): Serial0/0.807



Holdtime : 144 sec

Version :
Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-J1S3-M), Version 12.3(6), RELEASE SOFTWARE (fc3)
Copyright (c) 1986-2004 by Cisco Systems, Inc.
Compiled Wed 11-Feb-04 19:24 by kellythw

advertisement version: 2

-------------------------
Device ID: Blathers
Entry address(es):
  IP address: 192.168.3.2
Platform: cisco 2610, Capabilities: Router
Interface: Serial0/0.1, Port ID (outgoing port): Serial0/0.2
Holdtime : 122 sec

Version :
Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-J1S3-M), Version 12.3(10a), RELEASE SOFTWARE (fc2
)
Copyright (c) 1986-2004 by Cisco Systems, Inc.
Compiled Fri 22-Oct-04 20:43 by kellythw

advertisement version: 2

-------------------------

Bumble#
-------------------------

CDP runs on any media that supports the subnetwork access protocol (SNAP), which means that ODR also
depends on SNAP support. Although CDP is enabled by default on all interfaces of all Cisco devices running
IOS 10.3 and later, ODR support begins with IOS 11.2. The configuration case study will show that ODR is
configured on the hub router only; however, the stub routers must run IOS 11.2 or later for the hub router to
discover their attached networks.



Configuring Default Routes and ODR

Default routes can be configured either on each router that needs a default route or on one router that in turn
advertises the routes to its peers. The case studies of this section examine both methods.

Recall from the discussion of classful route lookups in Chapter 5, "Routing Information Protocol (RIP)," that a
router first matches a major network number and then matches the subnet. If a subnet cannot be matched,
the packet will be dropped. Classless route lookup is the default behavior on Cisco routers as of IOS 11.3
and later; for earlier IOS versions, lookups can be changed to classless (even for classful routing protocols)
with the global command ip classless.

Any router using a default route must perform classless route lookups. Figure 12-3 shows why. In this
network, Memphis is speaking a dynamic routing protocol to Tanis and Giza, but is not receiving routes from
Thebes. Memphis has a default route pointing to Thebes for routing packets to BigNet. If Memphis receives a
packet with a destination address of 192.168.1.50 and is performing classful route lookups, it will first match
major network 192.168.1.0, of which it has several subnets in its route table. Memphis will then attempt to
find a route for subnet 192.168.1.48/28, but because Memphis is not receiving routes from Thebes, this
subnet is not in its route table. The packet will be dropped.

Figure 12-3. Memphis forwards packets to Thebes with a default route. If Memphis uses classful
route lookups, subnet 192.168.1.48/28 will be unreachable.

If Memphis is configured with ip classless, it will try to find the most specific match for 192.168.1.48/28
without matching the major network first. Finding no match for this subnet in the route table, it will match the
default route and forward the packet to Thebes.

Case Study: Static Default Routes

The configuration of Memphis in Figure 12-3 is displayed in Example 12-3.

Example 12-3. Configuration of Router Memphis uses static IPv4 and IPv6 routes to create default
routes.

interface serial 0/0.1
 ip address 192.168.1.33 255.255.255.240
 ipv6 address 2001:db8:0:20::1/64
 ipv6 rip egypt enable
!
interface serial 0/0.2



 ip address 192.168.1.81 255.255.255.240
 ipv6 address 2001:db8:0:50::1/64
 ipv6 rip egypt enable
!
interface serial 0/0.3
 ip address 192.168.1.17 255.255.255.240
 ipv6 address 2001:db8:0:10::1/64
 ipv6 rip egypt enable
!
router rip
network 192.168.1.0
!
ip classless
ip route 0.0.0.0 0.0.0.0 192.168.1.82
ipv6 route ::/0 2001:DB8:0:50::2

The static routes configure the default route addresses of 0.0.0.0 and ::/0 and use a mask that is also 0.0.0.0
(prefix length 0 for IPv6). A common mistake made by people configuring default routes for the first time is to
use an all-ones mask instead of an all-zeros mask, such as the following:

ip route 0.0.0.0 255.255.255.255 192.168.1.82

An all-ones mask would configure a host route to 0.0.0.0, and the only packets that would match this address
would be those with a destination address of 0.0.0.0. The all-zeros mask, on the other hand, is a mask made
up entirely of "don't care" bits and will match any bit in any position. The beginning of this chapter described
the default address as a summary route taken to its extreme so that every bit is summarized with a zero. The
mask of the default route is a summary mask taken to its extreme.

Memphis' default route has a next-hop address at Thebes. This next-hop address is the gateway of last
resort, or the default router. Example 12-4 shows the IPv4 route table at Memphis. The route to 0.0.0.0 is
tagged as a candidate default, and the gateway of last resort is indicated at the top of the table. Example 12-
5 shows the IPv6 route table.

Example 12-4. Memphis' IPv4 route table, showing the default route and the gateway of last resort.

Memphis#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is 192.168.1.82 to network 0.0.0.0
    192.168.1.0/28 is subnetted, 7 subnets
R      192.168.1.96 [120/1] via 192.168.1.18, 00:00:15, Ethernet0
R      192.168.1.64 [120/1] via 192.168.1.34, 00:00:27, Ethernet1
C      192.168.1.80 is directly connected, Serial0
C      192.168.1.32 is directly connected, Ethernet1
C      192.168.1.16 is directly connected, Ethernet0
R      192.168.1.128 [120/1] via 192.168.1.34, 00:00:27, Ethernet1
R      192.168.1.144 [120/1] via 192.168.1.18, 00:00:15, Ethernet0
S*  0.0.0.0/0 [1/0] via 192.168.1.82
Memphis#

Example 12-5. Memphis' IPv6 route table shows the static entry for the default address ::/0.



Memphis#show ipv6 route
IPv6 Routing Table - 11 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
S   ::/0 [1/0]
     via 2001:DB8:0:50::2 

C   2001:DB8:0:10::/64 [0/0]
     via ::, Serial0/0.3
L   2001:DB8:0:10::1/128 [0/0]
     via ::, Serial0/0.3
C   2001:DB8:0:20::/64 [0/0]
     via ::, Serial0/0.1
L   2001:DB8:0:20::1/128 [0/0]
     via ::, Serial0/0.1
R   2001:DB8:0:40::/64 [120/2]
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.1
C   2001:DB8:0:50::/64 [0/0]
     via ::, Serial0/0.2
L   2001:DB8:0:50::1/128 [0/0]
     via ::, Serial0/0.2

R   2001:DB8:0:90::/64 [120/2]
     via FE80::205:5EFF:FE6B:50A0, Serial0/0.3
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Memphis#

The default route now needs to be advertised to the rest of the RIP routers. This is done by redistributing the
static route into RIP. Memphis will not advertise the default route to Tanis and Giza unless the static route is
redistributed into the RIP protocol.[4] Example 12-6 shows that a redistribution command is added for both
IPv4 and IPv6 on the Memphis router.

[4] Before IOS train 12.0T, if a default route was known in the route table, RIP, IGRP, and EIGRP
would automatically advertise it to neighbors, without the need to redistribute the static route into
the routing protocol.

Example 12-6. Redistribution commands have been added to Memphis to enable the static default
routes to be advertised by RIP.

router rip
redistribute static
!
ipv6 router rip egypt
redistribute static

OSPF and IS-IS do not use the redistribute command to advertise a default route but can still originate
default routes, as shown in a subsequent case study. Example 12-7 and Example 12-8 show the IPv4 and
IPv6 route tables of Tanis after the static default routes are redistributed into RIP.

Example 12-7. The IPv4 route table of Tanis shows that the default route has been learned from
Memphis via RIP.



Tanis#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is 192.168.1.17 to network 0.0.0.0
     192.168.1.0/28 is subnetted, 9 subnets
C       192.168.1.96 is directly connected, Ethernet1
R       192.168.1.64 [120/2] via 192.168.1.17, 00:00:01, Ethernet0
R       192.168.1.80 [120/1] via 192.168.1.17, 00:00:01, Ethernet0
R       192.168.1.32 [120/1] via 192.168.1.17, 00:00:01, Ethernet0
R       192.168.1.48 [120/2] via 192.168.1.17, 00:00:01, Ethernet0
C       192.168.1.16 is directly connected, Ethernet0
R       192.168.1.224 [120/1] via 192.168.1.17, 00:00:01, Ethernet0
R       192.168.1.128 [120/2] via 192.168.1.17, 00:00:01, Ethernet0
C       192.168.1.144 is directly connected, Ethernet2
R*    0.0.0.0/0 [120/1] via 192.168.1.17, 00:00:02, Ethernet0
Tanis#

Example 12-8. The IPv6 route table of Tanis shows that the default route has been learned from
Memphis via IPv6 RIP.

       Tanis#show ipv6 route
IPv6 Routing Table - 10 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R   ::/0 [120/2]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
C   2001:DB8:0:10::/64 [0/0]
     via ::, Serial0/0.1
L   2001:DB8:0:10::2/128 [0/0]
     via ::, Serial0/0.1
R   2001:DB8:0:20::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
R   2001:DB8:0:40::/64 [120/3]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
R   2001:DB8:0:50::/64 [120/2]
     via FE80::204:C1FF:FE50:E700, Serial0/0.1
C   2001:DB8:0:90::/64 [0/0]
     via ::, FastEthernet0/0
L   2001:DB8:0:90::1/128 [0/0]
     via ::, FastEthernet0/0
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Tanis#

Default routes are also useful for connecting classless routing domains. In Figure 12-4, Chimu is connecting a
RIP domain with an EIGRP domain. Although the masks of major network 192.168.25.0 are consistent in the
RIP domain, they are variably subnetted in the EIGRP domain. Further, the VLSM scheme does not lend itself
to summarization into RIP.

Figure 12-4. A default route enables RIP to route into the variably subnetted EIGRP domain.



Chimu's configuration is displayed in Example 12-9.

Example 12-9. RIP routes are redistributed into EIGRP by Chimu, but a default route, rather than all
the EIGRP routes, is advertised into the RIP domain.

router eigrp 1
redistribute rip metric 1000 100 255 1 1500
passive-interface Ethernet0
passive-interface Ethernet1
network 192.168.25.0
!
router rip
passive-interface Serial0
network 192.168.25.0
redistribute static
!
ip classless
ip route 0.0.0.0 0.0.0.0 Null0

Chimu has a full set of routes from the EIGRP domain but is not redistributing them into RIP. Instead, Chimu is
advertising a default route. The RIP routers will forward packets with unknown destinations to Chimu, which
can then consult its route table for a more-specific route into the EIGRP domain.

Chimu's static route is pointing to the null interface rather than a next-hop address. If a packet is forwarded to
Chimu with a destination on a nonexistent subnet, such as 192.168.25.224/28, the packet will be dropped
instead of being forwarded into the EIGRP domain.

Case Study: The Default-Network Command

An alternative method of configuring default routes is to use the command ip default-network. This
command specifies a network address to be used as a default network. The network might be directly
connected to the router, specified by a static route, or discovered by a dynamic routing protocol. The
command was first introduced for use with IGRP, which doesn't identify 0.0.0.0 as a default route, so an
existing network was flagged as the default instead. Only IGRP, EIGRP, and RIP use this command.

The ip default-network command is a global command and causes any routing protocol that is configured
on the router that supports the command to advertise a default route. The default route will be the network
specified as an argument to the command if IGRP or EIGRP is used, and it will be 0.0.0.0 with RIP.

The ip default-network command is used with RIP in the configuration of Athens in Figure 12-5. Athens
configuration is displayed in Example 12-10.



Figure 12-5. The default-network command is used at Athens to generate a default network
advertisement.
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Example 12-10. The default-network command can be used by RIP to create a default route.

router rip
network 172.16.0.0
!
ip classless
ip default-network 10.0.0.0

Example 12-11 shows that network 10.0.0.0 has been tagged as a candidate default route in the Athens route
table, but notice that no gateway of last resort is specified. The reason is that Athens is the gateway to the
default network. The ip default-network command will cause Athens to advertise a default network, even
though no network statement for 10.0.0.0 exists under the RIP configuration (Example 12-12). When using
RIP, the ip default-network command configured on Athens causes Athens to advertise 0.0.0.0 as the
default network, not the network specified by the ip default-network command.

Example 12-11. Network 10.0.0.0 is tagged as a candidate default in Athens' route table.

Athens#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
* 10.0.0.0/8 is subnetted, 1 subnets
C 10.1.1.0 is directly connected, Ethernet0
  172.16.0.0/16 is subnetted, 6 subnets
R 172.16.4.0 [120/2] via 172.16.1.2, 00:00:12, Serial0
R 172.16.5.0 [120/2] via 172.16.1.2, 00:00:12, Serial0
R 172.16.6.0 [120/2] via 172.16.1.2, 00:00:12, Serial0
C 172.16.1.0 is directly connected, Serial0
R 172.16.2.0 [120/1] via 172.16.1.2, 00:00:12, Serial0
R 172.16.3.0 [120/1] via 172.16.1.2, 00:00:12, Serial0
Athens#

Example 12-12. Sparta's route table shows that Athens is advertising a default route of 0.0.0.0 and
that Athens is Sparta's gateway of last resort.



Sparta#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is 172.16.1.1 to network 0.0.0.0
  172.16.0.0/24 is subnetted, 6 subnets
R   172.16.4.0 [120/1] via 172.16.3.2, 00:00:14, Ethernet1
R   172.16.5.0 [120/1] via 172.16.3.2, 00:00:14, Ethernet1
R   172.16.6.0 [120/1] via 172.16.2.2, 00:00:10, Ethernet0
C   172.16.1.0 is directly connected, Serial0
C   172.16.2.0 is directly connected, Ethernet0
C   172.16.3.0 is directly connected, Ethernet1
R* 0.0.0.0/0 [120/1] via 172.16.1.1, 00:00:17, Serial0
Sparta#

As with RIP, EIGRP will advertise a default route to neighbors if the static route to 0.0.0.0 is configured, and
EIGRP redistributes static routes. EIGRP advertises the redistributed route as an external route See Chapter
7, "Enhanced Interior Gateway Routing Protocol (EIGRP)."

If the routers in Figure 12-5 are configured to run EIGRP using the ip default-network command, Athens'
configuration will be as displayed in Example 12-13.

Example 12-13. The default-network command can be used with EIGRP to flag a network as a
candidate default route.

router eigrp 1
network 10.0.0.0
network 172.16.0.0
!
ip classless
ip default-network 10.0.0.0

The ip default-network command remains the same as with RIP, but notice that a network statement for
10.0.0.0 is added to the EIGRP configuration. Since EIGRP sends the actual network address as the default
network, that address must be configured to be advertised, as shown in Example 12-14. Compare the route
table in Example 12-12 with the table in Example 12-14. RIP flags the route to 0.0.0.0/0 as the default, while
EIGRP flags the route to 10.0.0.0/8 as the default network. Because Corinth has learned about the default
route from Sparta, that router is Corinth's gateway of last resort. If the link to Sparta fails, Corinth will use
Argos as its gateway of last resort.

Example 12-14. EIGRP uses an actual network address, rather than 0.0.0.0, as the default network.
Corinth's route table shows that network 10.0.0.0 is tagged as the default network.

Corinth#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is 172.16.3.1 to network 10.0.0.0
D*      10.0.0.0/8 [90/2195456] via 172.16.3.1, 00:02:32, Ethernet0
   172.16.0.0/16 is subnetted, 6 subnets
C     172.16.4.0 is directly connected, Ethernet1
C     172.16.5.0 is directly connected, Serial0



D       172.16.1.0 [90/1811456] via 172.16.3.1, 00:00:17, Ethernet0
D       172.16.6.0 [90/921600] via 172.16.3.1, 00:00:16, Ethernet0
D       172.16.2.0 [90/793600] via 172.16.3.1, 00:00:16, Ethernet0
C     172.16.3.0 is directly connected, Ethernet0

Notice that in the configuration of Athens, the ip default-network command is a global command. It is not
associated with a particular routing protocol. Any routing protocol that is configured on the router that can use
the ip default-network command will use it. If both RIP and EIGRP are configured on the router, both
protocols will advertise a default route, as shown in Corinth's route table in Example 12-15.

Example 12-15. Corinth's route table shows two candidate default routes when Athens is configured
with both RIP and EIGRP and using the ip default-network command.

Corinth#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is 172.16.3.1 to network 10.0.0.0
D*      10.0.0.0/8 [90/2195456] via 172.16.3.1, 00:02:32, Ethernet0
   172.16.0.0/16 is subnetted, 6 subnets
C     172.16.4.0 is directly connected, Ethernet1
C     172.16.5.0 is directly connected, Serial0

D       172.16.1.0 [90/1811456] via 172.16.3.1, 00:00:17, Ethernet0
D       172.16.6.0 [90/921600] via 172.16.3.1, 00:00:16, Ethernet0
D       172.16.2.0 [90/793600] via 172.16.3.1, 00:00:16, Ethernet0
C     172.16.3.0 is directly connected, Ethernet0
R* 0.0.0.0/0 [120/1] via 172.16.3.1, 00:00:17, Serial0

The EIGRP-discovered default network becomes the gateway of last resort because EIGRP has a lower
administrative distance.

There is an inherent lack of control in this method of advertising a default network. If multiple routing
protocols are configured on the router, such as RIP and EIGRP, and the ip default-network command is
used, there is no way to control or limit which routing protocol advertises the default network. If Athens, in
Figure 12-5, is running EIGRP for BigNet, and RIP for the rest of the network, and the ip default-network
command is configured with the intent of advertising a default route into RIP, Athens will also advertise a
default into EIGRP. This will disrupt routing not only for traffic originating in the RIP network and attempting to
route to BigNet, but also for traffic within BigNet.

When injecting routes into a routing protocol, it is always best to choose the method that offers the most
control to minimize unintended route propagation.

Case Study: The Default-Information Originate Command

An OSPF ASBR and an IS-IS interdomain router will not automatically advertise a default route into their
routing domains, even when one exists. For example, suppose Athens in Figure 12-5 is configured for OSPF
and given a static default route into BigNet. Example 12-16 shows Athens's configuration.

Example 12-16. Athens now routes with OSPF and has a static default route.

router ospf 1
network 172.16.0.0 0.0.255.255 area 0
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.1.2



ip route 0.0.0.0 0.0.0.0 10.1.1.2

Example 12-17 shows the route tables of Athens and Sparta. Although the static route has caused the
gateway of last resort to be set at Athens, Sparta has no knowledge of the default route. The default route
must be advertised into the OSPF domain in type 5 LSAs, which means that Athens must be an ASBR. Yet so
far, nothing in Athens' configuration tells it to perform this function.

Example 12-17. The OSPF process at Athens does not automatically advertise the default route into
the OSPF domain.

Athens#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is 10.1.1.2 to network 0.0.0.0
    10.0.0.0 255.255.255.0 is subnetted, 1 subnets
C    10.1.1.0 is directly connected, Ethernet0
    172.16.0.0 is variably subnetted, 6 subnets, 2 masks
O    172.16.5.0 255.255.255.0 [110/138] via 172.16.1.2, 00:04:17, Serial0
O    172.16.4.1 255.255.255.0 [110/75] via 172.16.1.2, 00:04:17, Serial0
O    172.16.6.1 255.255.255.0 [110/75] via 172.16.1.2, 00:04:17, Serial0
C    172.16.1.0 255.255.255.0 is directly connected, Serial0
O    172.16.2.0 255.255.255.0 [110/74] via 172.16.1.2, 00:04:17, Serial0
O    172.16.3.0 255.255.255.0 [110/74] via 172.16.1.2, 00:04:17, Serial0
S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.1.2
Sparta#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
   172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
O     172.16.5.0/24 [110/74] via 172.16.2.2, 00:06:00, Ethernet1
                    [110/74] via 172.16.3.2, 00:06:00, Ethernet0
O     172.16.4.1/24 [110/11] via 172.16.3.2, 00:06:00, Ethernet0
O     172.16.6.1/24 [110/11] via 172.16.2.2, 00:06:00, Ethernet1
C     172.16.1.0/24 is directly connected, Serial0
C     172.16.2.0/24 is directly connected, Ethernet1
C     172.16.3.0/24 is directly connected, Ethernet0

The default-information originate command is a specialized form of the redistribute command, causing a
default route to be redistributed into OSPF or IS-IS. And like redistribute, the default-information originate
command informs an OSPF router that it is an ASBR, or informs an IS-IS router that it is an interdomain
router. Also like redistribute, the metric of the redistributed default can be specified, as can the OSPF
external metric type and the IS-IS level. To redistribute the default route into the OSPF domain with a metric
of 10 and an external metric type of E1, Athens's configuration will be as displayed in Example 12-18.

Example 12-18. The default-information originate command is used to originate a default route at
Athens.

router ospf 1
network 172.16.0.0 0.0.255.255 area 0
default-information originate metric 10 metric-type 1
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.1.2



Example 12-19 shows that the default route is now being redistributed into OSPF. The route can also be
observed in Sparta's OSPF database (Example 12-20).

Example 12-19. After default-information originate is configured at Athens, the default route is
redistributed into the OSPF domain.

Sparta#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is 172.16.1.1 to network 0.0.0.0
    172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
O      172.16.5.0/24 [110/74] via 172.16.2.2, 00:14:46, Ethernet0
O      172.16.4.1/32 [110/75] via 172.16.2.2, 00:14:46, Ethernet0
O      172.16.6.1/32 [110/11] via 172.16.2.2, 00:14:46, Ethernet0
C      172.16.1.0/24 is directly connected, Serial0
C      172.16.2.0/24 is directly connected, Ethernet0
C      172.16.3.0/24 is directly connected, Ethernet1
O* E1 0.0.0.0/0 [110/74] via 172.16.1.1, 00:02:55, Serial0
Sparta#

Example 12-20. Like other external routes advertised by an ASBR, the default route is advertised in
a type 5 LSA.

Sparta#show ip ospf database external
       OSPF Router with ID (172.16.3.1) (Process ID 1)
               Type-5 AS External Link States
Routing Bit Set on this LSA
LS age: 422
Options: (No TOS-capability, No DC)
LS Type: AS External Link
Link State ID: 0.0.0.0 (External Network Number )
Advertising Router: 172.16.1.1
LS Seq Number: 80000002
Checksum: 0x5238
Length: 36
Network Mask: /0
       Metric Type: 1 (Comparable directly to link state metric)
       TOS: 0
       Metric: 10
       Forward Address: 0.0.0.0
       External Route Tag: 1
Sparta#

The default-information originate command also will redistribute into OSPF or IS-IS a default route that
has been discovered by another routing process. In the configuration in Example 12-21, the static route to
0.0.0.0 has been eliminated, and Athens is speaking BGP to a router in BigNet.

Example 12-21. Athens is configured to learn routes via BGP rather then statically.

router ospf 1
network 172.16.0.0 0.0.255.255 area 0
default-information originate metric 10 metric-type 1



default-information originate metric 10 metric-type 1
!
router bgp 65501
network 172.16.0.0
neighbor 10.1.1.2 remote-as 65502
!
ip classless

Athens is now learning a route to 0.0.0.0 from its BGP neighbor and will advertise the route into the OSPF
domain via type 5 LSAs (Example 12-22).

Example 12-22. A BGP-speaking neighbor in BigNet is advertising a default route to Athens.

Athens#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is 10.1.1.2 to network 0.0.0.0
    10.0.0.0/8 is subnetted, 1 subnets
C      10.1.1.0 is directly connected, Ethernet0
    172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
O IA   172.16.4.1/32 [110/139] via 172.16.1.2, 00:16:45, Serial0
O IA   172.16.5.0/24 [110/138] via 172.16.1.2, 00:16:45, Serial0
O IA   172.16.6.1/32 [110/75] via 172.16.1.2, 00:16:45, Serial0
C      172.16.1.0/24 is directly connected, Serial0
O IA   172.16.2.0/24 [110/74] via 172.16.1.2, 00:16:45, Serial0
O IA   172.16.3.0/24 [110/74] via 172.16.1.2, 00:16:45, Serial0
B* 0.0.0.0/0 [20/0] via 10.1.1.2, 00:12:02
Athens#

A benefit of a default route, or any summary route, is that it can add stability to a network. But what if the
default route itself is unstable? For example, suppose that the default route advertised to Athens in Example
12-19 is flapping, that is, alternating frequently between reachable and unreachable. With each change,
Athens must send a new type 5 LSA into the OSPF domain. This LSA will be advertised into all nonstub
areas. Although this flooding and reflooding might have minimal impact on system resources, it still might be
undesirable to the network administrator. A solution is to use the always keyword.[5] Example 12-23 shows
how Athens is configured to always originate a default route, even if the default route is not currently present
in Athens's route table.

[5] This keyword is available only under OSPF. It is not supported under IS-IS.

Example 12-23. Athens will always originate a default route, even if no default route is currently
present in the route table.

router ospf 1
network 172.16.0.0 0.0.255.255 area 0
default-information originate always metric 10 metric-type 1
!
router bgp 65501
network 172.16.0.0
neighbor 10.1.1.2 remote-as 65502
!
ip classless



With this configuration, Athens will always advertise a default route into the OSPF domain, regardless of
whether it actually has a route to 0.0.0.0. If a router within the OSPF domain defaults a packet to Athens and
Athens has no default route, it will send an ICMP Destination Unreachable message to the source address
and drop the packet.

The always keyword can be used safely when there is only a single default route out of the OSPF domain. If
more than one ASBR is advertising a default route, the defaults should be dynamicthat is, the loss of a default
route should be advertised. If an ASBR claims to have a default when it doesn't, packets can be forwarded to
it instead of to a legitimate ASBR.

The default-information originate works similarly for IPv6. In Figure 12-5, IPv6 is being routed via IS-IS.
Athens is configured to originate a default route for IPv6.

Athens's configuration is shown in Example 12-24.

Example 12-24. A default IPv6 route is originated by Athens for the IS-IS protocol.

ipv6 unicast-routing
interface Ethernet0
 ip address 10.1.1.1 255.255.255.0
 ipv6 address 2001:DB8:0:A1::1/64
 ipv6 router isis
!
interface Serial0
 ip address 172.16.1.1 255.255.255.0
 ip router isis
 ipv6 address 2001:DB8:0:1::1/64
 ipv6 router isis
!
router isis
 net 01.0000.00ef.5678.00
 metric-style wide
 address-family ipv6
  multi-topology
  default-information originate
  exit-address-family

Athens does not require that the default route be learned from another source before entering the default
route into its IS-IS database and advertising it to neighbors. All data destined to unknown IPv6 addresses is
forwarded to Athens by the other routers. If Athens does not have a route to the destination in its route table,
it will drop the packet. Example 12-25 shows the Argos IS-IS level-2 database entry for Athens. Example 12-
26 shows the Argos IPv6 route table.

Example 12-25. IPv6 default routes are added to the level-2 IS-IS database.

Argos#show isis database detail level-2 Athens.00-00
IS-IS Level-2 LSP Athens.00-00
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime     ATT/P/OL
Athens.00-00          0x00000088   0xBD29        956              0/0/0
  Area Address: 01
  Topology:     IPv4 (0x0) IPv6 (0x2)
  NLPID:        0xCC 0x8E
  Hostname: Athens
  IP Address:   172.16.1.1
  IPv6 Address: 2001:DB8:0:A1::1
  Metric: 10         IS-Extended Athens.01
  Metric: 10         IS (MT-IPv6) Athens.01
  Metric: 10         IP 172.16.1.0/24
  Metric: 0          IPv6 (MT-IPv6) ::/0
  Metric: 10         IPv6 (MT-IPv6) 2001:DB8:0:1::/64



  Metric: 20         IPv6 (MT-IPv6) 2001:DB8:0:2::/64
  Metric: 20         IPv6 (MT-IPv6) 2001:DB8:0:3::/64
  Metric: 30         IPv6 (MT-IPv6) 2001:DB8:0:4::/64
  Metric: 30         IPv6 (MT-IPv6) 2001:DB8:0:5::/64
  Metric: 30         IPv6 (MT-IPv6) 2001:DB8:0:6::/64
  Metric: 30         IPv6 (MT-IPv6) 2001:DB8:0:20::/64
  Metric: 10         IPv6 (MT-IPv6) 2001:DB8:0:A1::/64
Argos#

Example 12-26. IPv6 default routes are added to the IPv6 route table as IS-IS level-2.

Argos#show ipv6 route
IPv6 Routing Table - 14 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
I2  ::/0 [115/20]
     via FE80::204:C1FF:FE50:E700, FastEthernet0/1
I1  2001:DB8:0:1::/64 [115/20]
     via FE80::204:C1FF:FE50:E700, FastEthernet0/1
C   2001:DB8:0:2::/64 [0/0]
     via ::, FastEthernet0/1
L   2001:DB8:0:2::2/128 [0/0]
     via ::, FastEthernet0/1
I1  2001:DB8:0:3::/64 [115/20]
     via FE80::204:C1FF:FE50:E700, FastEthernet0/1
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.2
I1  2001:DB8:0:4::/64 [115/20]
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.2
C   2001:DB8:0:5::/64 [0/0]
     via ::, Serial0/0.2
L   2001:DB8:0:5::1/128 [0/0]
     via ::, Serial0/0.2
C   2001:DB8:0:6::/64 [0/0]
     via ::, FastEthernet0/0
L   2001:DB8:0:6::1/128 [0/0]
     via ::, FastEthernet0/0
I1  2001:DB8:0:20::/64 [115/20]
     via FE80::204:C1FF:FE50:F1C0, Serial0/0.2

I1  2001:DB8:0:A1::/64 [115/30]
     via FE80::204:C1FF:FE50:E700, FastEthernet0/1
L   FE80::/10 [0/0]
     via ::, Null0
L   FF00::/8 [0/0]
     via ::, Null0
Argos#

Case Study: Configuring On-Demand Routing

ODR is enabled with a single command, router odr. No networks or other parameters must be specified.
CDP is enabled by default; it needs to be enabled only if it has been turned off for some reason. The
command to enable the CDP process on a router is cdp run; to enable CDP on a specific interface, the
command is cdp enable.

Figure 12-6 shows a typical hub-and-spoke topology. To configure ODR, the hub router will have the router
odr command. If all routers are running IOS 11.2 or later and the connecting medium supports SNAP (such
as the Frame Relay or PVCs shown), ODR is operational and the hub will learn the stub networks. The only



configuration necessary at the stub routers is a static default route to the hub.

Figure 12-6. Hub-and-spoke topologies such as this one are common across Frame Relay networks.

ODR can also be redistributed. If Baghdad in Figure 12-6 needs to advertise the ODR-discovered routes into
OSPF, Baghdad's configuration might be as displayed in Example 12-27.

Example 12-27. ODR discovered routes can be redistributed into other IP routing protocols.

router odr
!
router ospf 1
redistribute odr metric 100
network 172.16.0.0 0.0.255.255 area 5



Looking Ahead

Configuration and troubleshooting of default routes are trivial tasks in the simple, loop-free networks
shown in this chapter. When topologies are more complex, and especially when they include looping
paths, the potential for problems with both default routing and with redistribution increases. Chapter 13,
"Route Filtering," and Chapter 14, "Route Maps," discuss the tools that are vital to controlling routing
behavior in complex topologies.



Summary Table: Chapter 12 Command Review

Command Description
cdp enable Enables CDP on an interface
cdp run Enables CDP globally on a

router
default-information
originate [always] [metric
metric-value] [metric-type
type-value]{level-1 | level-1-
2 | level-2} [route-map map-
name]

Generates a default route into
OSPF and IS-IS routing
domains

ip classless Enables classless route
lookups so that the router can
forward packets to unknown
subnets of directly connected
networks

ip default-network network-
number

Specifies a network as a
candidate route when
determining the gateway of
last resort

ip route address mask
{address | interface}
[distance] [tag tag]
[permanent]

Specifies a static route entry

router odr Enables On-Demand Routing



Review Questions

1 What is the destination address of IPv4 default routes used by the open protocols?

2 What is the destination prefix/prefix length of IPv6 default routes?

3 How are default routes identified and advertised by EIGRP?

4 Can a static route to 0.0.0.0 be used as the default route on a router running EIGRP?

5 What is a stub router? What is a stub network?

6 What is an advantage of using default routes instead of a full route table?

7 What is an advantage of using a full route table instead of a default route?

8 What data link protocol does On-Demand Routing use to discover routes?

9 What IOS restrictions are placed on ODR?

10 What media restrictions are placed on ODR?



Chapter 13. Route Filtering
This chapter covers the following subject:

Configuring Route Filters

Chapter 11, "Route Redistribution," presents several situations in which redistribution causes unwanted
or inaccurate routes to exist in a particular router. For instance, in Figure 11-3 and the associated
discussion, one or more routers choose a suboptimal route through a network. The problem in that
example is that the routers prefer the lower administrative distance of Interior Gateway routing Protocol
(IGRP) to the administrative distance of Routing Information Protocol (RIP). More generally, any time
routes to the same destination are being redistributed into a routing domain by more than a single
router, the potential for inaccurate routing exists. In some cases, routing loops and black holes might
occur.

Example 11-17 shows another example of an unwanted or unexpected route. In this case, the summary
route 192.168.3.128/25 is advertised into Open Shortest Path First (OSPF) but is redistributed into the
EIGRP domainwhere the summarized subnets exist. This phenomenon, in which a route is advertised in
the wrong direction across a redistributing router, is called route feedback.

Route filtering enables the network administrator to keep tight control over route advertisements. Any
time a router is redistributing routes from one protocol to another, route filters give the network
administrator the power to control what routes are redistributed. And any time a router is performing
mutual redistributionthe mutual sharing of routes between two or more routing protocolsroute filters
should be used to ensure that routes are advertised in only one direction.

Figure 13-1 shows another use for route filters. Here, a routing domain is broken into subdomains,
each containing multiple routers. The router connecting the two domains is filtering routes so that the
routers in subdomain B know only a subset of the routes in subdomain A. This filtering might be done
for security, so that the B routers only recognize authorized subnets. Or the filtering might be a part of a
larger traffic-engineering plan, to manage the flow of packets. Or it might be done simply to manage the
size of the route tables and updates of the B routers by eliminating unnecessary routes.

Figure 13-1. Route filters can be used to create routing subdomains, into which only some of
the routing domain's addresses are advertised.

Yet another common use of route filters is to create a "route firewall." Frequently, corporate divisions or
government agencies must be interconnected while they remain under separate administrative control.
If you do not have control of all parts of the network, you are vulnerable to misconfigured or even



malicious routing. Route filters at the interconnecting routers will ensure that routers accept only
legitimate routes. This approach is again a form of security, but in this case, incoming routes, instead of
outgoing routes, are regulated.

Whatever the application, route filters are a fundamental building block for creating routing policies: A
set of rules that govern how packets are forwarded in a network or change the default packet
forwarding behavior.

Route filters work by regulating the routes that are entered into, or advertised out of, the route table.
They have somewhat different effects on link-state routing protocols than they do on distance-vector
routing protocols. A router running a distance-vector protocol advertises routes based on what is in its
route table. As a result, a route filter will influence which routes the router advertises to its neighbors.

On the other hand, routers running link-state protocols determine their routes based on information in
their link-state database, rather than the advertised route entries of their neighbors. Route filters have
no effect on link- state advertisements or the link-state database.[1] As a result, a route filter can
influence the route table of the router on which the filter is configured but has no effect on the route
entries of neighboring routers. Because of this behavior, route filters are used mostly at redistribution
points into link-state domains, such as an OSPF ASBR (autonomous system boundary router), where
they can regulate which routes enter or leave the domain. Within the link-state domain, route filters
have limited utility.

[1] Remember that a basic requirement of link-state protocols is that all routers in an area
must have identical link-state databases. If a route filter blocked some LSAs, this requirement
would be violated.



Configuring Route Filters

Route filtering is accomplished by one of the following methods:

Filtering specific routes, using the distribute-list command

Manipulating the administrative distances of routes, using the distance command

Case Study: Filtering Specific Routes

Figure 13-2 shows a portion of a network running RIPv2 and RIPng. Barkis is providing connectivity to the rest
of the Internet via Traddles. In addition to the 700 specific IPv4 routes within BigNet, Traddles is advertising an
IPv4 default route to Barkis. Because of the default route, Barkis, Micawber, Peggotty, and Heep do not need
to know the other 700 routes in BigNet. So the objective is to configure a filter at Barkis that will accept only
the default route from Traddles and reject all other routes. Barkis' configuration is displayed in Example 13-1.

Figure 13-2. A route filter at Barkis will accept only the default route from Traddles and will reject all
other BigNet routes.

[View full size image]

Example 13-1. The route filter on Barkis permits the default route and rejects all other addresses.

router rip
version 2
network 192.168.75.0
distribute-list 1 in Serial1
!
ip classless
access-list 1 permit 0.0.0.0

This route filter examines incoming routes at S1, which is the interface connected to Traddles. It specifies that
the only routes accepted by Barkis's RIP process are those permitted by access list 1, and access list 1
specifies that only 0.0.0.0 is permitted.[2] All other routes are implicitly denied by the access list. Example 13-2
shows the resulting route table at Barkis.

[2] Note that no inverse mask is shown. An access list's default inverse mask is 0.0.0.0, which is
correct for this configuration.

Example 13-2. 0.0.0.0 is the only route accepted from Traddles.



Barkis#show ip route rip
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is 192.168.75.198 to network 0.0.0.0
    192.168.75.0/24 is variably subnetted, 5 subnets, 2 masks
C      192.168.75.32/27 is directly connected, Ethernet0
R     192.168.75.64/27 [120/1] via 192.168.75.201, 00:00:23, Serial0
C      192.168.75.196/30 is directly connected, Serial1
C      192.168.75.200/30 is directly connected, Serial0
R      192.168.75.204/30 [120/1] via 192.168.75.34, 00:00:13, Ethernet0
R*  0.0.0.0/0 [120/10] via 192.168.75.198, 00:00:03, Serial1
Barkis#

IPv6 routes can be filtered in the same way. Barkis accepts only the IPv6 default route from Traddles. Barkis's
configuration is displayed in Example 13-3.

Example 13-3. Barkis filters IPv6 routes to accept only the default route.

ipv6 router rip emily
distribute-list prefix-list copperfield in Serial1
!
ipv6 prefix-list copperfield permit ::/0

The only difference between the IPv4 and the IPv6 configuration is that the IPv4 distribute-list command
references an access list, and the IPv6 distribute-list command references a prefix list. The prefix list permits
or denies IPv6 prefixes.

Example 13-4 shows the IPv6 route table at Barkis.

Example 13-4. ::/0 is the only IPv6 RIP route accepted from Traddles.

Barkis#show ipv6 route rip
IPv6 Routing Table - 11 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B  BGP
       U - Per-user Static route
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
R   ::/0 [120/2]
     via FE80::205:5EFF:FE6B:50A0, Serial1
R   2001:DB8:0:40::/64 [120/2]
     via FE80::2B0:64FF:FE30:1DE0, Serial0
R   2001:DB8:0:CC::/64 [120/2]
     via FE80::204:C1FF:FE50:F1C0, Ethernet0
Barkis#

In Example 13-5, Barkis's configuration is changed to accept 2001:db8:0:100::/64 through 2001:db8:0:103::/64,
rather than the default IPv6 route. The prefix list is modified to accept this range of addresses only.

Example 13-5. Barkis is configured to accept a range of IPv6 addresses into RIPng.

ipv6 router rip emily
distribute-list prefix-list copperfield in Serial1



!
ipv6 prefix-list copperfield permit 2001:db8:0:100::/62 le 64

A range of IPv6 prefixes is specified by using the ge or the le option to the prefix-list command. ge is "greater
than or equal to" and le is "less than or equal to." Barkis's prefix list specifies the prefix 2001:db8:0:100::/62
and any other prefixes that have the same first 62 bits and any value in the bits 63 or 64. This correctly allows
2001:db8:0:100::/64, 2001:db8:0:101::/64, 2001:db8:0:102::/64, and 2001:db8:0:103::/64. Prefix lists are
discussed further in Appendix B, "Tutorial: Access Lists."

Of course, advertising 700 routes across a serial link only to discard them at the far end is a waste of
bandwidth. So a better configuration would be to place the filter at Traddles, allowing only the default route to
be advertised to Barkis, as shown in Example 13-6.

Example 13-6. Traddles is configured to filter outgoing RIP IPv4 routes.

router rip
version 2
network 192.168.63.0
network 192.168.75.0
network 192.168.88.0
distribute-list 1 out Serial0
!
ip classless
access-list 1 permit 0.0.0.0

For IPv6, the configuration at Traddles is as displayed in Example 13-7.

Example 13-7. Traddles is configured to filter outgoing IPv4 RIPng routes.

ipv6 router rip emily
distribute-list prefix-list copperfield out Serial0
!
ipv6 prefix-list copperfield permit 2001:db8:0:100::/62 le 64

Here, the filter configuration looks almost the same, except that it is filtering outgoing routes instead of
incoming routes. Example 13-8 shows that only the default route is being advertised across the serial link from
Traddles.

Example 13-8. The filter at Traddles allows only the default route to be advertised to Barkis.

Barkis#debug ip rip
RIP protocol debugging is on
Barkis#
RIP: received v2 update from 192.168.75.198 on Serial1
     0.0.0.0/0 -> 0.0.0.0 in 10 hops
RIP: sending v2 update to 224.0.0.9 via Ethernet0 (192.168.75.33)
     192.168.75.64/27 -> 0.0.0.0, metric 2, tag 0
     192.168.75.196/30 -> 0.0.0.0, metric 1, tag 0
     192.168.75.200/30 -> 0.0.0.0, metric 1, tag 0
     0.0.0.0/0 -> 0.0.0.0, metric 11, tag 0
RIP: sending v2 update to 224.0.0.9 via Serial0 (192.168.75.202)
     192.168.75.32/27 -> 0.0.0.0, metric 1, tag 0
     192.168.75.196/30 -> 0.0.0.0, metric 1, tag 0
     192.168.75.204/30 -> 0.0.0.0, metric 2, tag 0
     0.0.0.0/0 -> 0.0.0.0, metric 11, tag 0
RIP: sending v2 update to 224.0.0.9 via Serial1 (192.168.75.197)



     192.168.75.32/27 -> 0.0.0.0, metric 1, tag 0
     192.168.75.64/27 -> 0.0.0.0, metric 2, tag 0
     192.168.75.200/30 -> 0.0.0.0, metric 1, tag 0
     192.168.75.204/30 -> 0.0.0.0, metric 2, tag 0
RIP: received v2 update from 192.168.75.34 on Ethernet0
     192.168.75.64/27 -> 0.0.0.0 in 2 hops
     192.168.75.204/30 -> 0.0.0.0 in 1 hops
RIP: received v2 update from 192.168.75.201 on Serial0
     192.168.75.64/27 -> 0.0.0.0 in 1 hops
     192.168.75.204/30 -> 0.0.0.0 in 2 hops

In both configurations, Barkis will advertise the default route to Micawber and to Peggotty. Neither
configuration affects the routes that Barkis advertises to Traddles.

When the distribute-list command is configured under link-state protocols such as OSPF, the out keyword
cannot be used in association with an interface.[3] Because link-state protocols do not advertise routes from
their route table as do distance-vector protocols, there are no updates to filter. A command such as distribute-
list 1 out Serial1 under a link-state protocol is meaningless.

[3] The out keyword can be used in association with a routing protocol, as discussed in the next
case study.

In Figure 13-3, another group of routers has been connected. This network section, ThemNet, is under
separate administrative control, as is the Router Creakle. Because the BigNet administrator has no access to
or control over the routers in ThemNet, route filters should be used to minimize the potential of bad routing
information being sent into BigNet from Creakle. For example, notice that ThemNet is using a default route
(perhaps to access an internal Internet connection). If this default route should be advertised into BigNet, it
could cause packets to be misrouted into ThemNet. A black hole would exist.

Figure 13-3. The network ThemNet is not under the control of the BigNet administrator.

[View full size image]

To allow only the routes necessary for communication with ThemNet, Heep's configuration is displayed in
Example 13-9.

Example 13-9. Heep's configuration filters RIP routes to and from Creakle.

router rip



version 2
network 192.168.75.0
distribute-list 2 out Serial1
distribute-list 1 in Serial1
!
ip classless
access-list 1 permit 192.168.73.0
access-list 1 permit 192.168.65.0
access-list 1 permit 192.168.62.0
access-list 1 permit 10.5.187.208
access-list 2 deny 0.0.0.0
access-list 2 permit any

Distribute list 1 allows only the routes specified in access list 1 to be accepted from Creakle. It blocks the
default route and any other routes that might be inserted incorrectly into the route tables of ThemNet.

Distribute list 2 is in place to ensure that BigNet is a good neighbor. It blocks the BigNet default route, which
would cause problems in ThemNet, and allows all other BigNet routes.

Case Study: Route Filtering and Redistribution

Any time a router performs mutual redistribution, the potential for route feedback exists. For example, a route
from the RIP side in Figure 13-4 can be redistributed into OSPF and, from there, be redistributed back into RIP.
Therefore, using route filters to control the direction of route advertisements is a wise approach.

Figure 13-4. Cruncher is redistributing RIP routes into OSPF, and OSPF routes into RIP. Route filters
should be used to prevent route feedback.

Cruncher in Figure 13-4 is speaking both RIP and OSPF on several interfaces. Cruncher's configuration is
displayed in Example 13-10.

Example 13-10. Cruncher is configured to run both OSPF and RIP, and filters are configured to control
which routes are advertised into each protocol.

router ospf 25
redistribute rip metric 100
network 172.16.8.254 0.0.0.0 area 25
network 172.16.50.254 0.0.0.0 area 25
distribute-list 3 in Ethernet0/0
distribute-list 3 in Ethernet0/1



distribute-list 3 in Ethernet0/2
!
router rip
version 2
redistribute ospf 25 metric 5
passive-interface Ethernet0/0
passive-interface Ethernet0/1
passive-interface Ethernet0/2
network 172.16.0.0
distribute-list 1 in Ethernet0/3
distribute-list 1 in Ethernet2/0
distribute-list 1 in Ethernet2/1
!
ip classless
access-list 1 permit 172.16.128.0 0.0.127.255
access-list 3 permit 172.16.0.0 0.0.127.255

In this configuration, the logic of the access lists is to permit certain routes and deny all others. The logic can
also be reversed to deny certain routes and allow all others, as shown in Cruncher's modified configuration in
Example 13-11.

Example 13-11. Cruncher's access list could be modified to deny specific routes and permit all
others.

access-list 1 deny 172.16.0.0 0.0.127.255
access-list 1 permit any
access-list 3 deny 172.16.128.0 0.0.127.255
access-list 3 permit any

The effect of this second access list configuration is the same as the first. In both cases, routes to destinations
in the OSPF domain will not be advertised into OSPF from RIP, and routes to destinations in the RIP domain
will not be advertised into RIP from OSPF. However, this second access list configuration needs to be carefully
administered to minimize problems in the future. If a new address is added into the RIP domain, for instance,
without modifying the route filter, the route will get advertised into OSPF and re-advertised back into RIP,
causing a potential route loop. A new deny statement needs to be added to the route filter to control the loop. If
the first access list is being used instead of the second, and a new address is added to the RIP domain, it will
not be advertised into OSPF until the access lists are modified. No route loops will occur and routing within the
RIP domain to the new address will be successful. The second access list configuration is also not as easy to
administer, because of the permit any at the end. To add new entries to the list, the entire list must first be
deleted so that the new entry can be placed before the permit any.[4]

[4] In some IOS versions, access-list entries can be added to specific places in the access list using
sequence numbers, making the lists easier to administer.

The small access lists shown are possible because the subnet addresses in Figure 13-4 were carefully
assigned for easy summarization. The trade-off is a loss of specificity. More precise control over the routes
means larger, more precise access lists at the price of increased administrative attention.

An alternative method of configuring route filters at redistribution points is to filter by route process instead of
by interface. For example, the configuration in Example 13-12 allows only certain IPv4 routes in Figure 13-4 to
be redistributed.

Example 13-12. Cruncher filters routes at the route process.

router ospf 25
redistribute rip metric 100
network 172.16.1.254 0.0.0.0 area 25



network 172.16.8.254 0.0.0.0 area 25
network 172.16.50.254 0.0.0.0 area 25
distribute-list 10 out rip
!
router rip
version 2
redistribute ospf 25 metric 5
passive-interface Ethernet0/3
passive-interface Ethernet2/0
passive-interface Ethernet2/1
network 172.16.0.0
distribute-list 20 out ospf 25
!
ip classless
access-list 10 permit 172.16.130.0
access-list 10 permit 172.16.145.0
access-list 10 permit 172.16.240.0
access-list 20 permit 172.16.23.0
access-list 20 permit 172.16.9.0
access-list 20 permit 172.16.75.0

The route filter under the OSPF configuration allows OSPF to advertise RIP-discovered routes only if access
list 10 permits them. Likewise, the filter under the RIP configuration allows RIP to advertise routes discovered
by OSPF 25 only if access list 20 permits them. In both cases, the filters have no effect on routes discovered
by other protocols. For example, if OSPF were redistributing both RIP and EIGRP routes, the distribute list
shown would not apply to EIGRP-discovered routes.

The same configuration can apply to IPv6 prefixes. For RIPng and OSPFv3 for IPv6, the distribute-list
references a prefix-list rather then an access-list, and the prefix-list permits or denies IPv6 prefixes rather than
IPv4 addresses.

When filtering by route process, only the out keyword is allowed. After all, it makes no sense to specify
something like distribute-list 10 in rip under OSPF. The route has already been entered into the route table
by RIP, and OSPF either advertises it ("out") or it does not.

Note that although filtering by routing protocol is useful for specifying which routes will be redistributed, it is not
a good method for preventing route feedback. For example, consider the configuration in Example 13-13 for
Cruncher in Figure 13-4.

Example 13-13. Cruncher's configuration filters routes advertised by the OSPF and RIP processes
but does not filter routes added into Cruncher's route table.

router ospf 25
redistribute rip metric 100
network 172.16.1.254 0.0.0.0 area 25
network 172.16.8.254 0.0.0.0 area 25
network 172.16.50.254 0.0.0.0 area 25
distribute-list 1 out rip
!
router rip
version 2
redistribute ospf 25 metric 5
passive-interface Ethernet0/3
passive-interface Ethernet2/0
passive-interface Ethernet2/1
network 172.16.0.0
distribute-list 3 out ospf 25
!
ip classless
access-list 1 permit 172.16.128.0 0.0.127.255
access-list 3 permit 172.16.0.0 0.0.127.255



Suppose a route from the RIP domain, such as 172.16.190.0/24, redistributed into the OSPF domain, were to
be advertised back to Cruncher because of a misconfigured router. Although the distribute list under the RIP
configuration would prevent the route from being advertised back into the RIP domain, the list does nothing to
prevent the route from being entered into Cruncher's route table as originating within the OSPF domain. In fact,
the filter assumes that the route has already been entered into the table by OSPF. Because OSPF has a lower
administrative distance than RIP, Cruncher will prefer the OSPF learned route, and Cruncher will route traffic
destined to 172.16.190.0 to the OSPF router rather than to RIP. To prevent route feedback, routes must be
filtered as they are incoming on an interface, before they are entered into the route table.

Case Study: A Protocol Migration

The distance command, when used without any optional parameters, specifies the administrative distance to
be assigned to routes learned from a particular IPv4 or IPv6 routing protocol. On first consideration, this action
might not seem to be a route filtering function, but it is. When multiple routing protocols are running, routes are
accepted or rejected into the route table based on their administrative distances.

The network in Figure 13-5 is running RIP, and there is a plan to convert to EIGRP. Several methods exist for
conducting such a protocol migration. One option is to turn off the old protocol and turn on the new protocol at
each router. Although this option is valid for a small network such as the one in Figure 13-5, the downtime can
be impractical in larger networks.

Figure 13-5. These routers are running RIP and are to be converted to EIGRP.

Another option is to add the new protocol without removing the old protocol. If the default administrative
distance of the new protocol is lower than that of the old, each router will prefer the routes advertised by the
new protocol as they are added. The network will converge to the new protocol as the routers are converted,
and after the entire network has converged on the new protocol, the old one can be removed from all routers.

Referring to Table 11-1, the default administrative distance of RIP is 120, and the default administrative
distance of EIGRP is 90. If EIGRP is added to each router in addition to RIP, the router will begin preferring the
EIGRP routes as its neighbors begin speaking EIGRP. When all RIP routes have disappeared from all route
tables, the network has reconverged on EIGRP. The RIP processes can then be removed from the routers.

The problem with this approach is that the potential for routing loops and black holes exists during the
transition period. The five routers in Figure 13-5 can be reconfigured and reconverged in a matter of minutes,
so looping might not be as much of a concern here as it would be in a larger network.

A modification of this dual-protocol method is to use the distance command to ensure that the routes of the
new protocol are rejected until all routers are ready for conversion. The first step in this procedure is to lower
the administrative distance of RIP in all routers, as shown in Example 13-14.

Example 13-14. Each router in the network in Figure 13-5 is reconfigured to lower the administrative
distance of RIP.

router rip



network 172.16.0.0
distance 70

Note that the administrative distance is relevant only to the routing process of a single router. While RIP is still
the only protocol running, the change of administrative distance will have no effect on routing.

Next, each router is revisited, and the EIGRP process is added. The EIGRP configuration in Example 13-15 is
added to each router.

Example 13-15. EIGRP configuration is added to each router in Figure 13-5.

router eigrp 1
network 172.16.0.0
!
router rip
network 172.16.0.0
distance 70

Because EIGRP has a default administrative distance of 90, the RIP routes are preferred (Example 13-16). No
routers are preferring EIGRP, so no network downtime has to be scheduled while the configurations are
changed. This approach gives the network administrator time to re-examine the new configurations in each
router and to check the EIGRP topology database for accuracy before the conversion.

Example 13-16. The RIP routes, which have been assigned an administrative distance of 70, are
preferred over the EIGRP routes.

Drummle#show ip route
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
    172.16.0.0/24 is subnetted, 11 subnets
C      172.16.252.0 is directly connected, Serial0
C      172.16.253.0 is directly connected, Serial1
R      172.16.254.0 [70/1] via 172.16.2.253, 00:00:16, Ethernet0
                    [70/1] via 172.16.253.253, 00:00:05, Serial1
R      172.16.251.0 [70/1] via 172.16.252.253, 00:00:08, Serial0
                    [70/1] via 172.16.3.253, 00:00:01, Ethernet1
R      172.16.4.0 [70/1] via 172.16.3.253, 00:00:01, Ethernet1
R      172.16.5.0 [70/1] via 172.16.253.253, 00:00:05, Serial1
R     172.16.6.0 [70/1] via 172.16.252.253, 00:00:08, Serial0
                 [70/1] via 172.16.253.253, 00:00:05, Serial1
R      172.16.7.0 [70/1] via 172.16.252.253, 00:00:08, Serial0
R      172.16.1.0 [70/1] via 172.16.2.253, 00:00:17, Ethernet0
C      172.16.2.0 is directly connected, Ethernet0
C      172.16.3.0 is directly connected, Ethernet1
Drummle#

The next step in the conversion process is to revisit each router and change the RIP distance back to the
default of 120. Network downtime should be scheduled for this step. The RIP routes with the administrative
distance of 70 will begin to age out because the new RIP updates will be assigned an administrative distance
of 120 (Example 13-17). At 210 seconds, the RIP routes will be declared invalid (Example 13-18), and finally
the EIGRP routes will be preferred (Example 13-19).

Example 13-17. After the RIP administrative distance is changed back to 120, the routes with a



Example 13-17. After the RIP administrative distance is changed back to 120, the routes with a
distance of 70 begin to age out. Here, all the RIP routes are more than two minutes old.

Drummle#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
    172.16.0.0/24 is subnetted, 11 subnets
C      172.16.252.0 is directly connected, Serial0
C      172.16.253.0 is directly connected, Serial1
R     172.16.254.0 [70/1] via 172.16.2.253, 00:02:31, Ethernet0
                   [70/1] via 172.16.253.253, 00:02:18, Serial1
R      172.16.251.0 [70/1] via 172.16.252.253, 00:02:27, Serial0
                    [70/1] via 172.16.3.253, 00:02:32, Ethernet1
R     172.16.4.0 [70/1] via 172.16.3.253, 00:02:32, Ethernet1
R     172.16.5.0 [70/1] via 172.16.253.253, 00:02:19, Serial1
R     172.16.6.0 [70/1] via 172.16.252.253, 00:02:27, Serial0
                 [70/1] via 172.16.253.253, 00:02:19, Serial1
R      172.16.7.0 [70/1] via 172.16.252.253, 00:02:27, Serial0
R      172.16.1.0 [70/1] via 172.16.2.253, 00:02:32, Ethernet0
C      172.16.2.0 is directly connected, Ethernet0
C      172.16.3.0 is directly connected, Ethernet1

Example 13-18. At 3.5 minutes, the RIP routes are declared down.

Drummle#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
    172.16.0.0/24 is subnetted, 11 subnets
C      172.16.252.0 is directly connected, Serial0
C      172.16.253.0 is directly connected, Serial1
R      172.16.254.0/24 is possibly down,
         routing via 172.16.253.253, Serial1
R      172.16.251.0/24 is possibly down,
         routing via 172.16.252.253, Serial0
R      172.16.4.0/24 is possibly down,
         routing via 172.16.3.253, Ethernet1
R      172.16.5.0/24 is possibly down,
         routing via 172.16.253.253, Serial1
R      172.16.6.0/24 is possibly down,
         routing via 172.16.253.253, Serial1
R      172.16.7.0/24 is possibly down,
         routing via 172.16.252.253, Serial0
R      172.16.1.0/24 is possibly down,
         routing via 172.16.2.253, Ethernet0
C      172.16.2.0 is directly connected, Ethernet0
C      172.16.3.0 is directly connected, Ethernet1
Drummle#

Example 13-19. The EIGRP routes, with their default distance of 90, replace the RIP routes.

Drummle#show ip route



Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
      U - per-user static route, o - ODR
Gateway of last resort is not set
    172.16.0.0/24 is subnetted, 11 subnets
C      172.16.252.0 is directly connected, Serial0
C      172.16.253.0 is directly connected, Serial1
D      172.16.254.0 [90/2195456] via 172.16.2.253, 00:01:11, Ethernet0
D      172.16.251.0 [90/2195456] via 172.16.3.253, 00:01:06, Ethernet1
D      172.16.4.0 [90/307200] via 172.16.3.253, 00:01:06, Ethernet1
D      172.16.5.0 [90/2195456] via 172.16.253.253, 00:01:11, Serial1
D      172.16.6.0 [90/2185984] via 172.16.252.253, 00:01:11, Serial0
                  [90/2185984] via 172.16.253.253, 00:01:11, Serial1
D      172.16.7.0 [90/2195456] via 172.16.252.253, 00:01:07, Serial0
D      172.16.1.0 [90/307200] via 172.16.2.253, 00:01:11, Ethernet0
C      172.16.2.0 is directly connected, Ethernet0
C      172.16.3.0 is directly connected, Ethernet1
Drummle#

Although routing loops and black holes are still a possibility with this method, the conversion should be faster
and less prone to human error because the single change of administrative distance is all that is required.

Another advantage of this method is that a back-out, in case of problems, is easy. The RIP processes are still
in place on all the routers, so changing the administrative distances back to 70 is all that is needed to return to
RIP. After the new EIGRP configuration has been tested and proven stable, the RIP processes can be deleted
from all routers without further service disruptions.

One thing to consider before using the dual-protocol method is the impact that running two protocols
concurrently on each router will have on memory and processing. If the utilization of memory or processing or
both is averaging above 50 percent to 60 percent, careful lab testing and modeling should be performed before
committing to the conversion, to ensure that the routers can handle the additional load. If they can't, a more
complex procedure of removing the old protocol before configuring the new protocol might be the only option.

A variant on this procedure is to increase the administrative distance of the new protocol, rather than
decreasing the distance of the old protocol, and then lowering the distance of the new protocol at conversion
time. However, be sure to enter the distance command before any network commands so that the new
protocol won't first activate at its default distance.

Looking again at Table 11-1, notice that EIGRP has two default administrative distances: 90 for internal routes
and 170 for external routes. Therefore, the distance command is also different for EIGRP. For example, to
raise the EIGRP distance instead of lowering the RIP distance, the configuration is as displayed in Example
13-20.

Example 13-20. EIGRP's internal administrative distance is raised. This could be done in all routers in
Figure 13-5 rather then lowering the RIP administrative distance.

router eigrp 1
network 172.16.0.0
distance eigrp 130 170
!
router rip
network 172.16.0.0

The keyword eigrp is added to indicate that EIGRP distances are specified. The administrative distance of
internal EIGRP routes is changed to 130, and the distance of external routes is left at 170.

One final note on using the dual-protocol procedure to migrate to a new routing protocol: Be sure you



understand the behavior of both protocols. For example, some protocols, such as EIGRP, do not age out their
route entries. Therefore, if EIGRP is being replaced, an additional step of the conversion process is to clear
the route tables with the clear ip route * command after the distances have been changed.

Case Study: Multiple Redistribution Points

Figure 13-6 shows a network very similar to the one depicted in Figure 11-3. Recall from the associated
discussion in Chapter 11 that the problem with multiple redistribution points is that administrative distances can
cause routers to choose undesirable paths. In some cases, route loops and black holes can result. For
example, Bumble's route table (Example 13-21) shows that it is routing to network 192.168.6.0 through
Blathers, rather than using the preferable route through Monks.

Figure 13-6. When mutual redistribution is performed at more than one point, as in this network,
administrative distances can cause suboptimal routing, route loops, and black holes.

Example 13-21. The route Bumble is using to reach to network 192.168.6.0 via Blathers (192.168.3.2)
involves crossing two serial links and a token ring.

Bumble#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
R     192.168.1.0/24 [120/1] via 192.168.2.1, 00:00:00, Ethernet0
C     192.168.2.0/24 is directly connected, Ethernet0
C     192.168.3.0/24 is directly connected, Serial0
O     192.168.4.0/24 [110/70] via 192.168.3.2, 00:05:09, Serial0
O     192.168.5.0/24 [110/134] via 192.168.3.2, 00:05:09, Serial0
O E2 192.168.6.0/24 [110/100] via 192.168.3.2, 00:05:09, Serial0
Bumble#

One solution to this problem is to use the distribute-list command to control the source of the routes at the
redistribution points. The configurations of Bumble and Grimwig are displayed in Example 13-22 and Example
13-23, respectively.

Example 13-22. Bumble's configuration permits only addresses in the OSPF domain to be accepted
into the OSPF process and permits only addresses in the RIP domain to be accepted into the RIP
process.



router ospf 1
redistribute rip metric 100
network 192.168.3.1 0.0.0.0 area 0
distribute-list 1 in
!
router rip
redistribute ospf 1 metric 2
network 192.168.2.0
distribute-list 2 in
!
ip classless
access-list 1 permit 192.168.4.0
access-list 1 permit 192.168.5.0
access-list 2 permit 192.168.1.0
access-list 2 permit 192.168.6.0

Example 13-23. Grimwig's configuration permits only addresses in the OSPF domain to be accepted
into the OSPF process and permits only addresses in the RIP domain to be accepted into the RIP
process.

router ospf 1
redistribute rip metric 100
network 192.168.5.1 0.0.0.0 area 0
distribute-list 1 in
!
router rip
redistribute ospf 1 metric 2
network 192.168.6.0
distribute-list 2 in
!
ip classless
access-list 1 permit 192.168.3.0
access-list 1 permit 192.168.4.0
access-list 2 permit 192.168.1.0
access-list 2 permit 192.168.2.0

In both configurations, access list 1 allows only addresses within the OSPF domain to be accepted by OSPF,
and access list 2 allows only addresses within the RIP domain to be accepted by RIP. Example 13-24 shows
Bumble's route table after the route filter has been configured.

Example 13-24. After the route filters are configured, Bumble is using the preferred route to reach
network 192.168.6.0.

Bumble#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
R    192.168.1.0/24 [120/1] via 192.168.2.1, 00:00:12, Ethernet0
C    192.168.2.0/24 is directly connected, Ethernet0
C    192.168.3.0/24 is directly connected, Serial0
O    192.168.4.0/24 [110/70] via 192.168.3.2, 00:00:22, Serial0
O    192.168.5.0/24 [110/134] via 192.168.3.2, 00:00:22, Serial0
R    192.168.6.0/24 [120/1] via 192.168.2.1, 00:00:13, Ethernet0
Bumble#



The problem with this configuration is that it eliminates the redundancy inherent in multiple redistribution
points. In Example 13-25, Bumble's Ethernet link has been disconnected. Because routes to the RIP networks
are being filtered in OSPF, all those routes are now unreachable.

Example 13-25. When Bumble's Ethernet link fails, the RIP networks become unreachable. The route
filters prevent OSPF from entering the alternative routes into the route table.

Bumble#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0, changed state to down
Bumble#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
C    192.168.3.0/24 is directly connected, Serial0
O    192.168.4.0/24 [110/70] via 192.168.3.2, 00:06:45, Serial0
O    192.168.5.0/24 [110/134] via 192.168.3.2, 00:06:45, Serial0
Bumble#

A better approach for IPv4 is to use two forms of the distance command to set preferred routes.[5] The
configurations of Bumble and Grimwig are displayed in Example 13-26 and Example 13-27, respectively.

[5] IPv6 routing protocols also support the distance command to change the administrative
distances. The IPv6 form of the command only has the option of changing the distance value. There
are currently no options for specifying neighbor addresses or prefix-lists.

Example 13-26. Bumble uses the distance configuration command to alter the administrative
distance of IP routes.

router ospf 1
redistribute rip metric 100
network 192.168.3.1 0.0.0.0 area 0
distance 130
distance 110 0.0.0.0 255.255.255.255 1
!
router rip
redistribute ospf 1 metric 2
network 192.168.2.0
distance 130
distance 120 192.168.2.1 0.0.0.0 2
!
ip classless
access-list 1 permit 192.168.4.0
access-list 1 permit 192.168.5.0
access-list 2 permit 192.168.1.0
access-list 2 permit 192.168.6.0

Example 13-27. Grimwig uses the distance command to alter the administrative distances of IP
routes.

router ospf 1



redistribute rip metric 100
network 192.168.5.1 0.0.0.0 area 0
distance 130
distance 110 0.0.0.0 255.255.255.255 1
!
router rip
redistribute ospf 1 metric 2
network 192.168.6.0
distance 130
distance 120 192.168.6.1 0.0.0.0 2
!
ip classless
access-list 1 permit 192.168.3.0
access-list 1 permit 192.168.4.0
access-list 2 permit 192.168.1.0
access-list 2 permit 192.168.2.0

The first distance command in both configurations sets the default distance of both OSPF and RIP routes to
130. The second distance command sets a different distance according to the advertising router specified and
the referenced access list. For instance, Grimwig's RIP process assigns a distance of 120 to routes advertised
by Monks (192.168.6.1) that are permitted by access list 2. All other routes are given a distance of 130. Notice
that an inverse mask is used with the address of the advertising router.

OSPF is more problematic. The address of the advertising router is not necessarily the interface address of
the next-hop router. Rather, it is the Router ID of the router originating the LSA from which the route is
calculated. Therefore, the address and inverse mask for the distance command under OSPF is 0.0.0.0
255.255.255.255, specifying any router.[6] OSPF routes from all routers that are permitted by access list 1 are
assigned a distance of 110; all other routes are given a distance of 130.

[6] The same "any" address can be used with RIP. A specific address was used for demonstration
purposes.

The result appears in Example 13-28. The first route table shows that Grimwig is routing to all networks in the
OSPF domain via Duff and to all networks in the RIP domain via Monks. The normal distances of 110 for
OSPF and 120 for RIP are assigned to the routes. Next, Grimwig's Ethernet connection fails. The second route
table shows that all networks are now reachable via Duff. The routes to the networks in the RIP domain have a
distance of 130. When the Ethernet connection is restored, the RIP advertisements from Monks, with a
distance of 120, will replace the OSPF advertisements with a distance of 130.

Example 13-28. Grimwig's route table before and after its Ethernet link to Monks is disconnected.

Grimwig#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
R    192.168.1.0/24 [120/1] via 192.168.6.1, 00:00:19, Ethernet0
R    192.168.2.0/24 [120/1] via 192.168.6.1, 00:00:19, Ethernet0
O    192.168.3.0/24 [110/134] via 192.168.5.2, 00:15:06, Serial0
O    192.168.4.0/24 [110/70] via 192.168.5.2, 00:15:06, Serial0
C    192.168.5.0/24 is directly connected, Serial0
C    192.168.6.0/24 is directly connected, Ethernet0
Grimwig#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0, changed state to down
Grimwig#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default



       U - per-user static route
Gateway of last resort is not set
O E2 192.168.1.0/24 [130/100] via 192.168.5.2, 00:00:08, Serial0
O E2 192.168.2.0/24 [130/100] via 192.168.5.2, 00:00:08, Serial0
O    192.168.3.0/24 [110/134] via 192.168.5.2, 00:16:23, Serial0
O    192.168.4.0/24 [110/70] via 192.168.5.2, 00:16:23, Serial0
C    192.168.5.0/24 is directly connected, Serial0
O E2 192.168.6.0/24 [130/100] via 192.168.5.2, 00:00:08, Serial0
Grimwig#

If one of the serial links in Figure 13-6 fails, the opposite will happen. The networks within the OSPF domain
will become reachable through the RIP domain, again with a distance of 130 (Example 13-29). However, unlike
the speedy reconvergence of OSPF, the RIP side will take several minutes to reconverge. This slow
reconvergence is due to RIP's split horizon at Monks. That router will not advertise the OSPF routes to Bumble
or Grimwig until the same routes have ceased to be advertised from one of those routers and the existing
routes have timed out.

Example 13-29. Grimwig's route table before and after its serial link to Duff is disconnected.

Grimwig#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
R    192.168.1.0/24 [120/1] via 192.168.6.1, 00:00:04, Ethernet0
R    192.168.2.0/24 [120/1] via 192.168.6.1, 00:00:04, Ethernet0
O    192.168.3.0/24 [110/134] via 192.168.5.2, 00:00:12, Serial0
O    192.168.4.0/24 [110/70] via 192.168.5.2, 00:00:12, Serial0
C    192.168.5.0/24 is directly connected, Serial0
C    192.168.6.0/24 is directly connected, Ethernet0
Grimwig#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0, changed state to down
%LINK-3-UPDOWN: Interface Serial0, changed state to down
Grimwig#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route
Gateway of last resort is not set
R    192.168.1.0/24 [120/1] via 192.168.6.1, 00:00:07, Ethernet0
R    192.168.2.0/24 [120/1] via 192.168.6.1, 00:00:07, Ethernet0
R    192.168.3.0/24 [130/3] via 192.168.6.1, 00:00:07, Ethernet0
R    192.168.4.0/24 [130/3] via 192.168.6.1, 00:00:07, Ethernet0
R    192.168.5.0/24 is possibly down, routing via 192.168.6.1, Ethernet0
C    192.168.6.0/24 is directly connected, Ethernet0
Grimwig#

The solution to this problem is to disable split horizon on Monks's two Ethernet interfaces with the command
no ip split-horizon. Although disabling split horizon is trading some loop protection for shorter reconvergence
times, it is a good trade in this case. The distance-based route filters at Bumble and Grimwig will prevent all
multi-hop loops, and the split horizon function on the same two routers' Ethernet interfaces will break single-
hop loops.

There is another option that can assist in filtering addresses between routing protocols that are mutually
redistributing routes. This is route tagging. As routes are being redistributed into a routing protocol, the routes
can be tagged. The tag is a number that the administrator sets, that will uniquely identify the set of routes that
have been redistributed at this router. The tag can be used at another router to filter these routes from being



redistributed back into the originating routing protocol. Tags are set using route maps and are discussed
further in Chapter 14, "Route Maps."

Case Study: Using Administrative Distances to Set Router Preferences

Suppose policy states that Monks in Figure 13-6 will use Grimwig as its primary gateway to the OSPF domain
and route through Bumble only if Grimwig becomes unavailable. Presently, Monks is performing equal-cost
load balancing between Grimwig and Bumble to reach the OSPF networks (Example 13-30).

Example 13-30. Monks sees all of the networks in the OSPF domain as equidistant through Bumble
and Grimwig.

Monks#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
C    192.168.1.0/24 is directly connected, Ethernet2
C    192.168.2.0/24 is directly connected, Ethernet0
R    192.168.3.0/24 [120/2] via 192.168.2.2, 00:00:26, Ethernet0
                    [120/2] via 192.168.6.2, 00:00:23, Ethernet1
R    192.168.4.0/24 [120/2] via 192.168.2.2, 00:00:26, Ethernet0
                    [120/2] via 192.168.6.2, 00:00:23, Ethernet1
R    192.168.5.0/24 [120/2] via 192.168.2.2, 00:00:26, Ethernet0
                    [120/2] via 192.168.6.2, 00:00:23, Ethernet1
C    192.168.6.0/24 is directly connected, Ethernet1
Monks#

Monks can be configured to prefer Grimwig by lowering the distance of all routes from that router, as in
Example 13-31.

Example 13-31. Monks is configured to lower the administrative distance for all routes advertised
from Grimwig.

router rip
network 192.168.1.0
network 192.168.2.0
network 192.168.6.0
distance 100 192.168.6.2 0.0.0.0

Here, the distance command makes no reference to an access list. All routes advertised by Grimwig
(192.168.6.2) will be assigned an administrative distance of 100. All other routes (meaning routes from
Bumble) will be assigned the default RIP administrative distance of 120. Therefore, Grimwig's routes will be
preferred.

Example 13-32 shows the results. The first route table shows that Monks is now routing to Grimwig only. After
a failure of the connection to Grimwig, the bottom route table shows that Monks has switched to Bumble
(192.168.2.2).

Example 13-32. Monks's route table before and after its Ethernet link to Grimwig is disconnected.

Monks#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area



       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
C    192.168.1.0/24 is directly connected, Ethernet2
C    192.168.2.0/24 is directly connected, Ethernet0
R    192.168.3.0/24 [100/2] via 192.168.6.2, 00:00:12, Ethernet1
R    192.168.4.0/24 [100/2] via 192.168.6.2, 00:00:12, Ethernet1
R    192.168.5.0/24 [100/2] via 192.168.6.2, 00:00:12, Ethernet1
C    192.168.6.0/24 is directly connected, Ethernet1
Monks#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1, changed state to down
Monks#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
C    192.168.1.0/24 is directly connected, Ethernet2
C    192.168.2.0/24 is directly connected, Ethernet0
R    192.168.3.0/24 [120/2] via 192.168.2.2, 00:00:00, Ethernet0
R    192.168.4.0/24 [120/2] via 192.168.2.2, 00:00:00, Ethernet0
R    192.168.5.0/24 [120/2] via 192.168.2.2, 00:00:00, Ethernet0
R    192.168.6.0/24 [120/2] via 192.168.2.2, 00:00:00, Ethernet0
Monks#



Looking Ahead

Route filters are very useful tools for controlling the behavior of your network. In large networks, route
filters are nearly indispensable. Yet for all their utility, they still can only allow or disallow routes.
Chapter 14, introduces route maps, powerful tools that not only identify routes but also actively modify
them.



Summary Table: Chapter 13 Command Review

Command Description
access-list access-list-
number {deny| permit}
source[source-wildcard]

Defines a line of a standard IP
access list

distance weight [address
mask[access-list-number |
name]]

Defines an administrative distance
other than the default

distance eigrp internal-
distance external-distance

Defines the administrative distances
other than the default of internal and
external EIGRP routes

distance ospf{[intra-area
dist1] [inter-area dist2]
[external dist3]}

Defines the administrative distances
other than the default of intra-area,
inter-area, and external routes

distribute-list{access-list-
number | name} in [interface-
name]

Filters the IPv4 routes in incoming
updates

distribute-list{access-list-
number | name} out
[interface-name| routing-
process| autonomous-
system-number ]

Filters the IPv4 routes in outgoing
updates

distribute-list prefix-list
list_name[in| out]

Filters the IPv6 routes in incoming or
outgoing updates

ipv6 prefix-list list_name
[seq num] {deny| permit}
prefix/length[ge length | le
length]

Defines a line of an IPv6 prefix list,
specifying a prefix or group of
prefixes to permit or deny

redistribute
protocol [process-id] {level-1|
level-1-2| level-2} [metric
metric-value] [metric-type
type-value] [match{internal|
external 1| external 2}] [tag
tag-value] [route-map map-
tag] [weight weight]
[subnets]

Configures IPv4 redistribution into a
routing protocol and specifies the
source of the redistributed routes



Configuration Exercises

1 The routing configuration for Router A in Figure 13-7 is displayed in Example 13-33.

Figure 13-7. The network for Configuration Exercises 1 through 4.

[View full size image]

Configure a route filter at A that will prevent subnet 172.16.12.0/24 from being known by
any router other than E.

Example 13-33. Router A's configuration for the network shown in Figure 13-7.

router rip
redistribute eigrp 1 metric 3
passive-interface Ethernet0
passive-interface Ethernet1
network 172.16.0.0
!
router eigrp 1
redistribute rip metric 10000 1000 255 1 1500
passive-interface Ethernet2
passive-interface Ethernet3
network 172.16.0.0

2 Configure a route filter at A in Figure 13-7 that will prevent D from learning about subnet
172.16.10.0/24.

3 Configure a route filter at A in Figure 13-7 that will allow only subnets 172.16.2.0/24,
172.16.8.0/24, and 172.16.9.0/24 to be advertised into the RIP domain.

4 Configure a route filter at A in Figure 13-7 that will prevent B from learning about any of the
subnets in the RIP domain.

5 OSPFv3 for IPv6 is added to Routers A, B and C. RIPng is added to Routers A, D, and E.
IPv6 prefixes 2001:db8:0:1::/64, 2001:db8:0:2::/64, and 2001:db8:0:3::/64 are connected to
Router B. Prefixes 2001:db8:0:a::/64, 2001:db8:0:b::/64, and 2001:db8:0:c::/64 are



connected to Router E. Configure a route filter at A in Figure 13-7 that prevents the
prefixes 2001:db8:0:a::/64 and 2001:db8:0:b::/64 from being advertised to D.

6 Table 13-1 shows the interface addresses for all routers in Figure 13-8. Routers A and B
are running EIGRP, and Routers E and F are running IS-IS. C and D are redistributing.
Configure distance commands for C and D that will prevent loops and route feedback but
will still allow redundant paths.

Table 13-1. The interface addresses of the routers in Figure
13-8.

Router Interface Address Mask
A E0

S0

S1

S2

192.168.1.1

192.168.10.254

192.168.10.249

192.168.10.245

255.255.255.0

255.255.255.252

255.255.255.252

255.255.255.252
B E0

S0

S1

192.168.2.1

192.168.10.246

192.168.10.241

255.255.255.0

255.255.255.252

255.255.255.252
C S0

S1

S2

192.168.10.253

192.168.10.234

192.168.10.225

255.255.255.252

255.255.255.252

255.255.255.252
D S0

S1

S2

192.168.10.250

192.168.10.242

192.168.10.237

255.255.255.252

255.255.255.252

255.255.255.252
E E0

S0

S1

192.168.4.1

192.168.10.226

192.168.10.229

255.255.255.0

255.255.255.252

255.255.255.252
F E0

S0

S1

S2

192.168.3.1

192.168.10.230

192.168.10.233

192.168.10.238

255.255.255.0

255.255.255.252

255.255.255.252

255.255.255.252

Figure 13-8. The network for Configuration Exercises 6 through 8.



7 Using the distance command, configure Router D in Figure 13-8 to accept EIGRP routes
only from Router A. If the link to A fails, D should not accept routes from Router B, although
D should still advertise routes to B.

8 Remove the configuration added to D in Configuration Exercise 7. Configure Router C in
Figure 13-8 to route to all destinations, including the networks and subnets of the IS-IS
domain, via Router A. C should route through E and F only if the link to A fails.



Troubleshooting Exercises

1 A router has the configuration in Example 13-34.

Example 13-34. A router configuration attempting to filter the default route.

router eigrp 1
network 10.0.0.0
distribute-list 1 in Ethernet5/1
!
access-list 1 deny 0.0.0.0 255.255.255.255
access-list 1 permit any

The intention is to deny the incoming default route at interface E5/1 and to permit all other
routes incoming on that interface. However, no routes are being accepted on E5/1. What is
wrong?

2 Grimwig in Figure 13-6 has the configuration in Example 13-35.

Example 13-35. Grimwig's configuration for troubleshooting Exercise 2.

router ospf 1
redistribute rip metric 100
network 192.168.5.1 0.0.0.0 area 0
distance 255
distance 110 0.0.0.0 255.255.255.255 1
!
router rip
redistribute ospf 1 metric 2
network 192.168.6.0
distance 255
distance 120 192.168.6.1 0.0.0.0 2
!
ip classless
access-list 1 permit 192.168.3.0
access-list 1 permit 192.168.4.0
access-list 2 permit 192.168.1.0
access-list 2 permit 192.168.2.0

What effect will this configuration have on the routes at Grimwig?

3 The routers in Figure 13-9 are running OSPF. Router B has the configuration in Example
13-36.

Figure 13-9. The network for Troubleshooting Exercises 3 and 4.



Example 13-36. Router B's OSPF configuration from Figure 13-9.

router ospf 50
network 0.0.0.0 255.255.255.255 area 1
distribute-list 1 in
!
access-list 1 deny 172.17.0.0
access-list 1 permit any

The intention is to prevent Routers B and C from having a route entry for network
172.17.0.0. This plan seems to be working at Router B, but Router C still has an entry for
172.17.0.0. Why?

4 The routers in Figure 13-9 are running RIP. Router B has the configuration in Example 13-
37.

Example 13-37. Router B's RIP configuration.

router rip
network 172.19.0.0
network 172.20.0.0
distribute-list 1 out Ethernet0
distribute-list 2 out Ethernet1
!
access-list 1 permit 172.18.0.0
access-list 2 permit 172.22.0.0

The intention is to advertise only network 172.22.0.0 to Router A and to advertise only
network 172.18.0.0 to Router C. However, A and C have no RIP entries in their route table.
What is wrong?



Chapter 14. Route Maps
This chapter covers the following subjects:

Basic Uses of Route Maps

Configuring Route Maps

Route maps are similar to access lists; they both have criteria for matching the details of certain
packets and an action of permitting or denying those packets. Unlike access lists, though, route maps
can add to each "match" criterion a "set" criterion that actually changes the packet in a specified
manner, or changes route information in a specified manner. Route maps also allow you more options
for matching a given packet. Altogether, route maps are a powerful tool for creating customized routing
policies in your network.



Basic Uses of Route Maps

Route maps can be used for both redistribution and for policy routing. Although redistribution has been
covered extensively in previous chapters, this chapter introduces the topic of policy routing. And most
commonly, they are an essential tool in large-scale Border Gateway Protocol (BGP) implementations.
The use of route maps to implement BGP routing policies is outside the scope of this volume, and is
covered in "Routing TCP/IP," Volume II (CCIE Professional Development) (1-57870-089-2).

Policy routes are nothing more than sophisticated static routes. Whereas static routes forward a packet
to a specified next hop based on the destination address of the packet, policy routes can forward a
packet to a specified next hop based on the source of the packet or other fields in the packet header.
Policy routes can also be linked to extended IP access lists so that routing might be based on such
things as protocol types and port numbers. Like a static route, a policy route influences the routing only
of the router on which it is configured.

Figure 14-1 shows an example of a typical policy routing application. AbnerNet is connected to two
Internet service providers via router Dogpatch. AbnerNet's corporate policy dictates that some users'
Internet traffic should be sent via ISP 1 and other users' Internet traffic should be sent via ISP 2. If
either ISP should become unavailable, the traffic normally using that provider would be sent to the other
provider. A policy route at Dogpatch can distribute Internet traffic in accordance with local policy. The
distribution of traffic might be based on subnet, specific user, or even user applications.

Figure 14-1. Policy routing allows traffic from AbnerNet to be routed to one of its two Internet
service providers based on parameters such as source address, source/destination address

combinations, packet size, or application-level ports.

Figure 14-2 shows another use for policy routing. One of the systems on the right watches for invasion
forces from the planet Mongo, while the other stores back copies of Dilbert comic strips. Policy routes
can be configured to route the critical traffic from the Mongo System to Flash_G over the FDDI (Fiber
Distributed Data Interface) link and to route the lower-priority Dilbert traffic over the 56K linksor vice
versa.

Figure 14-2. Policy routing allows high-priority traffic from the Mongo System to be routed
over the FDDI link while low-priority traffic from the Dilbert System is routed over the 56K

links.



Tables 14-1 and 14-2 show the match and set commands that can be used with redistribution, and
Tables 14-3 and 14-4 show the match and set commands that can be used with policy routing.

Table 14-1. match commands that can be used with
redistribution.

Command Description
match interface type
number  [...type number ]

Matches routes that have
their next hop out one of the
interfaces specified

match ip address {access-
list-number | name}
[...access-list-number | name]

Matches routes that have a
destination address specified
by one of the access lists

match ip next-hop{access-
list-number | name}
[...access-list-number | name]

Matches routes that have a
next-hop router address
specified by one of the
access lists

match ip route-
source{access-list-number |
name} [...access-list-number |
name]

Matches routes that have
been advertised by routers at
the addresses specified in the
access lists

match metric metric-value Matches routes with the
specified metric

match route-type {internal|
external[type-1| type-2] |
level-1| level-2}

Matches OSPF, EIGRP, or IS-
IS routes of the specified type

match tag tag-value [...tag-
value]

Matches routes with the
specified tags

Table 14-2. set commands that can be used with
redistribution.

Command Description
set level{level-1| level-2|
level-1-2| stub-area|
backbone}

Sets the IS-IS level or the
OSPF area into which a
matched route is to be
redistributed

set metric{metric-value| Sets the metric value for a
matched route



bandwidth delay reliability
loading mtu}

matched route

set metric-type{internal|
external| type-1| type-2}

Sets the metric type for a
matched route being
redistributed into IS-IS or
OSPF

set next-hop next-hop Sets the next-hop router
address for a matched route

set tag tag-value Sets a tag value for a
matched route

Table 14-3. match commands that can be used with
policy routing.

Command Description
match ip address {access-
list-number | name}
[...access-list-number | name]

Matches a packet with the
characteristics specified in the
standard or extended access
lists

match length min max Matches the Layer 3 length of
a packet

Table 14-4. set commands that can be used with policy
routing.

Command Description
set default interface type
number  [...type number ]

Sets the outgoing interface for
matched packets when there
is no explicit route to the
destination

set interface type number
[...type number ]

Sets the outgoing interface for
matched packets when there
is an explicit route to the
destination

set ip default next-hop ip-
address [...ip-address]

Sets the next-hop router
address for matched packets
when there is no explicit route
to the destination

set ip next-hop ip-address
[...ip-address]

Sets the next-hop router
address for matched packets
when there is an explicit route
to the destination

set ip precedence
precedence

Sets the precedence bits in
the Type of Service field of
matched IP packets

set ip tos type-of-service Sets the TOS bits in the Type
of Service field of matched
packets





Configuring Route Maps

Like access lists (see Appendix B, "Tutorial: Access Lists"), route maps by themselves affect nothing; they must be "called"
by some command. The command will most likely be either a policy routing command or a redistribution command. Policy
routing will send packets to the route map, whereas redistribution will send routes to the route map. The case studies in
this section demonstrate the use of route maps for both redistribution and policy routing.

Route maps are identified by a name. For example, the route map in Example 14-1 is named Hagar.

Example 14-1. A route map named Hagar is defined in this configuration.

route-map Hagar permit 10
match ip address 110
set metric 100

Each route map statement has a "permit" or "deny" action and a sequence number. This route map shows a permit action
and a sequence number of 10. These settings are the defaultsthat is, if no action or sequence number is specified when
the route map is configured, the route map will default to a permit and a sequence number of 10.

The sequence number allows the identification and editing of multiple statements. Consider the configuration steps in
Example 14-2.

Example 14-2. Route map Hagar is modified in this configuration.

route-map Hagar 20
 match ip address 111
 set metric 50
route-map Hagar 15
 match ip address 112
 set metric 80

Here, a second and third set of route map statements, each with their own match and set statements, have been added
to route map Hagar. Notice that a sequence number of 20 was configured first and then a sequence number of 15. In the
final configuration, the IOS has placed statement 15 before 20 even though it was entered later, as shown in Example 14-
3.[1]

[1] Notice also that no action was specified in the configuration steps, so the default permit appears in the final
configuration.

Example 14-3. IOS places the commands in sequential order.

route-map Hagar permit 10
 match ip address 110
 set metric 100
!
route-map Hagar permit 15
 match ip address 112
 set metric 80
!
route-map Hagar permit 20
 match ip address 111
 set metric 50

The sequence numbers also allow for the elimination of individual statements. For example, the statement

Linus(config)#no route-map Hagar 15



deletes statement 15 and leaves the other statements intact, as shown in Example 14-4.

Example 14-4. Route-map Hagar after the match/set statements associated with sequence 15 have been
removed.

route-map Hagar permit 10
 match ip address 110
 set metric 100
!
route-map Hagar permit 20
 match ip address 111
 set metric 50

Be careful when editing route maps. In this example, if no route-map Hagar had been typed, without specifying a
sequence number, the entire route map would have been deleted. Likewise, if no sequence numbers had been specified
when the additional match and set statements were added, they would have simply changed statement 10.[2]

[2] Depending upon your IOS version, trying to change a match or set route-map statement without specifying a
sequence number might result in an IOS message "% Please specify the entry by its sequence," rather than
assuming that sequence number 10 is to be changed.

A packet or route is passed sequentially through route map statements. If a match is made, any set statements are
executed and the permit or deny action is executed. As with access lists, processing stops when a match is made and the
specified action is executed; the route or packet is not passed to subsequent statements. Consider the route map in
Example 14-5.

Example 14-5. Route-map Sluggo.

route-map Sluggo permit 10
 match ip route-source 1
 set next-hop 192.168.1.5
!
route-map Sluggo permit 20
 match ip route-source 2
 set next-hop 192.168.1.10
!
route-map Sluggo permit 30
 match ip route-source 3
 set next-hop 192.168.1.15

If a route does not match statement 10, it will be passed to statement 20. If a match is made at statement 20, the set
command will be executed and the route will be permitted. The matched route will not be passed on to statement 30.

The behavior of a "deny" action depends on whether the route map is being used for policy routing or for redistribution. If
a route map is being used for redistribution and a route matches a statement with a deny action, the route will not be
redistributed. If the route map is being used for policy routing and a packet matches a statement with a deny action, the
packet is not policy routed but is passed back to the normal routing process for forwarding.

Again as with access lists, there must be a default action for the route map to take in the event that a route or packet
passes through every statement without a match. An implicit deny exists at the end of every route map. Routes that pass
through a redistribution route map without a match are not redistributed, and packets that pass through a policy route map
without a match are sent to the normal routing process.

If no match statement is configured under a route map statement, the default action is to match everything.

Each map statement might have multiple match and set statements, as shown in Example 14-6.

Example 14-6. Route map Garfield contains multiple match and set statements for the map statement with
sequence number 10.

route-map Garfield permit 10
match ip route-source 15
match interface Serial0



set metric-type type-1
set next-hop 10.1.2.3

In a case such as this, every match statement must be matched for the set statements to be executed.

Case Study: Policy Routing

Policy routing is defined with the command ip policy route-map. The command is configured on an interface and affects
incoming packets only.

Suppose a policy were to be implemented on Linus in Figure 14-3 such that traffic from subnet 172.16.6.0/24 would be
forwarded to Lucy and traffic from subnet 172.16.7.0/24 would be forwarded to Pigpen. Linus's configuration is displayed
in Example 14-7.

Figure 14-3. Policy routes can be configured at Linus to route some packets through Lucy and other packets
through Pigpen.

Example 14-7. Linus's policy routing configuration.

interface Serial0
 ip address 172.16.5.1 255.255.255.0
 ip policy route-map Sally
!
access-list 1 permit 172.16.6.0 0.0.0.255
access-list 2 permit 172.16.7.0 0.0.0.255
!
route-map Sally permit 10
 match ip address 1
 set ip next-hop 172.16.4.2
!
route-map Sally permit 15
 match ip address 2
 set ip next-hop 172.16.4.3

The policy routing command on S0 sends incoming packets to route map Sally. Statement 10 of route map Sally uses
access list 1 to identify source addresses from subnet 172.16.6.0/24. If a match is made, the packet is forwarded to Lucy,
whose next-hop interface address is 172.16.4.2. If no match is made, the packet is sent to statement 15. That statement
uses access list 2 to match source addresses from subnet 172.16.7.0/24. If a match is made at that statement, the packet
is forwarded to Pigpen (172.16.4.3). Any packets that do not match statement 15, such as packets sourced from subnet
172.16.8.0/24, are routed normally. Example 14-8 shows the results of the policy route.[3]

[3] Note that the debug ip packet command references an access list 5. This access list permits only the



subnets connected to router Charlie so that uninteresting traffic is not displayed by the debug function.

Example 14-8. The policy route configured on Linus's S0 interface routes packets from subnet 172.16.6.0/24 to
Lucy (172.16.4.2) and routes packets from subnet 172.16.7.0/24 to Pigpen (172.16.4.3). Packets from subnet
172.16.8.0/24, which do not match the policy route, are routed normally (load balancing between Lucy and
Pigpen).

Linus#debug ip packet 5
IP packet debugging is on for access list 5
Linus#
IP: s=172.16.7.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.6.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.6.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.6.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.6.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.8.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.8.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.8.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.8.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.3, len 60, forward

Suppose Lucy's Ethernet interface fails. Linus would still attempt to forward packets from 172.16.6.0 to Lucy's IP address.
Because a match is made in the route map, even if the specified next-hop interface were down, no other matches would
be attempted nor would the packet be routed normally. To force Linus to verify the availability of the next-hop address
before attempting to forward the packet, use the command set ip next-hop verify-availability. Linus will search its CDP
neighbors table to verify that the next-hop address is listed. If it is not, the policy is rejected and the packet is forwarded
normally. Example 14-9 shows the output of the commands debug ip policy and debug arp while Lucy's Ethernet
interface is down. Packets are matched and policy routed, even while the router is attempting to ARP for the next-hop
address, without receiving an ARP reply. The packets are dropped.

Example 14-10 shows the output of the debug ip policy command with the addition of the set ip next-hop verify-
availability command in the IP policy configuration. The example shows Linus's operation with Lucy's Ethernet interface
still down. The packets are matched by the policy, but the policy is rejected because the next-hop address is no longer in
Linus's CDP table. Since the policy is rejected, the packets are routed using the normal method.

Example 14-9. debug ip policy  and debug arp on Linus shows packets are attempting to be routed according to
the configured policy, even if the next hop specified by the policy is unavailable.

Linus#debug arp
ARP packet debugging is on
Linus#debug ip policy
Policy routing debugging is on
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, FIB policy match
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, policy match
IP: route map Sally, item 10, permit
IP: s=172.16.6.1 (Serial0), d=172.16.2.1 (Ethernet0), len 100, policy routed
IP: Serial0 to Ethernet0 172.16.4.2
IP ARP: sent req src 172.16.4.1 0004.c150.e700,
                 dst 172.16.4.2 0000.0000.0000 Ethernet0
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, FIB policy match
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, policy match
IP: route map Sally, item 10, permit
IP: s=172.16.6.1 (Serial0), d=172.16.2.1 (Ethernet0), len 100, policy routed
IP: Serial0 to Ethernet0 172.16.4.2
IP ARP: sent req src 172.16.4.1 0004.c150.e700,
                 dst 172.16.4.2 0000.0000.0000 Ethernet0
IP ARP: creating incomplete entry for IP address: 172.16.4.2 interface Ethernet0
IP ARP: sent req src 172.16.4.1 0004.c150.e700,
                 dst 172.16.4.2 0000.0000.0000 Ethernet0
IP ARP throttled out the ARP Request for 172.16.4.2

Example 14-10. debug ip policy  on Linus with set ip next-hop verify-availability  configured, shows the policy is
rejected (the next hop is not in Linus's CDP neighbor table) and packets are routed normally (not policy



routed).

Linus#debug ip policy
Policy routing debugging is on

IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, FIB policy match
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, FIB policy rejected - normal
forwarding
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, FIB policy match
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, FIB policy rejected - normal
forwarding

Example 14-11 shows the output of the same debug command, debug ip policy, after Lucy's Ethernet interface is backed
up. The output shows that the packets are successfully policy routed.

Example 14-11. debug ip policy  on Linus with set ip next-hop verify-availability  configured. The packets are
policy routed when the next hop is verified.

Linus#
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, FIB policy match
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, g=172.16.4.2, len 100, FIB policy routed
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, len 100, FIB policy match
IP: s=172.16.6.1 (Serial0), d=172.16.2.1, g=172.16.4.2, len 100, FIB policy routed

Standard IP access lists are used when policy routing by source address only. To route by both source and destination,
an extended IP access list is used. The configuration in Example 14-12 causes packets from any subnet to host
172.16.1.1 to be forwarded to Lucy, whereas packets from host 172.16.7.1 to host 172.16.1.2 are forwarded to Pigpen. All
other packets are routed normally.

Example 14-12. Policy route maps can reference extended IP access-lists to specify a source and destination
address pair to match, as shown in this configuration.

interface Serial0
ip address 172.16.5.1 255.255.255.0
ip policy route-map Sally
!
access-list 101 permit ip any host 172.16.1.1
access-list 102 permit ip host 172.16.7.1 host 172.16.1.2
!
route-map Sally permit 10
match ip address 101
set ip next-hop 172.16.4.2
!
route-map Sally permit 15
match ip address 102
set ip next-hop 172.16.4.3

Route map Sally is again used, except the match statements now reference access lists 101 and 102. Example 14-13
shows the results.

Example 14-13. Packets from any host to host 172.16.1.1 match statement 10 of route map Sally and are
forwarded to Lucy. Packets from host 172.16.7.1 to host 172.16.1.2 are forwarded to Pigpen. Packets from
another address on subnet 172.16.7.0/24 to host 172.16.1.2 are not matched by Sally and are routed normally.

Linus#debug ip packet 5
IP packet debugging is on for access list 5
Linus#
IP: s=172.16.7.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.1 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.2 (Ethernet0), g=172.16.4.3, len 60, forward



IP: s=172.16.7.1 (Serial0), d=172.16.1.2 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.2 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.7.1 (Serial0), d=172.16.1.2 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.7.254 (Serial0), d=172.16.1.2 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.7.254 (Serial0), d=172.16.1.2 (Ethernet0), g=172.16.4.2, len 60, forward
IP: s=172.16.7.254 (Serial0), d=172.16.1.2 (Ethernet0), g=172.16.4.3, len 60, forward
IP: s=172.16.7.254 (Serial0), d=172.16.1.2 (Ethernet0), g=172.16.4.2, len 60, forward

Next, suppose your policy states that FTP traffic from the servers on subnet 172.16.1.0/24 should be forwarded to Lucy
and that Telnet traffic from the same servers should be forwarded to Pigpen. This plan allows the bulk FTP traffic and the
bursty, interactive Telnet traffic to be segregated on the two serial links from Schroeder. Schroeder will have the
configuration in Example 14-14.

Example 14-14. Schroeder's policy route configuration forwarding FTP and Telnet traffic.

interface Ethernet0
ip address 172.16.1.4 255.255.255.0
ip policy route-map Rerun
!
access-list 105 permit tcp 172.16.1.0 0.0.0.255 eq ftp any
access-list 105 permit tcp 172.16.1.0 0.0.0.255 eq ftp-data any
access-list 106 permit tcp 172.16.1.0 0.0.0.255 eq telnet any
!
route-map Rerun permit 10
match ip address 105
set ip next-hop 172.16.2.1
!
route-map Rerun permit 20
match ip address 106
set ip next-hop 172.16.3.1

Access lists 105 and 106 are examining not only the source and destination addresses, but also the source port. In
Example 14-15, the detail option is used with debug ip packet to allow observation of the packet types being forwarded
by Schroeder. An access list 10 limits the displayed packets to those from 172.16.1.1 to 172.16.6.1.

Example 14-15. FTP packets (TCP ports 20 and 21) are being forwarded to Lucy, whereas Telnet packets (TCP
port 23) with the same source and destination addresses are forwarded to Pigpen. Echo Reply packets (ICMP
type 0), which do not find a match in the policy route, are routed normally.

Schroeder#debug ip packet detail 10
IP packet debugging is on (detailed) for access list 10
Schroeder#
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial0), g=172.16.2.1, len 1064, forward
    TCP src=20, dst=1047, seq=3702770065, ack=591246297, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial0), g=172.16.2.1, len 64, forward
    TCP src=21, dst=1046, seq=3662108731, ack=591205663, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial0), g=172.16.2.1, len 1476, forward
    TCP src=20, dst=1047, seq=3702771089, ack=591246297, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 40, forward
    TCP src=23, dst=1048, seq=3734385279, ack=591277873, win=14332 ACK
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 52, forward
    TCP src=23, dst=1048, seq=3734385279, ack=591277873, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 40, forward
    TCP src=23, dst=1048, seq=3734385291, ack=591277876, win=14332 ACK
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial0), g=172.16.2.1, len 60, forward
    ICMP type=0, code=0
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 60, forward
    ICMP type=0, code=0
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial0), g=172.16.2.1, len 60, forward
    ICMP type=0, code=0
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 60, forward
    ICMP type=0, code=0

The purpose of segregating bulk and interactive traffic, as demonstrated in the last example, is so that the small packets



characteristic of interactive traffic do not become delayed by the large packets characteristic of bulk traffic. The problem
with the approach in this example is that if many types of traffic must be segregated, the access lists identifying the traffic
by destination port might become prohibitively large.

If the objective is to segregate small packets from large packets, the length of the packet can be matched, as shown in
Example 14-16.

Example 14-16. Schroeder's policy route configuration forwards traffic based on packet length.

interface Ethernet0
ip address 172.16.1.4 255.255.255.0 ip policy route-map Woodstock !
route-map Woodstock permit 20
match length 1000 1600
set ip next-hop 172.16.2.1
!
route-map Woodstock permit 30
match length 0 400
set ip next-hop 172.16.3.1

Here the match length statement specifies a minimum and a maximum packet size. Statement 20 of the route map
causes all packets between 1000 and 1600 octets in length to be routed across the serial link to Lucy. Statement 30
causes all packets up to 400 octets in length to be routed across the serial link to Pigpen. Packets between 400 and 1000
octets are routed normally.

Example 14-17 shows the results of the new route map. Again there are FTP, Telnet, and Echo Reply packets from
172.16.1.2 to 172.16.6.1, but now the packets are routed according to their size instead of their addresses and ports.

Example 14-17. Packets of 1000 octets or larger are routed to Lucy, whereas packets of 400 octets or less are
routed to Pigpen. Any packets between 400 and 1000 octets are routed normally.

Schroeder#debug ip packet detail 10
IP packet debugging is on (detailed) for access list 10
Schroeder#
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial0), g=172.16.2.1, len 1476, forward
    TCP src=20, dst=1063, seq=1528444161, ack=601956937, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial0), g=172.16.2.1, len 1476, forward
    TCP src=20, dst=1063, seq=1528442725, ack=601956937, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial0), g=172.16.2.1, len 1476, forward
    TCP src=20, dst=1063, seq=1528444161, ack=601956937, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 840, forward
    TCP src=20, dst=1063, seq=1528445597, ack=601956937, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 40, forward
    TCP src=21, dst=1062, seq=1469372904, ack=601897901, win=14329 ACK
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 54, forward
    TCP src=21, dst=1062, seq=1469372904, ack=601897901, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 40, forward
    TCP src=21, dst=1062, seq=1469372918, ack=601897901, win=14335 ACK FIN
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 44, forward
    TCP src=23, dst=1064, seq=1712116521, ack=602140570, win=14335 ACK SYN
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 43, forward
    TCP src=23, dst=1064, seq=1712116522, ack=602140570, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 40, forward
    TCP src=23, dst=1064, seq=1712116525, ack=602140573, win=14332 ACK
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 52, forward
    TCP src=23, dst=1064, seq=1712116525, ack=602140573, win=14335 ACK PSH
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 60, forward
    ICMP type=0, code=0
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 60, forward
    ICMP type=0, code=0
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 60, forward
    ICMP type=0, code=0
IP: s=172.16.1.2 (Ethernet0), d=172.16.6.1 (Serial1), g=172.16.3.1, len 60, forward
    ICMP type=0, code=0

The policy routes demonstrated so far affect packets entering the router from a particular interface. But what about
packets generated by the router itself? These can also be policy routed, with the command ip local policy route-map.



Unlike the ip policy route-map command, which is configured on an interface, this command is configured globally on
the router.

To apply the previously demonstrated policy to packets generated by Schroeder, the configuration is as displayed in
Example 14-18.

Example 14-18. Route policy configuration for packets generated by Schroeder.

interface Ethernet0
 ip address 172.16.1.4 255.255.255.0
 ip policy route-map Woodstock
!
ip local policy route-map Woodstock
!
access-list 120 permit ip any 172.16.1.0 0.0.0.255
access-list 120 permit ospf any any
!
route-map Woodstock permit 10
 match ip address 120
!
route-map Woodstock permit 20
 match length 1000 1600
 set ip next-hop 172.16.2.1
!
route-map Woodstock permit 30
 match length 0 400
 set ip next-hop 172.16.3.1

Of particular interest is statement 10. This statement does not have a set statement, but merely permits packets that
match access list 120. Access list 120, in turn, permits all packets destined for subnet 172.16.1.0/24 and all OSPF
packets. Without the first line of the access list, some packets originated by Schroeder and destined for subnet
172.16.1.0/24 would be forwarded to the wrong interface by statement 20 or 30. Figure 14-4 shows why the second line
of the access list is necessary. The length of Schroeder's OSPF Hellos is 44 octets. If statement 10 were not included,
the OSPF Hellos would all match statement 30 and be forwarded to Pigpen, breaking the adjacency between Lucy and
Schroeder. By matching statement 10, the OSPF packets are permitted with no changes and are forwarded normally.

Figure 14-4. The length of the OSPF Hello packets is seen in this analyzer capture.

[View full size image]

Case Study: Policy Routing and Quality of Service Routing

Although quality of service (QoS) routing is outside the scope of this volume, it must be noted here that policy routing can
be an integral part of QoS. Policy routing in conjunction with QoS is done by setting the Precedence or the Type of
Service (TOS) bits of the TOS field in the IP headers of packets as they enter a router's interface. Figure 14-5 shows the
bits of the TOS field. Although the TOS bits are seldom used in modern networks, the Precedence bits have found new



life in QoS applications. The TOS bits are used to influence the path a router selects for a packet, whereas the
Precedence bits are used to prioritize packets within a router.

Figure 14-5. The Precedence and TOS bits of the Type of Service field of the IP header.

[View full size image]

The Precedence bits are set by using the set ip Precedence statement within a route map. The Precedence might be
set by specifying the decimal equivalent of the three Precedence bits or by using keywords. Table 14-5 shows the decimal
numbers and the keywords that can be used.

Table 14-5. Precedence values and keywords used with
the set ip precedence command.

Bits Number Keyword

000 0 routine
001 1 priority
010 2 immediate
011 3 flash
100 4 flash-override
101 5 critical
110 6 internet
111 7 network

The TOS bits are set by using the set ip tos statement. Like the Precedence statement, the argument of the statement
might be a number or a keyword, as shown in Table 14-6. Unlike Precedence, you might use a combination of TOS
values. For example, specifying a TOS value of 12 (1100b) means minimum delay and maximum throughput. Only a
single keyword can be used, so to set a combination of TOS values, a number must be specified.

Table 14-6. TOS values and keywords used with the set
ip tos command.

Bits Number (015) Keyword

0000 0 normal
0001 1 min-monetary-cost
0010 2 max-reliability
0100 4 max-throughput
1000 8 min-delay

Figure 14-6 shows an example of how policy routes can be used for QoS routing.

Figure 14-6. Policy routes can be used to set the Precedence or TOS bits of packets entering a network. The
routers within the network can then make QoS decisions based on the setting of these bits.



Here, router Pogo is at the "edge" of the Internet OkefenokeeNet. By configuring policy routes on Pogo's serial links, the
Precedence or TOS bits of incoming packets can be changed so that IP traffic is divided into several traffic classes. See
Example 14-19 for instance.

Example 14-19. Pogo's configuration sets Precedence and TOS bits.

interface Serial0
ip address 10.1.18.67 255.255.255.252
ip policy route-map Albert
!
interface Serial1
ip address 10.34.16.83 255.255.255.252
ip policy route-map Albert
!
access-list 1 permit 172.16.0.0 0.0.255.255
access-list 110 permit tcp any eq www any
!
route-map Albert permit 10
match ip address 1 110
set ip precedence critical
!
route-map Albert permit 20
set ip tos 10
set ip precedence priority

Statement 10 says that if packets match both access lists 1 and 110, the Precedence will be set to critical . Notice that
statement 20 has no match statement. This statement will match any packets that haven't been matched by statement 10.
There are also two set statements under statement 20. These statements will set the TOS bits to minimum delay and
maximum reliability and will set the Precedence bits to priority. Figure 14-7 shows a capture of a packet from
somewhere inside OkefenokeeNet, which has been modified by the route map at Pogo.

Figure 14-7. Pogo's policy route has set the Precedence bits of this packet to priority (001b) and the TOS bits to
minimum delay and maximum reliability (1010b).

[View full size image]



After the Precedence or TOS bits have been set in packets entering the network, the routers within the Internet can make
QoS decisions based in part or wholly on the class of service these bits define. For example, priority, custom, or weighted
fair queuing might be configured to prioritize traffic according to the Precedence or TOS bits. In some implementations,
Precedence can be used with congestion avoidance mechanisms such as Weighted Random Early Detection (WRED). Or
a crude Class-of-Service routing can be implemented by configuring access lists that permit or deny packets across
certain links based on the setting of their Precedence or TOS bits.

Case Study: Route Maps and Redistribution

A route map can be used with redistribution for both IPv4 and IPv6 by adding a call to the route map in the redistribute
command. Figure 14-8 shows a network in which IPv4 IS-IS and OSPF routes are being mutually redistributed at router
Zippy. Of the network and subnet addresses listed in the illustration, only the ones whose third octet is odd-numbered are
to be redistributed.

Figure 14-8. The OSPF and IS-IS routes are being mutually redistributed. Route maps can be used with the
redistribute command as simple route filters, or they can be used to modify characteristics of the redistributed

routes.

Zippy's configuration is displayed in Example 14-20.

Example 14-20. Zippy is configured to redistribute only addresses with an odd numbered third octet.

router ospf 1
 redistribute isis level-1 metric 20 subnets route-map Griffy
 network 172.16.10.2 0.0.0.0 area 5
!
router isis
 redistribute ospf 1 metric 25 route-map Toad metric-type internal level-2
 net 47.0001.1234.5678.9056.00
!
access-list 1 permit 192.168.2.0
access-list 1 permit 192.168.4.0
access-list 1 permit 192.168.6.0
access-list 2 permit 172.16.1.0
access-list 2 permit 172.16.3.0



access-list 2 permit 172.16.5.0
access-list 2 permit 172.16.7.0
access-list 2 permit 172.16.9.0
!
route-map Griffy deny 10
 match ip address 1
!
route-map Griffy permit 20
!
route-map Toad permit 10
 match ip address 2

Route maps Griffy and Toad perform the same functions, but with different logic. Griffy uses negative logic, identifying the
routes that should not be redistributed, and Toad uses positive logic, identifying the routes that should be redistributed.

Statement 10 of Griffy denies any routes that are permitted by access list 1 (the addresses with an even third octet).
Because the addresses with odd-numbered third octets do not find a match at statement 10, they are passed to statement
20. Statement 20 has no match statement, so the default is to match everything. Statement 20 has a permit action, so the
odd routes are permitted. The result is shown in Example 14-21.

Example 14-21. The only destinations within the IS-IS domain that are contained in Shelflife's route table are
those with an odd-numbered third octet.

Shelflife#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
Gateway of last resort is not set
O  E2 192.168.9.0 [110/20] via 172.16.10.2, 00:24:46, Ethernet0
O  E2 192.168.1.0 [110/20] via 172.16.10.2, 00:24:46, Ethernet0
O  E2 192.168.3.0 [110/20] via 172.16.10.2, 00:24:46, Ethernet0
O  E2 192.168.5.0 [110/20] via 172.16.10.2, 00:24:47, Ethernet0
O  E2 192.168.7.0 [110/20] via 172.16.10.2, 00:24:47, Ethernet0
      172.16.0.0 255.255.255.0 is subnetted, 9 subnets
C        172.16.9.0 is directly connected, Serial0
C        172.16.10.0 is directly connected, Ethernet0
O        172.16.4.0 [110/159] via 172.16.9.2, 14:05:33, Serial0
O        172.16.5.0 [110/159] via 172.16.9.2, 14:05:33, Serial0
O        172.16.6.0 [110/159] via 172.16.9.2, 14:05:33, Serial0
O        172.16.7.0 [110/159] via 172.16.9.2, 14:05:33, Serial0
O        172.16.1.0 [110/159] via 172.16.9.2, 14:05:33, Serial0
O        172.16.2.0 [110/159] via 172.16.9.2, 14:05:33, Serial0
O        172.16.3.0 [110/159] via 172.16.9.2, 14:05:33, Serial0
Shelflife#

Route map Toad has a single statement that permits routes that have been permitted by access list 2 (addresses with an
odd third octet). The addresses with an even third octet do not find a match at access list 2. The default route map
statement when redistributing is to deny all routes, so the addresses that are not matched by access list 2 are not
redistributed. Example 14-22 shows the results of route map Toad.

Example 14-22. The only destinations within the OSPF domain that are contained in Zerbina's route table are
those with an odd-numbered third octet.

Zerbina#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
Gateway of last resort is not set
C    192.168.9.0/24 is directly connected, Serial0
C    192.168.10.0/24 is directly connected, Ethernet0
i L1 192.168.1.0/24 [115/15] via 192.168.9.2, Serial0
i L1 192.168.2.0/24 [115/15] via 192.168.9.2, Serial0



i L1 192.168.3.0/24 [115/15] via 192.168.9.2, Serial0
i L1 192.168.4.0/24 [115/15] via 192.168.9.2, Serial0
i L1 192.168.5.0/24 [115/15] via 192.168.9.2, Serial0
i L1 192.168.6.0/24 [115/15] via 192.168.9.2, Serial0
i L1 192.168.7.0/24 [115/15] via 192.168.9.2, Serial0
     172.16.0.0/24 is subnetted, 5 subnets
i L2    172.16.9.0 [115/35] via 192.168.10.2, Ethernet0
i L2    172.16.5.0 [115/35] via 192.168.10.2, Ethernet0
i L2    172.16.7.0 [115/35] via 192.168.10.2, Ethernet0
i L2    172.16.1.0 [115/35] via 192.168.10.2, Ethernet0
i L2    172.16.3.0 [115/35] via 192.168.10.2, Ethernet0
Zerbina#

Other configurations will achieve the same ends. For instance, route map Toad will have the same effect with the access
list in Example 14-23.

Example 14-23. An alternate configuration for route-map Toad on Zippy.

access-list 2 deny 172.16.2.0
access-list 2 deny 172.16.4.0
access-list 2 deny 172.16.6.0
access-list 2 permit any

Although route maps work fine as simple route filters, their strength lies in their ability to change the routes in various
ways. Consider the configuration in Example 14-24 of Zippy in Figure 14-8.

Example 14-24. Zippy's route-map configuration sets the metric type, metric and level of certain redistributed
routes.

router ospf 1
 redistribute isis level-1 metric 20 subnets route-map Griffy
 network 172.16.10.2 0.0.0.0 area 5
!
router isis
 redistribute ospf 1 metric 25 route-map Toad metric-type internal level-2
 net 47.0001.1234.5678.9056.00
!
ip classless
access-list 1 permit 192.168.2.0
access-list 1 permit 192.168.4.0
access-list 1 permit 192.168.6.0
access-list 2 permit 172.16.9.0
access-list 2 permit 172.16.5.0
access-list 2 permit 172.16.7.0
access-list 2 permit 172.16.1.0
access-list 2 permit 172.16.3.0
!
route-map Griffy permit 10
 match ip address 1
 set metric-type type-1
!
route-map Griffy permit 20
!
route-map Toad permit 10
 match ip address 2
 set metric 15
 set level level-1
!
route-map Toad permit 20

Statement 10 of route map Griffy permits routes to the addresses in access list 1 and redistributes them into OSPF as
type 1 external routes. Statement 20 permits all other routes, which will be redistributed with the default external type 2.
Example 14-25 shows the results.



Example 14-25. The routes to destinations in the IS-IS domain are E1 if the third octet of the address is even
and E2 if the third octet is odd.

Shelflife#show ip route
Codes:C -connected,S -static,I -IGRP,R -RIP,M -mobile,B -BGP
      D -EIGRP,EX -EIGRP external,O -OSPF,IA -OSPF inter area
      E1 -OSPF external type 1,E2 -OSPF external type 2,E -EGP
      i -IS-IS,L1 -IS-IS level-1,L2 -IS-IS level-2,*-candidate default
Gateway of last resort is not set
O E2 192.168.9.0 [110/20 ] via 172.16.10.2,,00:13:43,Ethernet0
O E2 192.168.1.0 [110/20 ] via 172.16.10.2,,00:13:43,Ethernet0
O E1 192.168.2.0 [110/30 ] via 172.16.10.2,,00:13:43,Ethernet0
O E2 192.168.3.0 [110/20 ] via 172.16.10.2,,00:13:44,Ethernet0
O E1 192.168.4.0 [110/30 ] via 172.16.10.2,,00:13:44,Ethernet0
O E2 192.168.5.0 [110/20 ] via 172.16.10.2,,00:13:44,Ethernet0
O E1 192.168.6.0 [110/30 ] via 172.16.10.2,,00:13:44,Ethernet0
O E2 192.168.7.0 [110/20 ] via 172.16.10.2,,00:13:44,Ethernet0
     172.16.0.0 255.255.255.0 is subnetted,9 subnets
C       172.16.9.0 is directly connected,Serial0
C       172.16.10.0 is directly connected,Ethernet0
O       172.16.4.0 [110/159 ] via 172.16.9.2,,15:49:29,Serial0
O       172.16.5.0 [110/159 ] via 172.16.9.2,,15:49:30,Serial0
O       172.16.6.0 [110/159 ] via 172.16.9.2,,15:49:30,Serial0
O       172.16.7.0 [110/159 ] via 172.16.9.2,,15:49:30,Serial0
O       172.16.1.0 [110/159 ] via 172.16.9.2,,15:49:30,Serial0
O       172.16.2.0 [110/159 ] via 172.16.9.2,,15:49:30,Serial0
O       172.16.3.0 [110/159 ] via 172.16.9.2,,15:49:30,Serial0
Shelflife#

Statement 10 of route map Toad permits routes to addresses in access list 2 and redistributes them into IS-IS as level 1
routes. Their metric is set to 15. Statement 20 permits all other routes, which will be redistributed as level 2 and with a
metric of 25, as specified by the redistribute command under the IS-IS configuration (see Example 14-26).

Example 14-26. The routes to destinations in the OSPF domain are L2 if the third octet of the address is even
and L1 if the third octet is odd. The "odds" are redistributed with a metric of 15, and the "evens" are
redistributed with a metric of 25 (10 is added for the hop from Zippy to Zerbina).

Zerbina#show ip route
Codes:C -connected,S -static,I -IGRP,R -RIP,M -mobile,B -BGP
      D -EIGRP,EX -EIGRP external,O -OSPF,IA -OSPF inter area
      N1 -OSPF NSSA external type 1,N2 -OSPF NSSA external type 2
      E1 -OSPF external type 1,E2 -OSPF external type 2,E -EGP
      i -IS-IS,L1 -IS-IS level-1,L2 -IS-IS level-2,*-candidate default
      U -per-user static route,o -ODR
Gateway of last resort is not set
C    192.168.9.0/24 is directly connected,Serial0
C    192.168.10.0/24 is directly connected,Ethernet0
i L1 192.168.1.0/24 [115/15 ] via 192.168.9.2,,Serial0
i L1 192.168.2.0/24 [115/15 ] via 192.168.9.2,,Serial0
i L1 192.168.3.0/24 [115/15 ] via 192.168.9.2,,Serial0
i L1 192.168.4.0/24 [115/15 ] via 192.168.9.2,,Serial0
i L1 192.168.5.0/24 [115/15 ] via 192.168.9.2,,Serial0
i L1 192.168.6.0/24 [115/15 ] via 192.168.9.2,,Serial0
i L1 192.168.7.0/24 [115/15 ] via 192.168.9.2,,Serial0
     172.16.0.0/24 is subnetted,8 subnets
i L1    172.16.9.0 [115/25 ] via 192.168.10.2,,Ethernet0
i L2    172.16.4.0 [115/35 ] via 192.168.10.2,,Ethernet0
i L1    172.16.5.0 [115/25 ] via 192.168.10.2,,Ethernet0
i L2    172.16.6.0 [115/35 ] via 192.168.10.2,,Ethernet0
i L1    172.16.7.0 [115/25 ] via 192.168.10.2,,Ethernet0
i L1    172.16.1.0 [115/25 ] via 192.168.10.2,,Ethernet0
i L2    172.16.2.0 [115/35 ] via 192.168.10.2,,Ethernet0
i L1    172.16.3.0 [115/25 ] via 192.168.10.2,,Ethernet0
Zerbina#

Case Study: Route Tagging



Figure 14-9 shows a situation in which routes from several routing domains, each running a separate routing protocol, are
being redistributed into a single transit domain running OSPF. On the other side of the OSPF cloud, the routes must be
redistributed back into their respective domains. Route filters can be used at the egress points from the OSPF cloud into
each domain to permit only the routes that belong to that domain. However, if each domain has many routes or if the
routes within the domain change frequently, the route filters can become difficult to manage.

Figure 14-9. Routes from each of the three domains on the left are redistributed into a transit network running
OSPF. On the right, the routes for each domain must be redistributed back into their original domains.

Another way of handling this problem is to tag the routes at their ingress points to the OSPF transit domain with a tag that
is unique to each domain. At the egress points, the routes can be redistributed by their tags instead of by specific
addresses. The routing protocol of the transit network does not necessarily use the tag, but merely conveys it to and from
its external networks. RIPv2, EIGRP, Integrated IS-IS, and OSPF all support route tags. BGP also supports route tags.
Tags are not supported by RIPv1. A case study in this section shows how a transit network running OSPF can use the
route tags.

A re-examination of the packet formats in Chapter 6, "RIPv2, RIPng, and Classless Routing," Chapter 7, "Enhanced
Interior Gateway Routing Protocol (EIGRP)," Chapter 8, "OSPFv2," and Chapter 10, "Integrated IS-IS" show that RIPv2
messages support 16-bit tags, IS-IS Inter-Domain Routing Protocol Information TLVs support 16-bit tags, and EIGRP
external route TLVs and OSPF type 5 LSAs support 32-bit tags. These tags are expressed as decimal numbers, so tags
carried by RIPv2 and IS-IS will be between 0 and 65,535, and tags carried by EIGRP and OSPF will be between 0 and
4,294,967,295.

In Figure 14-10, router Dagwood is accepting routes from three different routing domains and redistributing them into a
domain running OSPF. The objective here is to tag the routes from each domain so that their source domain might be
identified within the OSPF cloud. Routes from domain 1 will have a tag of 1, domain 2 will have a tag of 2, and so on.

Figure 14-10. Dagwood is configured to tag the routes from each of the three routing domains as they are
redistributed into OSPF.

[View full size image]

Dagwood's configuration is displayed in Example 14-27.

Example 14-27. Dagwood is configured to tag routes as they are redistributed into OSPF from RIP and EIGRP.



router ospf 1
  redistribute eigrp 1 metric 10 subnets tag 1
  redistribute rip metric 10 subnets route-map Dithers
  network 10.100.200.1 0.0.0.0 area 0
!
router rip
  network 10.0.0.0
!
router eigrp 1
  network 10.0.0.0
!
access-list 1 permit 10.1.2.3
access-list 2 permit 10.1.2.4
!
route-map Dithers permit 10
  match ip route-source 1
  set tag 2
!
route-map Dithers permit 20
  match ip route-source 2
  set tag 3

First, notice the redistribute eigrp command under OSPF. Dagwood is accepting routes from only one EIGRP domain,
so the tag can be set to 1 directly on the redistribute command. However, routes are being learned from two RIP
domains. Here a route map is needed. Route map Dithers sets the tag of the RIP routes to either 2 or 3, depending on
whether the route was learned from Funky (10.1.2.3) or Beetle (10.1.2.4). Figure 14-11 shows an LSA advertising one of
the RIP-learned routes, with the route tag set to 2.

Figure 14-11. This type 5 LSA is advertising network 192.168.2.0, which is in domain 2, within the OSPF domain.
The route tag is shown on the last line.

[View full size image]

The route tags can also be observed in the OSPF link state database (see Example 14-28).

Example 14-28. The OSPF link state database indicates the tags that were set for each of the external routes by
Dagwood's redistribution processes.

Blondie#show ip ospf database
       OSPF Router with ID (10.100.200.2)(Process ID 1)
               Router Link States (Area 0)
Link ID        ADV Router     Age    Seq#        Checksum   Link count
10.100.200.3   10.100.200.3   671    0x80000003  0x00A137   4
10.100.200.2   10.100.200.2   39     0x80000002  0x6FF5   3
10.100.200.1   10.100.200.1   40     0x80000033  0x33E1   3
               Net Link States (Area 0)



Link ID        ADV Router     Age    Seq#        Checksum
10.100.200.1   10.100.200.1   40     0x80000001  0xB0A7
               AS External Link States
Link ID        ADV Router    Age     Seq#        Checksum  Tag
192.168.2.0    10.100.200.1  641     0x80000028  0x904D   2
10.17.77.0     10.100.200.1  642     0x80000028  0xC817   3
192.168.3.0    10.100.200.1  642     0x80000028  0x9744   3
10.15.75.0     10.100.200.1  642     0x80000028  0xD213   1
10.1.2.0       10.100.200.1  642     0x80000028  0xA19B   1
10.16.76.0     10.100.200.1  642     0x80000028  0xCD15   2
192.168.1.0    10.100.200.1  644     0x80000028  0x8956   1
10.100.200.0   10.100.200.1  644     0x80000028  0x6EA4   1
Blondie#

In Figure 14-12, Blondie must redistribute only domain 2 routes to Alley and only domain 1 routes to Oop. Because the
routes were tagged as they entered the OSPF transit domain, this is easily done. Blondie's configuration is shown in
Example 14-29.

Figure 14-12. Blondie is using route maps to redistribute routes according to their route tag.

Example 14-29. Blondie is configured to use route maps to redistribute routes with tag 1 to EIGRP and tag 2 to
RIP.

router ospf 1
  network 10.100.200.2 0.0.0.0 area 0
!
router rip
  redistribute ospf 1 match external 2 route-map Daisy
  passive-interface Ethernet0
  passive-interface Serial1
  network 10.0.0.0
  default-metric 5
!
router eigrp 1
  redistribute ospf 1 match external 2 route-map Herb
  passive-interface Ethernet0
  passive-interface Serial0
  network 10.0.0.0
  default-metric 10000 1000 255 1 1500
!
route-map Daisy permit 10
  match tag 2
!
route-map Herb permit 10
  match tag 1

Example 14-30 shows the resulting routes at Alley and Oop. One drawback to the use of route tags to filter routes is that
there is no way to filter routes by interface. For example, if Blondie had to send routes to both domain 2 and domain 3,
which both run RIP, route maps could not be configured to send some routes to one RIP process and other routes to
another RIP process. The routes would have to be filtered by address with distribute-list commands.

Example 14-30. The route tables of Alley and Oop in Figure 14-12 show the results of the redistribution
configuration at Blondie.



Alley#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

   10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks
C    10.1.3.0/24 is directly connected, Serial0
R    10.1.5.4/30 [120/1] via 10.1.3.1, 00:00:25, Serial0
R    10.1.4.0/24 [120/1] via 10.1.3.1, 00:00:25, Serial0
R    10.16.76.0/24 [120/5] via 10.1.3.1, 00:00:25, Serial0
R    10.100.200.2/32 [120/1] via 10.1.3.1, 00:00:25, Serial0
R 192.168.2.0/24 [120/5] via 10.1.3.1, 00:00:25, Serial0
Alley#
______________________________________________________________________________________
Oop#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/8 is variably subnetted, 6 subnets, 3 masks
D       10.1.3.0/24 [90/2681856] via 10.1.4.1, 00:21:36, Serial0
D EX    10.1.2.0/24 [170/2425856] via 10.1.4.1, 00:08:22, Serial0
D       10.1.5.4/30 [90/2681856] via 10.1.4.1, 00:22:40, Serial0
C       10.1.4.0/24 is directly connected, Serial0
D EX    10.15.75.0/24 [170/2425856] via 10.1.4.1, 00:04:56, Serial0
D       10.100.200.2/32 [90/2297856] via 10.1.4.1, 00:22:40, Serial0
D EX 192.168.1.0/24 [170/2425856] via 10.1.4.1, 00:04:56, Serial0
Oop#

Case Study: Filtering Tagged Routes Out of OSPF Route Table

The network running OSPF in Figure 14-10 and Figure 14-12 is a transit network. If devices within that transit area do not
need to send packets to any of the other domains, there is no need to maintain the addresses of those domains in the
OSPF route tables. The tags that were added to the routes, along with distribute lists and route maps, can be applied to
the OSPF routers to prevent the addresses from being added to the route tables, while not affecting the entries in the link-
state database.

Sally, a router wholly within the OSPF domain, has been modified with the configuration in Example 14-31.

Example 14-31. Sally's configuration uses tags to filter routes from the OSPF route table.

router ospf 1
 network 10.100.200.1 0.0.0.0 area 0
 network 10.1.5.0 0.0.0.255 area 0
 distribute-list route-map Charlie in
!
route-map Charlie deny 10
 match tag 1 2 3
!
route-map Charlie permit 20

The route map Charlie denies addresses that are marked with tags 1, 2 or 3. These addresses are omitted from the IP
route table by the distribute-list in command. Any other address is added to the route table, permitted by the route map
sequence 20. The distribute list is not applied to Blondie and Dagwood, the edge routers that are performing



redistribution. If an address is not in the route table, even if it is in the OSPF LSA database, it will not be redistributed into
another routing protocol. Example 14-32 shows Sally's IP route table and OSPF LSA database.

Example 14-32. The OSPF addresses marked with tags are filtered out of the IP route table. The addresses still
exist in the OSPF LSA database.

Sally#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
C      10.1.5.4/30 is directly connected, Serial0/0.2
C      10.1.5.0/30 is directly connected, Serial0/0.1
O      10.100.200.2/32 [110/65] via 10.1.5.6, 00:17:24, Serial0/0.2
C      10.100.200.3/32 is directly connected, Loopback0
O      10.100.200.1/32 [110/65] via 10.1.5.1, 00:17:24, Serial0/0.1
________________________________________________________________________________________
Sally#show ip ospf database
           OSPF Router with ID (10.100.200.3) (Process ID 1)

               Router Link States (Area 0)

Link ID        ADV Router      Age         Seq#     Checksum Link count
10.100.200.1   10.100.200.1    1183        0x80000004 0x003756 3
10.100.200.2   10.100.200.2    1181        0x80000004 0x00E1A1 3
10.100.200.3   10.100.200.3    1177        0x8000000A 0x00933E 4

               Type-5 AS External Link States

Link ID        ADV Router      Age         Seq#       Checksum Tag
10.1.2.0       10.100.200.1    94          0x80000003 0x00EB76 1
10.15.75.0     10.100.200.1    603         0x80000002 0x001FEC 1
10.16.76.0     10.100.200.1    346         0x80000002 0x001AEE 2
10.16.77.0     10.100.200.1    353         0x80000002 0x001FEE 2
192.168.1.0    10.100.200.1    603         0x80000002 0x00D530 1
192.168.2.0    10.100.200.1    346         0x80000002 0x00DC27 2
192.168.3.0    10.100.200.1    353         0x80000002 0x00E427 2
Sally#

None of the tagged routes, tag 1, 2, or 3, exist in Sally's IP route table.

Case Study: IPv6 Redistribution with Route Maps

IPv6 routing protocols also support redistribution of routes using route maps. The configuration is almost identical to IPv4.

Figure 14-13 shows the addition of IPv6 addresses and routing protocols to the network shown in Figure 14-10. Funky
and Beetle are each running RIPng. Dagwood is redistributing IPv6 prefixes between RIPng and IS-IS. Only IPv6 prefixes
from Beetle are redistributed into IS-IS, and prefix 2001:db8:0:77::/64 is set with a metric of 10 while prefix
2001:db8:0:200::/64 has a metric of 100.

Figure 14-13. IPv6 has been added to the network in Figure 14-10. IPv6 prefixes are redistributed between
RIPng and IS-IS.

[View full size image]



Dagwood's configuration is displayed in Example 14-33.

Example 14-33. Dagwood's IPv6 configuration.

Interface ethernet 0/0
 ipv6 address 2001:db8:0:2::1/64
 ipv6 rip domain3 enable
!
interface serial 0/0.1 point-to-point
 ipv6 address 2001:db8:0:5::1/64
 ipv6 router isis
!
ipv6 router rip domain3
!
router isis
 net 00.0001.0000.5678.ef01.00
 Address-family ipv6
  Redistribute rip domain3 route-map Beetlefilter
!
route-map Beetlefilter permit 10
 match ipv6 route-source prefix-list 1
 match ipv6 address prefix-list 3
 set metric 10
!
route-map Beetlefilter permit 20
 match ipv6 route-source prefix-list 1
 match ipv6 address prefix-list 2
 set metric 100
!
ipv6 prefix-list 1 permit 2001:db8:0:2::4/128
ipv6 prefix-list 2 permit 2001:db8:0:200::/64
ipv6 prefix-list 3 permit 2001:db8:0:77::/64

IPv6 prefix-lists are used to match the source of route information or to match specific addresses for redistribution.
Statement 10 of Beetlefilter specifies that the route source must equal Beetle's IPv6 address and the prefix must equal
2001:db8:0:77::/64 for the metric to be set to 10. If the route source or the prefix does not match, statement 20 is
executed. If the source is Beetle and the prefix is 2001:db8:0:200::/64, the metric is set to 100. If the source is not Beetle,
or the prefix is not one of the ones specified, the route is not redistributed.

Sally's IS-IS database (Example 14-34) shows the redistributed prefixes.

Example 14-34. The redistributed routes are seen in Sally's IS-IS database.

Sally#show isis database detail Dagwood-00.00
IS-IS Level-1 LSP Dagwood.00-00
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime      ATT/P/OL
Dagwood.00-00         0x00000004   0xCA8B        938               0/0/0
  Area Address: 00.0001
  NLPID:        0x8E
  Hostname: Dagwood
  IPv6 Address: 2001:DB8:0:5::1
  Metric: 10         IPv6 2001:DB8:0:5::/64
  Metric: 10         IS Sally.00



IS-IS Level-2 LSP Dagwood.00-00
LSPID                 LSP Seq Num  LSP Checksum  LSP Holdtime     ATT/P/OL
Dagwood.00-00         0x00000008   0x28D7        1089             0/0/0
  Area Address: 00.0001
  NLPID:        0x8E
  Hostname: Dagwood
  IPv6 Address: 2001:DB8:0:5::1
  Metric: 10         IS Sally.00
  Metric: 10         IPv6 2001:DB8:0:5::/64
  Metric: 10         IPv6 2001:DB8:0:77::/64
  Metric: 100        IPv6 2001:DB8:0:200::/64
Sally#



Looking Ahead

This chapter concludes this book's in-depth look at routing TCP/IP with respect to interior gateway
protocols. If you are preparing to become a CCIE, you certainly will want to know this book's topics
thoroughly before taking the exam. Use the end-of-chapter questions and exercises to test your level of
understanding and preparedness. And if you haven't studied routing TCP/IP with respect to Exterior
Gateway Protocols, doing so is a next logical step in your preparation.



Summary Table: Chapter 14 Command Review

Command Description
access-list access-list-
number  {deny | permit}
source [source-wildcard]

Defines a line of a standard IP
access list

access-list access-list-
number  {deny | permit}
protocol source source-
wildcard destination
destination-wildcard
[precedence precedence]
[tos tos] [log]

Defines a line of an extended
IP access list

ip local policy route-map
map-tag

Defines a policy route for
packets originated by the
router itself

ip policy route-map map-
tag

Defines a policy route for
packets transiting the router

match interface type
number  [...type number ]

Matches routes that have
their next hop out one of the
interfaces specified

match ip address{access-
list-number | name}
[...access-list-number | name]

Matches routes that have a
destination address specified
by one of the access lists

match ip next-hop{access-
list-number | name}
[...access-list-number | name]

Matches routes that have a
next-hop router address
specified by one of the
access lists

match ip route-
source{access-list-number |
name} [...access-list-number |
name]

Matches routes that have
been advertised by routers at
the addresses specified in the
access lists

match ipv6 address prefix-
list{name}

Matches routes that have a
destination address specified
by the prefix-list

match ipv6 next-hop prefix-
list{name}

Matches routes that have a
next-hop router address
specified by the prefix-lists

match ipv6 route-source
prefix-list{name}

Matches routes that have
been advertised by routers at
the addresses specified in the
prefix-list

match length min max Matches the level 3 length of
a packet

match metric metric-value Matches routes with the
specified metric

match route-type{internal|
external[type-1| type-2] |

Matches OSPF, EIGRP, or IS-
IS routes of the specified type



level-1| level-2}
match tag tag-value [...tag-
value]

Matches routes with the
specified tags

ipv6 prefix-list list-name
[seq seq-number ] {deny
ipv6-prefix / prefix-length |
permit ipv6-prefix / prefix-
length | description text} [ge
ge-value] [le le-value]

Defines an IPv6 prefix list

redistribute
protocol [process-id] {level-1|
level-1-2| level-2} [metric
metric-value] [metric-type
type-value] [match{internal|
external 1| external 2}] [tag
tag-value] [route-map map-
tag] [weight weight]
[subnets]

Configures redistribution into
a routing protocol and
specifies the source of the
redistributed routes

set level{level-1| level-2|
level-1-2| stub-area |
backbone}

Sets the IS-IS level or the
OSPF area into which a
matched route is to be
redistributed

set default interface type
number  [...type number ]

Sets the outgoing interface for
matched packets when there
is no explicit route to the
destination

set interface type number
[...type number ]

Sets the outgoing interface for
matched packets when there
is an explicit route to the
destination

set ip default next-hop ip-
address [...ip-address]

Sets the next-hop router
address for matched packets
when there is no explicit route
to the destination

set ip next-hop ip-address
[...ip-address]

Sets the next-hop router
address for matched packets
when there is an explicit route
to the destination

set ip precedence
precedence

Sets the precedence bits in
the Type of Service field of
matched IP packets

set ip tos type-of-service Sets the TOS bits in the Type
of Service field of matched
packets

set metric{metric-value|
bandwidth delay reliability
loading mtu}

Sets the metric value for a
matched route

set metric-type{internal|
external| type-1| type-2}

Sets the metric type for a
matched route being
redistributed into IS-IS or
OSPF



set next-hop next-hop Sets the next-hop router
address for a matched route

set tag tag-value Sets a tag value for a
matched route



Review Questions

1 How are route maps similar to access lists? How are they different?

2 What are policy routes?

3 What are route tags?

4 In what way do route tags affect routing protocols?



Configuration Exercises

1 Configure policy routes for Router A in Figure 14-14 that forward packets from subnets
172.16.1.0/28 through 172.16.1.112/28 to Router D and forward packets from subnets
172.16.1.128/28 through 172.16.1.240/28 to Router E.

Figure 14-14. The network for Configuration Exercises 1 through 3.

2 Configure policy routes for Router A in Figure 14-14 so that packets from subnets
172.16.1.64/28 through 172.16.1.112/28 are forwarded to Router D if they are received
from Router C. If packets from the same subnets are received from Router B, forward them
to Router E. All other packets should be forwarded normally.

3 Configure policy routes for Router A in Figure 14-14 that will forward any packets destined
for subnets 172.16.1.0/28 through 172.16.1.240/28, sourced from an SMTP port, to Router
C. Route any other UDP packets destined for the same subnets to Router B. No other
packets should be forwarded to Routers C or B by either the policy routes or the normal
routing protocol.

4 The OSPF and EIGRP configuration for the router in Figure 14-15 is

router eigrp 1
network 192.168.100.0
!
router ospf 1
network 192.168.1.0 0.0.0.255 area 16

Figure 14-15. The router for Configuration Exercises 4 and 5.



Configure the router to redistribute internal EIGRP routes into OSPF as E1 routes with a
metric of 10 and to redistribute external EIGRP routes into OSPF as E2 routes with a
metric of 50. Of the networks and subnets shown in the EIGRP domain, all should be
redistributed except 10.201.100.0/24.

5 Configure the router in Figure 14-15 to redistribute internal OSPF routes into EIGRP with a
lower delay than external OSPF routes. Allow only the three Class C networks shown in
the OSPF domain to be redistributed.



Troubleshooting Exercise

1 Given the following configuration:

interface TokenRingl
ip address 192.168.15.254 255.255.255.0
ip policy route-map Ex1
!
access-list 1 permit 192.168.0.0 0.0.255.255
access-list 101 permit host 192.168.10.5 any eq telnet
!
route-map Ex1 permit 5
match ip address 1
set ip next-hop 192.168.16.254
!
route-map Ex1 permit 10
match ip address 101
set ip next-hop 192.168.17.254

The intention is to policy route all packets whose source address prefix is 192.168.0.0 to
192.168.255.255. The exception is that packets originating from the Telnet port of host
192.168.10.5 should be forwarded to 192.168.17.254. There are two errors in this
configuration that are preventing the policy route from working correctly. What are they?
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Appendix A. Tutorial: Working with Binary and Hex
The best way to gain an understanding of binary and hexadecimal numbering is to begin by examining
the decimal numbering system. The decimal system is a base 10 numbering system. (The root deci
means ten.) Base 10 means that there are 10 digits with which to represent numbers: 0 through 9. Most
likely, we work in base 10 because our ancient ancestors began counting their cattle and childrenand
enemieson their fingers (in fact, the word digit means finger).

The use of place values allows the representation of large numbers with a few digits, such as the 10
decimal digits. The place values of all numbering systems begin at the right, with the base raised to the
power of 0. Reading to the left, each place value is the base raised to a power that is one more than
the power of the previous place value:

    B4 B3 B2 B1 B0

In base 10, the first five place values are

    104 103 102 101 100

The first two place values are easy to calculate for any base. Any number raised to the power of 0 is 1;
so 100 = 1. Any number raised to the power of 1 is simply that number; so 101 = 10. The third place
value is easy to calculate. Simply multiply the second place value by the base. In fact, each place value
can be calculated by multiplying the previous place value by the base. So, given the five place values
above,

    100 = 1
    101 = 1 x 10 = 10
    102 = 10 x 10 = 100
    103 = 100 x 10 = 1000
    104 = 1000 x 10 = 10,000

So, the first five place values of the base 10 numbering system are

    10,000  1000  100  10  1

Reading a number such as 57,258 in terms of place values means there are five quantities of 10,000,
seven quantities of 1000, two quantities of 100, five quantities of 10, and eight quantities of 1. That is,

    5 x 10,000 = 50,000
    7 x 1000 = 7000
    2 x 100 = 200
    5 x 10 = 50
    8 x 1 = 8

Adding these individual results together, the result is 50,000 + 7000 + 200 + 50 + 8 = 57,258.

All of us are so acquainted with working in base 10 that we seldom think of breaking a number down
into its place values. However, this technique is essential to decipher numbers in other bases.





Working with Binary Numbers

Computers are, at the most fundamental level, simply a collection of electrical switches. Numbers and
characters are represented by the positions of these switches. Because a switch has only two
positions, on or off, it uses a binary, or base 2, numbering system. (The root bi  means two.) A base 2
system has only two digits: 0 and 1.

Computers usually group these digits into eight place values, known as a byte or an octet. The eight
place values are

    27 26 25 24 23 22 21 20

The place values are calculated as follows:

    20 = 1
    21 = 1 x 2 = 2
    22 = 2 x 2 = 4
    23 = 4 x 2 = 8
    24 = 8 x 2 = 16
    25 = 16 x 2 = 32
    26 = 32 x 2 = 64
    27 = 64 x 2 = 128

So, the place values of a binary octet are

    128  64  32  16  8  4  2  1

Thus, the binary octet 10010111 can be read as follows:

    1 x 128 = 128
    0 x 64 = 0
    0 x 32 = 0
    1 x 16 = 16
    0 x 8 = 0
    1 x 4 = 4
    1 x 2 = 2
    1 x 1 = 1
    or 128 + 16 + 4 + 2 + 1 = 151

Working in binary is easy because for every place value there is either one quantity of that value or
none of that value. For another example, 11101001 = 128 + 64 + 32 + 8 + 1 = 233.

Where converting binary to decimal is a matter of adding the place values, converting from decimal to
binary is a matter of subtracting place values. To convert the decimal number 178 to binary, for
instance, begin by subtracting the highest base 2 place value possible from the number:

1. 178 is greater than 128, so we know there is a 1 at that place value: 178 128 = 50.

2. 50 is less than 64, so there is a 0 at that place value.



3. 50 is greater than 32, so there is a 1 at that place value: 50 32 = 18.

4. 18 is greater than 16, so there is a 1 at that place value: 18 16 = 2.

5. 2 is less than 8, so there is a 0 at that place value.

6. 2 is less than 4, so there is a 0 at that place value.

7. 2 is equal to 2, so there is a 1 at that place value: 2 2 = 0.

8. 0 is less than 1, so there is a 0 at that place value.

Putting the results of all these steps together, 178 is 10110010 in binary.

Another example might be helpful. Given 110,

1. 110 is less than 128, so there is a 0 at that place value.

2. 110 is greater than 64, so there is a 1 at that place value: 110 64 = 46.

3. 46 is greater than 32, so there is a 1 at that place value: 46 32 = 14.

4. 14 is less than 16, so there is a 0 at that place value.

5. 14 is greater than 8, so there is a 1 at that place value: 14 8 = 6.

6. 6 is greater than 4, so there is a 1 at that place value: 6 4 = 2.

7. There is a 1 at the 2 place value: 2 2 = 0.

8. 0 is less than 1, so there is a 0 at that place value.

Therefore, 110 is 01101110 in binary.



Working with Hexadecimal Numbers

Writing out binary octets isn't much fun. For people who must work with such numbers frequently, a
briefer notation is welcome. One possible notation is to have a single character for every possible octet;
however, there are 28 = 256 different combinations of eight bits, so a single-character representation of
all octets would require 256 digits, or a base 256 numbering system.

Life is much easier if an octet is viewed as two groups of four bits. For instance, 11010011 can be
viewed as 1101 and 0011. There are 24 = 16 possible combinations of four bits, so with a base 16, or
hexadecimal, numbering system, an octet can be represented with two digits. (The root hex means six,
and deci  means ten.) Table A-1 shows the hexadecimal digits and their decimal and binary equivalents.

Table A-1. Hex, decimal, and binary equivalents.
Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Because the first 10 characters of the decimal and the hexadecimal numbering system are the same, it
is customary to precede a hex number with a 0x, or follow it with an h, to distinguish it from a decimal
number. For example, the hex number 25 would be written as 0x25 or as 25h. This book uses the 0x
convention.

After working with binary for only a short while, it is easy to determine a decimal equivalent of a 4-bit
binary number in your head. It is also easy to convert a decimal digit to a hex digit in your head.
Therefore, converting a binary octet to hex is easily done in three steps:

1. Divide the octet into two 4-bit binary numbers.

2. Convert each 4-bit number to decimal.

3. Write each decimal number in its hex equivalent.



For example, to convert 11010011 to hex,

1. 11010011 becomes 1101 and 0011.

2. 1101 = 8 + 4 + 1 = 13, and 0011 = 2 + 1 = 3.

3. 13 = 0xD, and 3 = 0x3.

Therefore, 11010011 in hex is 0xD3.

Converting from hex to binary is a simple matter of working the three steps backward. For example, to
convert 0x7B to binary,

1. 0 x 7 = 7, and 0xB = 11.

2. 7 = 0111, and 11 = 1011.

3. Putting the 4-bit numbers together, 0x7B = 01111011, which is decimal 123.



Appendix B. Tutorial: Access Lists
Access lists are probably misnamed these days. As the name implies, the original intention of an
access list was to permit or deny access of packets into, out of, or through a router. Access lists have
become powerful tools for controlling the behavior of packets and frames. Their use falls into three
categories (see Figure B-1):

Security filters protect the integrity of the router and the networks to which they are passing
traffic. Typically, security filters permit the passage of a few, well-understood packets and deny the
passage of everything else.

Traffic filters prevent unnecessary packets from passing onto limited-bandwidth links. These filters
look and behave much like security filters, but the logic is generally inverse: Traffic filters deny the
passage of a few unwanted packets and permit everything else.

Packet identification is required for many tools available on Cisco routers, such as dialer lists,
route filters, route maps, and queuing lists. The tools must be able to identify certain packets to
function properly. Access lists might be linked to these and other tools to provide this packet
identification function.

Figure B-1. Access lists are used as security filters, as traffic filters, and for packet
identification.



Access List Basics

An access list is a sequential series of filters. Each filter comprises some sort of matching criteria and an
action. The action is always either permit or deny. The matching criteria might be as simple as a source
address; alternatively, they might be a more complex combination of source and destination addresses,
protocol types, ports or sockets, and specifications of the state of certain flags, such as the TCP ACK bit.

A packet is "dropped into" the top of the stack of filters. (See Figure B-2.) At each filter, the matching
criteria are applied. If a match occurs, the specified permit or deny action is executed. If a match does not
occur, the packet "drops down" to the next filter in the stack, and the matching process is applied again.

Figure B-2. An access list is a sequential list of filters, each of which defines a matching
criterion and an action.

In Figure B-2, a permit means that the packet will be allowed to exit on interface E0; a deny means that
the packet will be dropped. For instance, a packet with a source address of HOST A will be dropped at
the first filter. Suppose the packet's source address is Host D of Subnet 2 of Network 5. The first filter
specifies a match criteria of Host A, so the packet will not match and will drop to the second layer. The
second filter specifies Subnet 3again, no match. The packet drops to the third filter, which specifies
Network 5. This matches; the action at layer three is permit, so the packet is allowed to exit interface E0.

Implicit Deny Any

What happens if a packet drops through all the filters and a match never occurs? The router must know
what to do with a packet in this situation; that is, there must be a default action. The default action can be
either to permit all packets that don't match or to deny them. Cisco chose to deny them: Any packet that is
referred to an access list and does not find a match is automatically dropped.

This approach is the correct engineering choice, particularly if the access list is being used for security. It
is better to drop some packets that shouldn't have been dropped than to permit packets you inadvertently
neglected to filter.

This last filter is called an implicit deny any (Figure B-3). As the name implies, the line does not show up
in any access list you build. It's simply a default action, and it exists at the end of any and all access lists.



Figure B-3. All access lists end with an implicit deny any, which discards all packets that do not
match a line in the list.

This default can be overridden by making the last line of the list an explicit permit any. The implication
here is that packets dropping through all the other filters will match the permit any before they get to the
default deny any; therefore, all packets not matching anything else will be permittednothing will ever
reach the implicit deny.

Sequentiality

Access lists are executed sequentially, from the top down. This concept is important: Perhaps, the most
common cause of malfunctioning access lists is putting the individual filtering lines in the wrong
sequence. The first match encountered in the sequenced access list is always taken. After the first match
is made, the rest of the access list is ignored.

In Figure B-4, subnet 10.23.147.0/24 should be denied and the rest of network 10.0.0.0 should be
permitted. The list on the left is out of sequence; network 10.0.0.0, including its subnet 10.23.147.0, will
match the first line and will be permitted. Packets with the subnet to be denied will never reach the
second line.

Figure B-4. If the individual filter layers of an access list are not configured in the correct
sequence, the access list will not function correctly.



The list on the right is correct. Subnet 10.23.147.0 matches the first line and is denied, whereas all other
subnets of 10.0.0.0 drop to the next line and are permitted.

Access List Types

The actual configuration lines for the access list shown graphically at the right of Figure B-4 are
displayed in Example B-1.

Example B-1. The access list configuration for sequence 2 of Figure B-4 shows one line for
each filter layer.

access-list 9 deny 10.23.147.0 0.0.0.255
access-list 9 permit 10.0.0.0 0.255.255.255

Every filter layer of an access list is represented by one configuration line. The various components of an
access list line are discussed shortly, but for now, notice the number 9 in both lines. This number is the
access list number, and it serves two purposes:

It links all the lines of this list together and makes the list distinct from any others that might exist in
the router's configuration file. (It is common to have several access lists on a single router.)

The router must have a way to distinguish the access list type. Cisco IOS Software has access lists
for IP, IPX, AppleTalk, DEC, NetBIOS, bridging, and many other protocols. Further, many of these
protocols have multiple access list types. The access list number tells the router what type of list it
is.

Access list types can be identified by either a number or a name. Table B-1 shows some of the numbered
access list types and the range of access list numbers available for each. For example, as shown in the
table, access-list 1010 is identifying IPX SAPs because the number is between 1000 and 1099.

Table B-1. Cisco access list numbers
Access List Type Range

Standard IP 199, 13001999

Extended IP 100199, 20002699

Ethernet type code 200299

Ethernet address 700799

Transparent bridging (protocol type) 200299

Transparent bridging (vendor code) 700799

Extended transparent bridging 11001199

DECnet and extended DECnet 300399

XNS 400499

Extended XNS 500599

AppleTalk 600699

Source-route bridging (protocol
type)

200299

Source-route bridging (vendor code) 700799

Standard IPX 800899



Extended IPX 900999

IPX SAP 10001099

NLSP route summary 12001299

Standard VINES 199

Extended VINES 100199

Simple VINES 200299

Within a range, access list numbers do not need to follow any particular sequence. That is, the first
standard IP list on a router does not need to be 1, the second 2, and so on. They can be any number
between 1 and 99, or 1300 and 1999, just so each list is uniquely numbered on a single router.

Also, notice that some number ranges are the same for different protocols: Ethernet Type Code, Source
Route Bridging, and Simple VINES, for instance. In these cases, the router differentiates between access
list types by the format of the access list lines themselves.

The following access list types can be identified by names instead of numbers:

Apollo domain

Standard IP

Extended IP

ISO CLNS

Source-route bridging NetBIOS

Standard IPX

Extended IPX

IPX Sap

IPX NetBIOS

NLSP route summary

An example of an access list named Boo, identifying IPX NetBIOS, is displayed in Example B-2.

Example B-2. The access list named Boo denies various NetBIOS devices.

netbios access-list host Boo deny Atticus
netbios access-list host Boo deny Scout
netbios access-list host Boo deny Jem
netbios access-list host Boo permit *

Note that although standard and extended IP access lists normally are numbered, they can also be
named access lists. This convention is supported in IOS 11.2 and later. In some environments, a router
might be configured with a large number of IP lists. By using names instead of numbers, individual lists
might be more easily identified.

Named IP access lists currently can be used only with packet and route filters. Refer to the Cisco
configuration guides for more information.



Editing Access Lists

Anyone who has edited an access list longer than a few lines from the console will tell you that this
process can be an exercise in frustration. Before 12.2(14), there was no way, from the console, to add a
line to the middle of the list. All new lines were added to the bottom. And if you had typed a mistake and
tried to eliminate a particular line by typing, for instance,

no access-list 101 permit tcp 10.2.5.4 0.0.0.255 192.168.3.0 0.0.0.255 eq 25

this line, and all of access list 101, would have been deleted!

A far more convenient technique is to cut and paste the list to the notepad of your PC, or upload the
configuration to a TFTP server, and do the editing from there. When finished, the new access list can be
loaded back into the router. A word of caution, however: All new lines are added to the bottom of an
access list. Always add no access-list #, where # is the number of the list you're editing, to the
beginning of the edited list. Example B-3 shows a sample.

Example B-3. no access-list is added to the beginning of an access list that is created and
edited on a PC or server, so the access list is created anew each time it is loaded into the
router.

no access-list 5
access-list 5 permit 172.16.5.4 0.0.0.0
access-list 5 permit 172.16.12.0 0.0.0.255
access-list 5 deny 172.16.0.0 0.0.255.255
access-list 5 permit any

The line no access-list 5 deletes the old list 5 from the configuration file before adding the new one. If
you omit this step, the new list is simply added onto the end of the old one.

The command show access-list displays currently configured lists, as Example B-4 demonstrates.

Example B-4. show access-list  displays configured access lists on the router.

Router#show access-list 5
Standard IP access list 5
    10 permit 172.16.5.4
    20 permit 172.16.12.0, wildcard bits 0.0.0.255
    30 deny 172.16.0.0, wildcard bits 0.0.255.255
    40 permit any
Router#

Notice the numbers before each access list entry. These are sequence numbers. Sequence numbers are
automatically added to access-list entries, as of IOS 12.2(14)S. The sequence numbers allow you to
insert an entry into the middle or top of the list. If you don't specify a sequence number, the first entry will
be assigned number 10, and the sequence number of every subsequent entry will be incremented by 10.
When a router is reloaded, the sequence numbers are reset, to 10, 20, 30, and so on. Sequence
numbers also allow you to delete specific entries from an access list.

The entry in access list 5 that permits all hosts on subnet 172.16.12.0 can be replaced with an entry that
permits all hosts on subnet 172.16.20.0 with the configuration in Example B-5.



Example B-5. Access lists can be modified by replacing entries or adding entries using
sequence numbers.

ip access-list standard 5
no 20
20 permit 172.16.20.0 0.0.0.255

The existing entry with sequence number 20 must first be deleted before a new entry with sequence
number 20 can be added, or you will get a duplicate sequence number error.



Standard IP Access Lists

There are two ways to enter access lists. One format of a standard access list line is

access-list access-list-number {deny | permit} source[source-wildcard]

The other way to configure the access list is to enter a global access-list command, which takes you into access-
list configuration mode. In the access-list configuration mode, packets are permitted or denied, sequence
numbers are specified and remarks are made:

ip access-list standard {access-list-number | name}

This puts you into the access-list configuration mode. Further configuration options for standard IP access lists
are

[sequence-number] {{{deny | permit} source [source-wildcard]} | {remark up-to-100-
   characters-of-a-remark}}

This command specifies the access list number, which according to Table B-1 is between 1 and 99, and between
1300 and 1999; the action (permit or deny); a source IP address; and the wildcard (or inverse) mask. Example B-
6 shows a standard IP access list.

Example B-6. Standard access list 1 permits and denies various hosts and subnet addresses.

access-list 1 permit 172.22.30.6 0.0.0.0
access-list 1 permit 172.22.30.95 0.0.0.0
access-list 1 deny 172.22.30.0 0.0.0.255
access-list 1 permit 172.22.0.0 0.0.31.255
access-list 1 deny 172.22.0.0 0.0.255.255
access-list 1 permit 0.0.0.0 255.255.255.255

The first two lines of the example permit passage of packets whose source addresses belong to two specific
hosts, 172.22.30.6 and 172.22.30.95. This seems quite obvious from looking at the lines, although the inverse
mask of 0.0.0.0 might not make sense yet. The third line denies all other hosts on subnet 172.22.30.0. Again, it's
fairly intuitive. The purpose of the fourth line is not so obvious. It permits all hosts with addresses in the range of
172.22.0.1 to 172.22.31.255. The inverse mask is what allows the specification of this range of addresses with a
single line. The fifth line denies all other subnets of the Class B network 172.22.0.0, and the last line permits all
other addresses.

The alternative way to configure the same list is displayed in Example B-7.

Example B-7. The same standard IP access list as shown in example B-6 is written here using the
access list configuration mode on the router.

ip access-list standard 1
 10 permit 172.22.30.6 0.0.0.0
 15 permit 172.22.30.95 0.0.0.0
 20 deny 172.22.30.0 0.0.0.255
 permit 172.22.0.0 0.0.31.255
 deny 172.22.0.0 0.0.255.255
 permit 0.0.0.0 255.255.255.255



The sequence numbers of the first three entries are specified. The fourth, fifth, and sixth entries are automatically
assigned a sequence number 10 greater than the previous entry, or 30, 40, and 50. A new statement can be
added between two entries simply by specifying a sequence number that falls between the sequence number of
the entry above and below the desired location. Example B-8 shows a sample of this.

Example B-8. A new entry is added to the middle of a standard IP access list using sequence numbers.

ip access-list standard 1
 17 permit 172.22.30.100 0.0.0.0

Example B-8 adds the new entry after the entry that permits 172.22.30.95 and before the entry that denies the
rest of the subnet, deny 172.22.30.0 0.0.0.255.

This entry can simply be deleted as well. Example B-9 deletes the entry with sequence number 17.

Example B-9. An entry is deleted from the middle of a standard IP access list using sequence numbers.

ip access-list standard 1
 no 17

Comments can be added to access lists before or after any entry to make understanding the list easier in the
future. The access list configurations in Example B-10 and Example B-11 contain remarks.

Example B-10. Remarks are added to a standard IP access list.

access-list 1 remark permit the 2 management hosts
access-list 1 permit 172.22.30.6 0.0.0.0
access-list 1 permit 172.22.30.95 0.0.0.0
access-list 1 remark deny everyone else on the subnet
access-list 1 deny 172.22.30.0 0.0.0.255
access-list 1 permit 172.22.0.0 0.0.31.255
access-list 1 deny 172.22.0.0 0.0.255.255
access-list 1 permit 0.0.0.0 255.255.255.255

Example B-11. Remarks are added to a standard IP access list using the router's access-list
configuration mode.

ip access-list standard 1
 remark permit the 2 management hosts
 10 permit 172.22.30.6 0.0.0.0
 15 permit 172.22.30.95 0.0.0.0
 remark deny everyone else on the subnet
 20 deny 172.22.30.0 0.0.0.255
 permit 172.22.0.0 0.0.31.255
 deny 172.22.0.0 0.0.255.255
 permit 0.0.0.0 255.255.255.255

Example B-10 and Example B-11 are two ways to configure the same lists. Remarks don't have any functional
affect, but they can make a complicated access list a little more friendly to future readers.

To fully understand the functionality of this access list, you need to understand inverse masks.

Recall how IP address masks function: To derive a network or subnet address from a host address, a one is set
in the mask corresponding to each bit of the network address, and a zero is set for each bit of the host address. A



Boolean AND is performed on each bit, and the result is the network or subnet number. Figure B-5(a) includes a
truth table for the AND function; in English, the function states the following:

Compare two bits. The result is one if and only if both bits are one.

Figure B-5. Truth tables and examples of a Boolean AND (a) and a Boolean OR (b).

A Boolean OR is the inverse of this function, as its truth table in Figure B-5(b) shows:

Compare two bits. The result is zero if and only if both bits are zero.

An inverse mask (Cisco prefers the term wildcard mask) sets a zero for each bit of the address that should be
exactly matched and a one for each bit where anything will matchthe one bits are frequently referred to as "don't
care" bits. The inverse mask is then ORed with the address.

Notice the result of the OR example in Figure B-5(b), 172.22.30.255. In IP terms, this result means "all host
addresses on subnet 172.22.30.0." Any specific address from 172.22.30.0 will match this address/inverse mask
combination.

Figure B-6 shows two shortcuts that might be used when writing standard IP access lists. Figure B-6(a) shows an
inverse mask of all zeros to indicate that all 32 bits of the address in question must match 172.22.30.6 exactly.
The default mask for a standard IP access list is 0.0.0.0. So, the alternative statement shown, with no mask
specified, is the same as the first statement. Note that this default does not apply to extended IP access lists,
which are covered in the following section.

Figure B-6. Two shortcuts can be used when writing standard IP access lists.

Figure B-6(b) shows the permit anything address/inverse mask combination. The address of 0.0.0.0 is actually
just a placeholder; the mask, 255.255.255.255, actually does all the work. By placing a 1 in all 32-bit positions,
this mask will match anything. The alternative statement shown uses the keyword any, which has the same
meaning as the first statement.





Extended IP Access Lists

Extended IP access lists provide far more flexibility in the specification of what is to be filtered. The basic syntax
of the extended IP access list line follows:

  access-list access-list-number [dynamic dynamic-name [timeout minutes]]
      {deny | permit} protocol source source-wildcard
      destination destination-wildcard [precedence precedence] [tos tos]
      [log | log-input] [time-range time-range-name] [fragments]

You can configure extended access-lists using the global access-list configuration mode in the same way it is
done with standard lists.

Sequence numbers can also be used with extended access lists. They are entered the same way as standard
lists. Reflexive access lists can be configured only using the global access list configuration mode and can be
configured only with named IP access lists. Reflexive access lists are discussed in a later section of this
appendix.

Some of the features here are familiar, and some are new:

access-list-number , for extended IP access lists, is between 100 and 199, or 2000 and 2699.

dynamic identifies this list as a dynamic access list. Dynamic access lists are used by the "Lock-and-Key"
security feature. A user uses Telnets to access the router, gets authenticated by an authentication server
such as TACACS+ or RADIUS, and then is permitted or denied access based on the source and
destination information in the dynamic entry.

timeout defines the maximum amount of time, in minutes, a temporary entry can remain in a dynamic list.
The default is not to time out the entry at all. It remains forever.

protocol  is a new variable that looks for a match in the protocol field of the IP packet header. The keyword
choices are eigrp, gre, icmp, igmp, igrp, ip, ipinip, nos, ospf, tcp, or udp. An integer in the range 0 to
255 representing an IP protocol number can also be used. ip is a generic keyword, which matches any and
all IP protocols, in the same way inverse mask 255.255.255.255 matches all addresses.

Notice that both the source and destination packet addresses are examined for matches; each has its own
inverse mask.

precedence and tos are optional variables that look for a match in the Precedence and Type of Service
fields of the IP packet header. Precedence can be an integer from 0 to 7, and TOS can be an integer from
0 to 15, or either field can be described by one of several keywords. Refer to the Cisco documentation for
a list of available keywords.

log is an optional specification that turns on informational logging. The router attempts to include the list
number or name that logged the match, source and destination address, upper layer port number, and
number of packets logged.

log-input adds the input interface and source MAC address or virtual circuit number to the log output.

time-range creates temporary access lists. Time-range defines the time interval that the access-list entry
is valid. The time-range parameter in the extended access list references a global time-range command.
The global time-range defines the actual time parameters.

fragments keyword defines how fragmented packets are handled by the access-list entry. Fragments are
handled in different ways depending upon if Layer 3 or Layer 3 and Layer 4 information is specified in the
access-list entry, and depending upon if the entry is to permit or deny the packet. The default behavior (no
fragments keyword specified) for entries that contain Layer 3 (IP addresses, IP port numbers) information
is to apply the entry to all nonfragmented packets, initial fragments, and noninitial fragments of packets. For
entries that contain Layer 3 and 4 (TCP or UDP port numbers in addition to IP addresses) information, the
entry is applied to nonfragments and initial fragments. The entry is also applied to noninitial fragments in



the following way: If the noninitial fragment's Layer 3 information matches the Layer 3 information of the
entry (the IP addresses, IP port number), and it is a permit statement, the fragment is permitted. If the entry
is a deny statement, the next access-list entry is processed. If fragments is specified, the entry is applied
only to noninitial fragments. The fragments keyword cannot be configured for entries that contain Layer 4
information, such as TCP or UDP port numbers.

A sample extended IP access list is displayed in Example B-12.

Example B-12. An extended IP access list permits and denies packets in various ways.

access-list 101 permit ip 172.22.30.6 0.0.0.0 10.0.0.0 0.255.255.255 time-range
morning
access-list 101 permit ip 172.22.30.95 0.0.0.0 10.11.12.0 0.0.0.255
access-list 101 deny ip 172.22.30.0 0.0.0.255 192.168.18.27 0.0.0.0
access-list 101 permit ip 172.22.0.0 0.0.31.255 192.168.18.0 0.0.0.255
access-list 101 deny ip 172.22.0.0 0.0.255.255 192.168.18.64 0.0.0.63
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
time-range morning
periodic weekdays 08:00 to 11:59

The following is an explanation of the lines in Example B-12:

Line 1 IP packets with a source address of 172.22.30.6 and with a destination address that belongs to
network 10.0.0.0 are permitted during a specific time range. The time range is defined in lines 7 and 8.
During other times, the access-list entry is inactive. An inactive entry means that the entry is ignored as if it
weren't in the list at all.

Line 2 IP packets with a source address of 172.22.30.95 and with a destination address that belongs to
subnet 10.11.12.0/24 are permitted.

Line 3 IP packets with a source address that belongs to subnet 172.22.30.0/24 and with a destination
address of 192.168.18.27 are dropped.

Line 4 IP packets with source addresses between 172.22.0.0 and 172.22.31.255 and with a destination
address that belongs to network 192.168.18.0 are permitted.

Line 5 IP packets with a source address that belongs to network 172.22.0.0 and with a destination address
whose first 26 bits are 192.168.18.64 are dropped.

Line 6 IP packets from any source to any destination are permitted.

Lines 7 and 8 The time range called "morning," which is referenced in line 1, is defined to be weekday
mornings, from 08:00 to 11:59.

Figure B-7 shows two shortcuts that can be used when writing extended IP access lists. Recall that standard IP
access lists have a default mask of 0.0.0.0. This default does not apply to extended access lists; there would be
no way for the router to interpret it correctly. An alternative exists for extended lists, however. In Figure B-7(a),
packets are permitted if their source is host 172.22.30.6 and their destination is host 10.20.30.40. Any time the
mask in an extended IP access list is 0.0.0.0, it can be replaced by adding the keyword host before the address.

Figure B-7. Two shortcuts can be used when writing extended IP access lists.



The example in Figure B-7(b) permits any IP packets from any source to any destination. Just as with standard
access lists, the any keyword can be used in place of the 0.0.0.0 255.255.255.255 address/inverse mask
combination for the source, the destination, or both.

Extended access lists can be more powerful than standard access lists because the former examine more than
the packet's source address, but everything has a price. The price you pay with extended lists is increased
processing (Figure B-8). Because each line of the access list is examining multiple fields within the packet,
multiple CPU interrupts can occur. If the access list is large or the router is busy, this requirement can affect
performance adversely.

Figure B-8. The decision flow of an extended IP access list.

Keeping access lists as small as possible reduces the processing burden on the router. Also notice that when a
match occurs, the specified action is invoked and processing stops. Therefore, if you can write your lists so that
most matches occur in the first few lines, performance will be improved. This approach isn't always feasible, but
it is something to keep in mind when designing access lists.

Some router platforms support a function called "Turbo ACLs," which are compiled access lists. The configured
access lists are compiled into a lookup table. The sequence of the entries is maintained, but the lookup time and
CPU required for lookup is greatly reduced. Certain entries, such as time ranges, cannot be included in a
compiled list. To configure the router to use turbo access lists, enter the command access-list compiled.

As an exercise, try making the access list given in Example B-12 more elegant. That is, rewrite the list with as
few lines as possible without losing any of its functionality. (Hint: A list with the same functionality can be written



with only four lines, not including the two time commands at the end.) An answer is given in the next paragraph.
Try to rewrite the list before reading further.

Line 1 can be removed. Line 1 permits host 172.22.30.6 access to the 10.0.0.0/8 address, during the weekday
mornings. Without this line, access from this host to the 10.0.0.0 address is still permitted by line 6, which
permits anything that is not previously denied.

Line 2 can also be removed. The host 172.22.30.95 is also permitted access to 10.11.12.0/24 in line 6.

You might be tempted to think that line 4 can also be removed, but notice that line 5 denies a larger range of
addresses that includes those permitted in line 4. Therefore, line 4 is necessary to permit a small subset of
addresses before the rest of the addresses specified in line 5 are dropped.

TCP Access Lists

The syntax for an extended access list line that examines a TCP segment follows:

access-list access-list-number [dynamic dynamic-name [timeout minutes]]
    {deny | permit} tcp source source-wildcard [operator [port]]
    destination destination-wildcard[operator [port]] [established]
    [precedence precedence] [tos tos] [log | log-input]
    [time-range time-range-name] [fragments]

Notice that the protocol  variable is tcp. Probably the most significant feature here is that the access list can
examine the source and destination port numbers in the TCP segment header. As a result, you have the option
of filtering packets not only to and from a particular address, but also to and from a particular socket (an IP
address/application port combination).

The features of the TCP access list that have not yet been explained are operator  and port:

operator  specifies a logical operand. The options are eq (equal to), neq (not equal to), gt (greater than), lt
(less than), and range for specifying an inclusive range of ports. If the range operator is used, two port
numbers are specified.

port specifies the application layer port to be matched. A few common port numbers are for Telnet ( 23),
FTP (20 and 21), SMTP (25), and SNMP (169). A complete listing of TCP port numbers can be found in
RFC 1700.

What happens if you implemented an access list to prevent TCP sessions from being established into your
network, but you want to ensure that the access list passes the responses if your network establishes a TCP
session? The established keyword allows this event by checking the ACK and RST flags in the TCP segment
header. If one of these flags is set, a match occurs. If neither bit is set, the source is trying to establish a TCP
connection to the destination, and a match will not occur. The packet will be denied on a subsequent line of the
access list.

A sample TCP access list is displayed in Example B-13.

Example B-13. This TCP access list permits established sessions and permits certain addresses
access for SMTP and Telnet.

 access-list 110 permit tcp any 172.22.0.0 0.0.255.255 established
 access-list 110 permit tcp any host 172.22.15.83 eq 25
 access-list 110 permit tcp 10.0.0.0 0.255.255.255 172.22.114.0 0.0.0.255 eq 23

The following is an explanation of the lines in Example B-13:

Line 1 Permit TCP packets from any source to network 172.22.0.0 if the connection was established from
that network.



Line 2 Permit TCP packets from any source if the destination is port 25 (SMTP) of host 172.22.15.83.

Line 3 Allow any TCP packet with a source address from network 10.0.0.0 to telnet (port 23) to any
address on subnet 172.22.114.0/24.

All other packets will be dropped by the implicit deny any.

UDP Access Lists

The syntax for an extended access list line that examines a UDP segment follows:

 access-list access-list-number [dynamic dynamic-name [timeout minutes]]
    {deny | permit} udp source source-wildcard [operator [port]]
    destination destination-wildcard [operator [port]]
    [precedence precedence] [tos tos] [log | log-input]
    [time-range time-range-name] [fragments]

This format is similar to the TCP format, except that the protocol  variable now is udp. The other difference is
that there is no established keyword. The reason is that UDP is a connectionless transport service, and no
connections are established between hosts.

In Example B-14, three lines have been added to the previous TCP example.

Example B-14. This access list permits TCP and UDP packets.

 access-list 110 permit tcp any 172.22.0.0 0.0.255.255 established
 access-list 110 permit tcp any host 172.22.15.83 eq 25
 access-list 110 permit tcp 10.0.0.0 0.255.255.255 172.22.114.0 0.0.0.255 eq 23
 access-list 110 permit udp 10.64.32.0 0.0.0.255 host 172.22.15.87 eq 69
 access-list 110 permit udp any host 172.22.15.85 eq 53
 access-list 110 permit udp any any eq 161

The following is an explanation of the lines in Example B-14:

Line 4 Permit UDP packets from subnet 10.64.32.0/24 to the TFTP port (69) on host 172.22.15.87.

Line 5 Permit UDP packets from any source to the Domain Name Server (port 53) on host 172.22.15.85.

Line 6 Permit all SNMP packets (port 161) from any source to any destination.

The implicit deny any still drops all packets not finding a match in the list.

ICMP Access Lists

The syntax for an extended access list line that examines an ICMP packet follows:

 access-list access-list-number [dynamic dynamic-name [timeout minutes]]
     {deny | permit} icmp source source-wildcard destination destination-wildcard
     [icmp-type[icmp-code] | icmp-message] [precedence precedence] [tos tos]
     [log | log-input] [time-range time-range-name] [fragments]

icmp is now in the protocol  field. Notice that there are no source or destination ports here; ICMP is a network
layer protocol. This line can be used to filter all ICMP messages, or you can use the following options to filter
specific ICMP messages:

icmp-type is a number between 0 and 255. All ICMP type numbers can be found in RFC 1700.

The granularity of filtering can be increased by specifying icmp-code. An ICMP code specifies a subset of



ICMP packet types; the codes are a number between 0 and 255 and are also found in RFC 1700.

Instead of an ICMP type and ICMP code, an ICMP message name can be entered.

A sample of an ICMP access list is displayed in Example B-15.

Example B-15. This ICMP access list denies specific packets and permits all others.

 access-list 111 deny icmp 172.22.0.0 0.0.255.255 any 0
 access-list 111 deny icmp 172.22.0.0 0.0.255.255 any 3 9
 access-list 111 deny icmp 172.22.0.0 0.0.255.255 any 3 10
 access-list 111 deny icmp 172.22.0.0 0.0.255.255 any traceroute
 access-list 111 permit ip any any

The following is an explanation of the lines in Example B-15:

Line 1 Deny ICMP ping responses (Echo Reply, ICMP type 0) from network 172.22.0.0 to any destination.

Line 2 Deny ICMP destination unreachable packets (type 3) with a code number of 9 (Network
Administratively Prohibited) from network 172.22.0.0 to any destination.

Line 3 Deny ICMP destination unreachable packets (type 3) with a code number of 10 (Host
Administratively Prohibited) from network 172.22.0.0 to any destination.

Line 4 Deny ICMP traceroute from network 172.22.0.0 to any destination.

Line 5 Permit all other IP packets.



Calling the Access List

An access list does nothing unless packets are sent to it by a calling command, which defines how the
access list is to be used. One such command is

 ip access-group access-list-number {in | out}

This command is configured on an interface to create security or traffic filters and can be applied to
incoming or outgoing traffic. If neither the in nor the out keyword is specified, the filter defaults to
outgoing. The access list number, of course, is the access list to which this command will send packets.
Figure B-9 shows two configurations of this command.

Figure B-9. The ip access-group command uses the specified access list to create a filter on
an interface for either incoming or outgoing packets.

Access list 1 in Figure B-9 filters incoming IP packets on interface E0. It has no effect on outgoing IP
traffic and no effect on packets originated by other protocols, such as IPX. Access list 2 filters IP
packets going out interface S3. It has no effect on incoming IP packets and no effect on packets
originated by other protocols. Denying as much as possible on the inbound access list instead of the
outbound list alleviates the need for the router to perform work on traffic that will be dropped.

Multiple interfaces can make calls to the same access list, but any one interface can have only one
incoming and one outgoing access list for each protocol.

In Figure B-10, the TCP, UDP, and ICMP access lists given earlier as examples are used as filters.
Access list 110, from the previous two examples, has been applied to the Ethernet 0 interface to check
incoming traffic. Access list 111 is applied to the same interface to check outgoing traffic. Analyze the
two access lists carefully, including their interrelationship, and consider the following:

A ping response from 172.23.12.5 to 10.64.32.7 wants to exit interface Ethernet 0. Will it be
allowed to pass?

Someone on 172.22.67.4 wants to ping a device at 10.64.32.20, exiting Ethernet 0. Will the ping
be successful?

Figure B-10. Access list 110 is used here to filter incoming packets on the Ethernet interface.
Access list 111 is used here to filter outgoing packets on the same interface.



The ping response from 172.23.12.5 will be allowed to exit interface Ethernet 0. Ping responses are
denied for packets from 172.22.0.0/16, not 172.23.0.0/16. The ping from 172.22.67.4 to 10.64.32.20,
exiting Ethernet 0, will not be successful. The ping request will successfully exit the interface, but the
response will be denied by the inbound access list.

Another command that makes calls to an access list is the access-class command. This command is
used to regulate Telnet sessions to and from the router's virtual terminal lines, not for packet filtering.
The format of the command is

access-class access-list-number {in | out}

Figure B-11 shows an example of the access-class command. Access list 3 regulates the addresses
from which the router's VTY lines will accept Telnet sessions. Access list 4 regulates the addresses to
which the router's virtual terminal lines may connect.

Figure B-11. The access-class command uses an access list to regulate Telnet traffic to and
from the router's virtual terminal lines.

The access-class command has no effect on Telnet traffic transiting the router. It influences only
Telnet sessions to and from the router itself.



Reflexive Access Lists

Reflexive access lists are automatically populated, temporary, session-based filters. If a router permits a session to be initiated
from within a network to an external host, a reflexive list permits return session traffic. Reflexive lists are used with extended
named IPv4 access lists. Session filters using reflexive lists can be compared to the established keyword used with TCP filters.
Using the established keyword, a TCP session is initiated from within a network. If the return traffic has the ACK or RST flag set,
the packet is part of a previously established session, and the packet is permitted. This entry with the established keyword is a
permanent entry in the access list.

Reflexive access lists use different parameters to determine if the packet is part of a previously established session. For TCP and
UDP packets, reflexive access lists use source and destination IP addresses and source and destination TCP or UDP port
numbers.

When a session is initiated from within a network, a reflexive access list is populated with the session information gleaned from the
initial packet. The source and destination IP addresses and the source and destination port numbers are swapped and added,
along with the upper layer protocol type (such as TCP and UDP) as a permit statement to the temporary reflexive list. This entry
remains active until there is no longer any traffic for the session and the timeout value expires, until two FIN-flagged packets are
received, or until the RST flag is set on a TCP packet.

Example B-16 shows an example of a reflexive access list configuration.

Example B-16. This reflexive access list is named infilter.

interface Serial0/0.1 point-to-point
 ip address 172.25.150.65 255.255.255.192
 ip access-group infilter in
 ip access-group outfilter out
!
ip access-list extended infilter
 permit eigrp any any
 permit udp any any eq rip
 evaluate sessiontraffic
ip access-list extended outfilter
 permit tcp any any reflect sessiontraffic
 permit icmp any any echo time-range morning reflect sessiontraffic
!
time-range morning
 periodic weekdays 9:00 to 12:30

In this example, the filters are applied to an interface that connects to an external network. The outfilter list permits all TCP
packets and ICMP echo requests on weekday mornings between 9:00 and 12:30 only, initiated from the internal network. The
outfilter list is applied outbound on serial0/0.1. The reflect keyword is used on the permit statements. This creates the reflexive
access list called sessiontraffic. The reflexive access list is populated when packets match the permit entries that use the reflect
keyword.

Packets coming inbound to interface serial0/0.1 are filtered by the infilter access list. These would be the packets sourced from an
external network. In this case, infilter permits EIGRP and RIP packets. After the incoming packet is matched against the EIGRP
and RIP entries, the reflexive access list sessiontraffic is evaluated sequentially. The reflexive access list does not have an implicit
deny-all at the end, but the extended access list in which the reflexive list is nested does.

Example B-17 shows the access lists before TCP and ICMP traffic has exited serial0/0.1. Example B-18 shows the access lists
after TCP and ICMP traffic has exited serial0/0.1.

Example B-17. show ip access-list  displays all the configured permanent and temporary IP access lists configured on
a router.

Router#show access-lists
Extended IP access list infilters
  10 permit eigrp any any
  20 permit udp any any eq rip (1074 matches)
  30 evaluate sessiontraffic
Extended IP access list outfilter
  10 permit tcp any any reflect sessiontraffic (45 matches)
  20 permit icmp any any echo time-range morning (active) reflect sessiontraffic
Reflexive IP access list sessiontraffic

Ping and Telnet have been initiated from the internal network to the external network. Example B-18 shows the access lists after



this traffic has been initiated.

Example B-18. The show ip access-list  displays dynamically created entries in a reflexive access list.

Router#show ip access-list
Extended IP access list infilters
    10 permit eigrp any any
    20 permit udp any any eq rip (1101 matches)
    30 permit udp any any eq 521
    40 evaluate sessiontraffic
Extended IP access list outfilter
    10 permit tcp any any reflect sessiontraffic (188 matches)
    20 permit icmp any any echo time-range morning (active) reflect sessiontraffic (9 matches)
Reflexive IP access list sessiontraffic
     permit tcp host 192.168.16.225 eq telnet host 192.168.50.130
     eq 11002 (55 matches) (time left 293)
    permit icmp host 192.168.16.225 host 192.168.50.130 (19 matches) (time left 270)

The output in Example B-17 displays the access list's infilter and outfilter and their configured parameters. Notice that the ICMP
entry in the outfilter says it is active. This means the time and day of the week on the router falls within the configured time range.
The output also displays the nonpopulated reflexive access list, sessiontraffic.

After ICMP pings and a Telnet session have been initiated and packets have exited serial0/0.1, the access lists are displayed
again in Example B-18. This time there are entries in the reflexive access list. These entries will be matched against all packets
arriving into serial0/0.1 from the external network, until the timer expires or the session has been closed. Telnet session and ICMP
echos are not successful when initiated from the external network.

Reflexive access lists do not work for protocols that change port numbers during a session, such as FTP.



Keyword Alternatives

Most networking professionals know some of the more commonly used TCP port numbers, and maybe a few
UDP port numbers. Fewer can say what the ICMP type is for a ping or a destination unreachable, much less what
the ICMP codes are for destination unreachable types. Beginning with IOS 10.3, access lists can be configured
with keywords in place of many port, type, or code numbers. Using keywords, the access lists 110 and 111 from
Figure B-10 are displayed in Example B-19.

Example B-19. Keywords can replace port numbers in access lists.

access-list 110 permit tcp any 172.22.0.0 0.0.255.255 established
access-list 110 permit tcp any host 172.22.15.83 eq smtp
access-list 110 permit tcp 10.0.0.0 0.255.255.255 172.22.114.0 0.0.0.255 eq telnet
access-list 110 permit udp 10.64.32.0 0.0.0.255 host 172.22.15.87 eq tftp
access-list 110 permit udp any host 172.22.15.85 eq domain
access-list 110 permit udp any any eq snmp
!
access-list 111 deny icmp 172.22.0.0 0.0.255.255 any echo-reply
access-list 111 deny icmp 172.22.0.0 0.0.255.255 any net-unreachable
administratively-prohibited
access-list 111 deny icmp 172.22.0.0 0.0.255.255 any host-unreachable
administratively-prohibited
access-list 111 permit ip any any

A word of caution: If you upgrade a router from a pre-10.3 image, the new IOS, upon bootup, will rewrite the
access lists in the configuration file to the new syntax, including keywords. If you subsequently need to reload the
original pre-10.3 image, the revised access lists will not be understood. Always upload a copy of the original
configuration file to a TFTP server before upgrading.



Named Access Lists

The limit of 798 standard access lists or 799 extended IP access lists per router would seem to be more than
enough; however, there are cases, such as with dynamic access lists,[1] in which these maximums might not
be sufficient. Named access lists, available beginning with IOS 11.2, extend these limits. The other advantage
is that descriptive names can make large numbers of lists more manageable.

[1] Dynamic access lists are not covered in this tutorial. Refer to the Cisco IOS Security
Configuration GuideConfiguring Lock-and-Key Security (Dynamic Access Lists) for more information.

To use names, use the following syntax in the first line of the access list:

ip access-list {standard | extended} name

Because there are no numbers to differentiate list types, this line specifies the list as IP and either standard or
extended.

Below the beginning line, go the permit and deny statements. The syntax for the standard list is

{deny | permit} source [source-wildcard]

The syntax for the basic extended list is

{deny | permit} protocol source source-wildcard destination destination-wildcard
    [precedence precedence][tos tos][log]

In both cases, the access-list access-list-number  portion of the command has disappeared, but everything
else remains the same. Standard and extended access lists on the same router cannot share the same name.
The command for establishing a named access list on an interface refers to the name instead of a number but
in all other ways remains the same. Figure B-12 shows the access lists of Figure B-10 converted to the named
format.

Figure B-12. The access lists shown in Figure B-10 are now configured as named access lists.





Prefix Lists

Prefix lists are used to specify an address or range of addresses to be permitted or denied in route
updates. The BGP routing protocol uses prefix lists for IPv4. All IPv6 routing protocols can use prefix
lists when exchanging IPv6 addresses between protocols or when filtering updates.

Prefix lists are named lists. An entry in the list permits or denies an address or range of addresses, as
in Example B-20.

Example B-20. Prefix lists permit and deny IPv6 addresses.

ipv6 prefix-list v6_addr_filt permit 2001:db8:0:1::/64
ipv6 prefix-list v6_addr_filt permit 2001:db8:0:10::/60 le 64
ipv6 prefix-list v6_addr_filt permit ::/0 ge 62 le 64

The first entry permits prefix 2001:db8:0:1:: with the prefix length exactly 64 bits. The second and third
entries permit a range of addresses. The keyword le indicates that the range of prefix lengths to be
matched is from the length specified, after the prefix to the length specified after the le keyword. The
second entry in the prefix list v6_addr_filt permits prefixes which match 2001:db8:0:10:: and have a
length in the range 60 to 64. The ge keyword specifies the minimum length of the prefix in a range of
addresses. If it is used with no le keyword, it is assumed that the maximum length for the range of
prefixes matched is 128 bits, the maximum number of bits in an IPv6 prefix. When used with the le
keyword, the maximum matched length of the range is specified after le. The third entry in prefix list
v6_addr_filt permits any prefix with a length between 62 and 64 bits.



Filter Placement Considerations

For the best performance, you must consider not only the efficient design of the access list itself, but
also the placement of the filter on the router and in the network.

As a rule of thumb, security filters usually are incoming filters. Filtering unwanted or untrusted packets
before they reach the routing process, prevents spoofing attackswherein a packet fools the routing
process into thinking it has come from somewhere it hasn't. Traffic filters, on the other hand, usually are
outgoing filters. This approach makes sense when you consider that the point of a traffic filter is to
prevent unnecessary packets from occupying a particular data link.

Aside from these two rules of thumb, another factor to consider is the number of CPU cycles the
combined access list and routing processes will use. An incoming filter is invoked before the routing
process, whereas an outgoing filter is invoked after the routing process (Figure B-13). If most packets
passing through the routing process are to be denied by the access list, an incoming filter might save
some processing cycles.

Figure B-13. Incoming packet filters are invoked before the routing process, whereas outgoing
packet filters are invoked after the routing process.

Standard IP access lists can filter only on source addresses. Consequently, a filter using a standard list
must necessarily be placed as close to the destination as possible so that the source still has access to
other, nonfiltered destinations (Figure B-14(a)). As a result, bandwidth and CPU cycles might be wasted
delivering packets that will ultimately be dropped.

Extended IP access lists, because of their capability to identify specific packet characteristics, should
be placed as close to the source as possible to prevent wasting bandwidth and CPU transporting
"doomed" packets (Figure B-14(b)). On the other hand, the complexity of extended lists means more of
a processing burden. These tradeoffs must be considered when deciding where on the network to
place a filter.

Figure B-14. Filters that use standard access lists generally must be placed close to the
destination (a), whereas extended access lists can be placed close to the source (b).



You must also understand how your access list will affect switching on the router. For instance, an
interface using an extended IP access list cannot be autonomously switched; dynamic access lists
cannot be silicon-switched and might affect silicon-switching performance. Named access lists are not
supported at all before IOS 11.2.

The effect of an access list on switching might be critical on backbone or core routers. Be sure to fully
research and understand the effects an access list might have by reading the Cisco Configuration
Guide for the IOS being used on your router. In some cases, a packet filtering router a smaller router
dedicated to nothing but packet filteringcan be used to offload the filtering burden from a mission-critical
router.



Access List Monitoring and Accounting

It is useful to examine an access list, or even all access lists, without having to display the entire router
configuration file. The command show ip access-list displays an abbreviated syntax of all IP access lists on the
router. If a specific access list is to be observed, the list can be specified by name or number (Example B-21). If
you leave off the ip keyword (show access-list), all access lists will display.

Example B-21. The show ip access-list  command displays an abbreviated syntax of the access lists.

Woody#show ip access-list 110
Extended IP access list 110
    10 permit tcp any 172.22.0.0 0.0.255.255 established
    20 permit tcp any host 172.22.15.83 eq smtp
    30 permit tcp 10.0.0.0 0.255.255.255 172.22.114.0 0.0.0.255 eq telnet
    40 permit udp 10.64.32.0 0.0.0.255 host 172.22.15.87 eq tftp
    50 permit udp any host 172.22.15.85 eq domain
    60 permit udp any any eq snmp
Woody#

It is also useful, as part of a security plan or a capacity planning strategy, to track packets that have been denied
by an access list.

The command ip accounting access-violations might be configured on individual interfaces to create a
database of all packets that have been denied by any access lists on that interface. To examine the database,
use the command show ip accounting access-violations. The source and destination addresses, the number
of packets and number of bytes matching these addresses, and the access list number that denied the packet will
be shown (Example B-22). The command clear ip accounting clears the accounting database.

Example B-22. The access list accounting database can be observed with the command show ip
accounting access-violations.

Woody#show ip accounting access-violations
   Source          Destination             Packets          Bytes     ACL
  10.1.4.1       255.255.255.255                13            936     110
  10.1.4.1       172.22.1.1                     12           1088     110

Accounting data age is 10
Woody#

Accounting disables autonomous and silicon switching on an interface. Do not use accounting on an interface
where these switching modes are required.

As a final "trick," be aware that its accounting does not track packets discarded by the implicit deny any at the end
of the list. To track these packets, simply configure a deny any at the end of the list as in Example B-23.

Example B-23. A deny any  entry is added to the end of the access list to track packets discarded
because they did not match any other entry in the list.

access-list 110 permit tcp any 172.22.0.0 0.0.255.255 established
access-list 110 permit tcp any host 172.22.15.83 eq smtp
access-list 110 permit tcp 10.0.0.0 0.255.255.255 172.22.114.0 0.0.0.255 eq telnet
access-list 110 permit udp 10.64.32.0 0.0.0.255 host 172.22.15.87 eq tftp
access-list 110 permit udp any host 172.22.15.85 eq domain
access-list 110 permit udp any any eq snmp
access-list 110 deny ip any any 1





Appendix C. CCIE Preparation Tips
Becoming a Cisco Certified Internetworking Expert (CCIE) is a far cry from the "read a book, take an
exam" process of some other industry certifications. After a relatively easy written exam, you will be
required to prove your expertise in a hands-on, notoriously difficult lab exam. Even though you must be
intimately familiar with the Cisco configuration commands, the most difficult challenges of the lab are
not Cisco IOS Software-specific; instead, they test the depths of your understanding of switches,
routers, and routing protocols. It is for this knowledge that CCIEs are recognized and sought out as
proven internetworking experts.

The structured creation of a network involves four phases, and those same four phases are also useful
for creating a structured preparation program for the CCIE lab:

Plan Take a cold, hard look at your present experience level and your shortcomings. Evaluate the
daily time you have available for study. Evaluate the resources at your disposal, including lab
equipment; funds and time available for training; books; and acquaintances that can serve as
coaches, tutors, and subject matter experts. Evaluate your personal strengths and weaknesses:
Are you a good test taker? Do you work well under pressure? How do you react to setbacks and
disappointments? Do you have good study habits? Do you learn best from reading or from verbal
instruction? Using the raw data from your evaluations, write a list of your assets and liabilities.
Develop a plan to fully capitalize on your assets and eliminate as many liabilities as possible.

Design Design a personalized preparation program that meets your needs while fitting your
schedule and resources. Talk to as many CCIEs as possible; ask them about their own
preparation programs. Find out what worked and what didn't work for them. Your program should
take you from your present experience level right up to the CCIE lab, with definite deadlines and
milestones. Build the project from a series of miniprojects, each with a well-defined goal. Be
realistic when you design your schedule, taking into consideration the predictability (or lack of) of
both your job and your personal life. The level of support you can expect from your employer and
your family is an important factor in deciding whether your preparation schedule should be
intensive or more relaxed. Exceeding the tolerance of those close to you will hurt your schedule
far more than help it.

Implement Many projects fail because the implementation begins before the design is complete.
Your preparation program should be a written document clearly defining all steps of the project
from kickoff to completion. After you begin your preparation program, stick to it. Don't give up, don't
be discouraged, and don't be lazy. Check off your goals and milestones as you meet them.

Optimize Your preparation program should be a living document. As you progress, some subjects
will be more difficult than expected, and some subjects will be easier than expected. Always move
forward but be flexible enough to add any extra tasks necessary for you to master each topic.

Only you can design a preparation program that best suits you. The advice in the following sections is
not meant to be followed unswervingly, but is meant to give you some ideas for creating your study
program. These tips come from my personal experience as both a CCIE and as a Cisco Systems
Instructor, and from the experiences of associates who have successfully passed the CCIE lab.



Laying the Foundations

If you are a beginner, or your networking experience is limited, your first step is to get a solid grip on the
basics of both networking and Cisco routers. This effort will involve both classroom training and self-
study. I recommend Cisco.com; look at the wealth of information about career certifications in the
"Learning and Events" section.

Through its Authorized Learning Partners, Cisco Systems offers many hands-on training classes. You
should attend as many of these classes as your time and resources allow, but of particular importance
are the following:

Interconnecting Cisco Network Devices (ICND)

Building Scalable Cisco Internetworks (BSCI)

Building Cisco Remote Access Networks (BCRAN)

Building Cisco Multilayer Switched Networks (BCMSN)

Cisco Internetwork Troubleshooting (CIT)

Take full advantage of every class you attend. Ask questions of the instructor and discuss the class
topics with your fellow students. Most importantly, take advantage of the access you have to the lab
equipment. Don't just work the labs; be sure you fully understand the whys and hows of the lab
exercises. When you finish a lab, don't just stop. Play with the equipment. See what configuration and
troubleshooting options are available and try them. If you have time, try building the lab configuration
several times to gain proficiency.

The classroom work will help you identify gaps in your networking knowledge. Read as much as you
can to fill in the gaps in your knowledge of basic networking protocols and technology. Many good
tutorials are available on the Internet from both commercial vendors and private individuals. Whenever
you begin studying a particular subject, be sure to perform a Web search for the topic.



Following the Certification Path

When the first edition of this book was written, the CCIE was the only certification Cisco Systems
offered. Now, there are a number of levels of certification and even a number of specialties within the
CCIE program. Taking advantage of these levels is encouraged (although none of them are required
prerequisites), as it gives you milestones along your road to the CCIE and also awards you with
meaningful certifications along the way.

The first goal to work toward is the Cisco Certified Networking Associate (CCNA). This certification
proves that you have mastered the basics of networking and network protocols, can install and operate
small LAN, WAN, and access networks, and understand essential Cisco hardware and IOS Software.

Your next goal is the Cisco Certified Network Professional (CCNP). This advanced certification
indicates a mastery of the technologies necessary for running and troubleshooting larger enterprise
networks. With the CCNP in hand, you are ready to move to the expert level and prove it with your
CCIE.



Hands-On Experience

Almost all CCIEs will tell you that hands-on experience is an invaluable part of preparing for the lab
exam. Never pass up an opportunity to configure or troubleshoot a router. If you do not work with
routers and switches on your present job, get friendly with the network engineers and technicians in
your organization. Explain your goals to them and offer to assist them whenever possible.

If you have access to lab facilities, take full advantage of them. There is no replacement for the
experience you can gain from working in a lab, where you can configure whatever you want to
configure and introduce whatever problems you want to introduce, without risk of disrupting a
production network.

Several online companies provide remote access to practice labs for a fee. The usage fees can vary
widely, usually dependent on the rack of equipment available to you.

Another option is to build your own lab. Although this option is expensive, the salary you can command
as a CCIE might make the investment worthwhile. Many sources sell used Cisco equipment at fairly
reasonable prices. Subscribe to the Cisco newsgroup on the Internet, at http://comp.dcom.sys.cisco, or
a study group such as groupstudy.com; people frequently post used routers for sale, and you can find
some good deals. Most of my own lab routers, used for developing the examples in this book, were
purchased on eBay. Although even two routers are useful, you should try to obtain at least four, one of
which should have four or more serial interfaces so that you can configure it as a Frame Relay switch.
Remember that you don't need top-of-the-line equipment; obsolete routers are especially good buys
because no one wants them in a production network.



Intensifying the Study

Beyond the basics, and in parallel with your acquisition of practical hands-on experience, you must
begin building a deep understanding of the networking protocols. At a minimum, you should read the
RFCs recommended in this book. Ideally, read as many relevant RFCs as you can. The best site is
http://www.ietf.org.

Of course, not all networking protocols are described in RFCs. Look for advanced books, white papers,
and tutorials on the non-IP protocols, that might be included on the exam. You should also study
Ethernet and WAN protocols, such as T-1, ISDN, Frame Relay, and ATM. You can find a wealth of
publicly available information at Cisco.com. And of course, Cisco Press offers a number of books
besides this one and its companion volume that are specifically focused on CCNA, CCNP, and CCIE.
Go to Ciscopress.com to find the books appropriate for your needs.

A useful study tool, incorporating both theory and practical knowledge, is the Cisco newsgroup at
http://comp.dcom.sys.cisco. Copy particularly challenging questions and problems posted to the
newsgroup and find your own answer. Then, watch for the answers posted from CCIEs and Cisco
engineers and see whether you are right. If not, determine why. Post questions to the Cisco
newsgroup, too. Most regular participants are friendly and willing to share their expertise.

Several online study groups focus specifically on preparing for the CCNP and CCIE exams. One of the
oldest and most well-known of these is groupstudy.com. Joining such a group is an excellent way of
locating resources, sharing experiences, joining discussions, and getting answers to thorny questions. I
highly recommend joining an online study group.

Finally, if you have associates with the same goals, form your own study group. I know of CCIE study
groups within several companies that have been very effective and have produced many CCIEs.



The Final Six Months

With a now-solid background combining practical and theoretical knowledge, your final six months of
preparation should involve reading the Cisco IOS Configuration Guides from cover to cover. As you
read each chapter of this book, review the associated chapter in the Cisco IOS Command Reference to
ensure that you are familiar with the full configuration capabilities of the IOS for that protocol. Then, use
your lab to configure the protocol covered in the chapter in as many ways as you can. Play "what if"
games, trying to make the protocol work in unusual situations. You will find that the best learning
experiences result not when a configuration works as expected, but when it doesn't.

Keep a notebook of your configurations and your thoughts on how they worked or didn't work. Be sure
to explore and record all troubleshooting tools, such as debug and show commands, relevant to the
protocol.

Your goal at the end of each chapter of the Configuration Guide is to be able to configure at least the
essential elements of the protocol from memory. When you are taking the CCIE lab, it is important to be
able to configure the "easy stuff" with little thought so that you can be thinking ahead to the difficult
configuration problems. You should also be familiar with how the protocol behaves, how the protocol
interacts with other protocols, what configuration options exist, and how to troubleshoot the protocol.
When you meet these goals for one chapter, move to the next.

Early in this final six months, you should take the written portion of the CCIE exam. Don't be fooled by
this examit is intended primarily to weed out people who are completely unprepared so that they are
only out the price of the written test instead of the much higher price of the lab exam. If you followed a
good study program, you will not find the written exam to be particularly difficult.

Several companies offer CCIE preparation courses and "CCIE boot camps," which give you experience
doing lab work under conditions similar to the CCIE lab exam. Do not mistake these classes as a
substitute for diligent study and practice. If you choose to attend one of these classes, you should first
be fully prepared to take the CCIE exam. The greatest benefit you will gain from the commercial
preparation labs is a feel for being "under the gun," working difficult problems within tight time
constraints.



Exam Day

The CCIE lab exam tests not only your practical and theoretical knowledge, but also your ability to use
that knowledge under pressure. You are in for an intense day, so do not add unnecessarily to that
pressure:

Be aware that most people fail the CCIE exam on their first try. Have a contingency plan for taking
the exam a second time. This strategy can help you stay calm during your first try and might make
your contingency plan unnecessary.

Arrange your travel plans so that you arrive in plenty of time the day before the exam. Arrange to
leave the day after the exam, not the same evening. You don't want to think about your travel
schedule during the exam.

Locate the test facilities the evening before the exam. You don't want to show up for the exam
flustered because you got lost.

Do no more than a light review on the evening before the exam. If you try to "cram," you will make
yourself nervous and sleepless.

Eat a good dinner, with no alcohol, and get a good night's sleep.

On the day of the exam, eat a good breakfast. It is an established fact that eating correctly will
help you perform better.

Dress comfortably. There are no points for appearance.

Before the exam, you will be required to submit an online nondisclosure form stating that you will not
divulge the details of the lab. The exam is eight hours long with a break for lunch. Although other CCIE
candidates will be working on their own labs in the room, you will be working alone. In all likelihood, the
other candidates' assignments will be different from yours. You will be assigned a network topology and
a set of questions and configuration requirements that must be fulfilled within the eight-hour lab.

If you do not understand a particular requirement during any part of the exam, do not hesitate to ask
your lab proctor. The proctor is there not only to test you but also to help you. Most important, relax and
stay focused.

The lab is graded after hours, and the results are usually sent the next business day after the exam.
You will receive an e-mail telling you that your results are available, and you can access your online
candidate profile to see the result. If you have passed, you will see your CCIE number; if not, you will
see a score report.

When you have won your CCIE, you will have accomplished something to be proud of. If this book or
the advice in this appendix has helped you reach your goal, please e-mail me so that I can share your
pride.
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Chapter 1

1 The five layers of the TCP/IP protocol suite are the following:

Physical layer

Data-link layer

Internet (or IP) layer

Host-to-host layer

Application layer

The physical layer  contains the protocols of the physical medium.

The data link layer  contains the protocols that control the physical layer: how the medium
is accessed and shared, how devices on the medium are identified, and how data is
framed before being transmitted on the medium.

The internet layer  contains the protocols that define the logical grouping of data links into
a network and the communication across that network.

The host-to-host layer  contains the protocols that define and control the logical, end-to-
end paths across the network.

The application layer  corresponds to the OSI session, presentation, and application
layers.

2 The most common IP version now in use is version 4.

3 Routers perform fragmentation when a packet is longer than the maximum packet length
(Maximum Transmission Unit, or MTU) supported by a data link onto which the packet
must be transmitted. The data within the packet will be broken into fragments, and each
fragment will be encapsulated in its own packet. The receiver uses the Identifier and
Fragment Offset fields and the MF bit of the Flags field to reassemble the fragments.

4 The Time to Live (TTL) field prevents "lost" packets from being passed endlessly through
the IP network. The field contains an 8-bit integer that is set by the originator of the packet.
Each router through which the packet passes will decrement the integer by one. If a router
decrements the TTL to zero, it will discard the packet and send an ICMP "time exceeded"
error message to the packet's source address.

5 The first octet rule determines the class of an IP address as follows:

Class A: The first bit of the first octet is always 0.

Class B: The first two bits of the first octet are always 10.

Class C: The first three bits of the first octet are always 110.

Class D: The first four bits of the first octet are always 1110.

Class E: The first four bits of the first octet are always 1111.

6 The A, B, and C IP addresses are recognized in dotted decimal and binary as follows:



Class Binary Range of First Octet
Decimal Range of First
Octet

A 0000000101111110 1126
B 1000000010111111 128191
C 1100000011011111 192223

7 An IP address mask identifies the network part of an IP address. Each one in the 32-bit
mask marks the corresponding bit in the IP address as a network bit. A zero in the mask
marks the corresponding bit in the IP address as a host bit. A Boolean AND is performed in
all 32 bits of the address and the mask; in the result, all network bits of the mask will be
repeated, and all host bits will be changed to zero.

8 A subnet is a subgrouping of a class A, B, or C IP address. Without subnetting, the network
part of a major class A, B, or C IP address can only identify a single data link. Subnetting
uses some of the host bits of a major IP address as network bits, allowing the single major
address to be "subdivided" into multiple network addresses.

9 A classful routing protocol has no way to differentiate between the all-zeros subnet and the
major IP address, and between the all-ones subnet and the all-hosts, all-subnets broadcast
address of the major IP address.

10 ARP, or Address Resolution Protocol, is a function that maps the IP addresses of interfaces
on a data link to their corresponding MAC identifiers.

11 Proxy ARP is a function of an IP router. If the router hears an ARP request, and

The destination network or subnet is in the router's routing table, and

The table indicates that the destination is reachable via a different router interface
than the one on which the ARP request was received,

The router will respond to the ARP request with its own MAC address.

12 A redirect is an IP router function. If a device has sent a packet to the router and the router
must forward the packet to a next-hop router on the same data link, the router will send a
redirect to the originating device. The redirect will inform the device that it can reach the
next-hop router directly.

13 TCP, or Transmission Control Protocol, provides a connection-oriented service over the
connectionless internet layer. UDP, or User Datagram Service, provides a connectionless
service.

14 Correct sequencing is accomplished with sequence numbers. Reliability is accomplished
by using checksums, acknowledgments, timers, and retransmissions. Flow control is
accomplished by windowing.

15 A MAC identifier is a fixed-length binary integer. If IP used MAC identifiers as the host part
of the IP address, subnetting would not be possible because there would be no flexibility in
using some of the host bits as network bits.

16 The only purpose of the UDP header is to add fields for the source and destination port
numbers.



Chapter 2

1 IPv6 addresses are 128 bits in length.

2 IPv6 addresses are represented as eight 16-bit hexadecimal segments separated by
colons.

3 The two rules for compacting IPv6 addresses are

a. The leading zeroes in any 16-bit segment do not have to be written.

b. Any single, continuous string of one or more 16-bit segments consisting of all zeroes
can be represented with a double colon.

4 Using more than one double colon ambiguates the address; the exact length of each string
of zeroes cannot be determined.

5 Both addresses are all zeros. ::/0 is the default address, whereas ::/128 is the unspecified
address.

6 The part of a unicast IPv6 address that specifies the host is the Interface ID, and it is
usually 64 bits in length.

7 The Subnet ID of the unicast IPv6 address is 16 bits long.

8 An IPv6 address beginning with FF80::/10 is a link-local address.

9 This is a global unicast address, identified by the first three bits of 001.

10 An anycast address is an address that represents a service rather than a device, and can
therefore appear on more than one device.

11 A multicast address is an address that represents a group of devices rather than a single
device.

12 The IPv6 header is 40 bytes in length.

13 The Flow Label field, by labeling individual flows (packets with the same source and
destination address and the same source and destination ports) in the header, is intended
to allow highly granular load balancing without having to pay a performance penalty from
having to look into the packet payload.

14 The IPv6 Next Header field corresponds to the IPv4 Protocol Number field. It is named
differently because the value of the field might specify a following protocol header or it
might specify an IPv6 extension header.

15 The Hop Limit field corresponds to the IPv4 Time to Live (TTL) field. The name is changed
because routers have never decremented the field according to transit time; rather, every
transit router decrements the field by 1, marking a hop instead of a transit time.

16 The IPv6 Next Header field is like the IPv4 Protocol Number field in that it is an 8-bit field
that can, if the next header is an upper-layer protocol header, specify the protocol number.
But it is different from the Protocol Number field in that it can also specify, if the next
header is an IPv6 extension header, that header's type number.

17 Extension headers make the IPv6 header more efficient by being specialized to specific
functions and only being included when the specific function is used.



18 The Next Header value of ICMPv6 (corresponding to a Protocol Number) is 58.

19 Aside from the use of the Fragment extension header, the significant difference of IPv6
fragmentation from IPv4 fragmentation is that IPv6 routers do not fragment packets. It is up
to the originating host to either fragment packets or ensure that no packet it originates is
too large.

20 The five ICMPv6 messages used by NDP are Router Solicitation (RS), Router
Advertisement (RA), Neighbor Solicitation (NS), Neighbor Advertisement (NA), and
Redirect.

21 The M flag, when set, tells hosts to use DHCPv6 to configure its address. The O flag tells
hosts to used DHCPv6 to find other link parameters.

22 The Reachable Timer field specifies the time, in milliseconds, that a node should assume a
neighbor is reachable after the node has confirmed reachability.

23 The Retransmit Timer field specifies the period, in milliseconds, that a node should wait
between successive transmissions of an NS.

24 A Router Lifetime value of 0 in the RA indicates that the originating router should not be
added to a host's default router list.

25 The S flag, when set, indicates that the NA was sent in response to an NS. Two-way
reachability is confirmed, and a neighbor address changed to Reachable state in the
neighbor cache, only if the NA is in response to a solicitation; so the reception of an NA
with the S bit cleared, indicating that it is unsolicited, does not change the state of a
neighbor cache entry.

26 Stateful address autoconfiguration relies on DHCPv6 to allocate an address to the host.
Stateless address autoconfiguration uses RAs to determine a prefix of larger scope than
link-local, plus MAC-to-EUI64 conversion, to determine a host's address.

27 MAC-to-EUI64 conversion inserts a value of 0xFFFE in the middle of a MAC address, then
flips the U/L bit to 1, to create a 64-bit Interface ID from a 48-bit MAC address.

28 Duplicate address detection must never be performed on an anycast address.

29 The prefix FF02:0:0:0:0:1:FF00::/104 is used for solicited node multicast addresses. It is
prepended to the last 24 bits of an address that is being solicited.

30 IPv6 uses the NDP function Neighbor Address Resolution instead of ARP, and a neighbor
cache instead of an ARP cache.

31 A privacy address is one in which the Interface ID is randomly generated, and changed
both at some regular period and whenever a host acquires a new prefix. It is used in
conjunction with an autoconfigured public address to ensure anonymity of the host. The
public address is used for reachability, but the private address is used as the source
address of any packets the host originates.

32 An Incomplete state indicates that Neighbor Address Resolution for the entry is in progress.

33 A Probe state indicates that an NS has been sent to verify two-way reachability of a Stale
entry, but a responding NA has not yet been received.

34 Neighbor Unreachability Detection verifies two-way reachability of a neighbor either by
"hints" from an upper-layer protocol that has received an acknowledgment of a sent
message, or by actively probing the neighbor with an NS.



Chapter 3

1 At a minimum, each entry of the routing table must include a destination address and the
address of a next-hop router or an indication that the destination address is directly
connected.

2 Variably subnetted means that the router knows of more than one subnet mask for
subnets of the same major IP address.

3 Discontiguous subnets are two or more subnets of a major IP network address that are
separated by a different major IP address.

4 show ip route is used to examine the routing table of a Cisco router.

5 The command show ipv6 route displays the IPv6 route table. Prefixes, prefix lengths, and
the next-hop address or outgoing interface are displayed, as are the administrative
distance and route metric.

6 The first bracketed number is the administrative distance of the routing protocol by which
the route was learned. The second number is the metric of the route.

7 When a static route is configured to reference an exit interface instead of a next-hop
address, the destination address will be entered into the routing table as directly
connected.

8 A summary route is a single route entry that points to multiple subnets or major IP
addresses. In the context of static routes, summary routes can reduce the number of static
routes that must be configured.

9 An administrative distance is a rating of preference for a routing protocol or a static route.
Every routing protocol and every static route has an administrative distance associated
with it. When a router learns of a destination via more than one routing protocol or static
route, it will use the route with the lowest administrative distance.

10 A floating static route is an alternative route to a destination. The administrative distance is
set high enough that the floating static route is used only if a more-preferred route
becomes unavailable.

11 Equal-cost load sharing distributes traffic equally among multiple paths with equal metrics.
Unequal-cost load sharing distributes packets among multiple paths with different metrics.
The traffic will be distributed inversely proportional to the cost of the routes.

12 If an inbound interface is configured for CEF, the packet will be switched with CEF, and
CEF load balancing rules will apply: per destination or per packet for IPv4, depending upon
the configuration, and per destination for IPv6. If CEF is not configured on the inbound
interface, the outbound interface determines the switching mode, and thus the method of
load sharing. If an outbound interface is fast switched, per destination load sharing is
performed. If an interface is process switched, per packet load sharing is performed.

13 A recursive routing table lookup occurs when a router cannot acquire all the information it
needs to forward a packet with a single routing table lookup. For example, the router may
perform one lookup to find the route to a destination and then perform another lookup to
find a route to the next-hop router of the first route.



Chapter 4

1 A routing protocol is a "language" that routers speak to each other to share information
about network destinations.

2 At a minimum, a routing protocol should define procedures for

Passing reachability information about networks to other routers.

Receiving reachability information from other routers.

Determining optimal routes based on the reachability information it has and for
recording this information in a route table.

Reacting to, compensating for, and advertising topology changes in a network.

3 A route metric, also called a route cost or a route distance, is used to determine the best
path to a destination. Best is defined by the type of metric used.

4 Convergence time is the time a group of routers takes to complete the exchange of routing
information.

5 Load balancing is the process of sending packets over multiple paths to the same
destination. Four types of load balancing are

Equal cost, per packet.

Equal cost, per destination.

Unequal cost, per packet.

Unequal cost, per destination.

6 A distance vector protocol is a routing protocol in which each router calculates routes
based on the routes of its neighbors and then passes its routes to other neighbors.

7 Several problems associated with distance vector protocols are

A susceptibility to incorrect routing information because of its dependence on
neighbors for correct information.

Slow convergence.

Route loops.

Counting to infinity.

8 Neighbors are routers connected to the same data link.

9 Route invalidation timers delete routes from a route table if they exceed a certain age.

10 Simple split horizon does not send route information back to the source of the route
information. Split horizon with poisoned reverse sends the information back to the source
but sets the metric to unreachable.

11 Counting to infinity occurs when routes update a route over a loop; each router increases
the metric of the route until the metric reaches infinity. The effects of counting to infinity are



the metric of the route until the metric reaches infinity. The effects of counting to infinity are
controlled by defining infinity as a fairly low metric so that infinity is reached fairly quickly
and the route is declared unreachable.

12 Holddown timers help prevent routing loops. If a route is declared unreachable or if the
metric increases beyond a certain threshold, a router will not accept any other information
about that route until the holddown timer expires. This approach prevents the router from
accepting possibly bad routing information while the network is reconverging.

13 A distance vector router sends its entire route table, but it only sends the table to directly
connected neighbors. A link state router sends only information about its directly connected
links, but it floods the information throughout the networking area. Distance vector
protocols usually use a variant of the Bellman-Ford algorithm to calculate routes, and link
state protocols usually use a variant of the Dijkstra algorithm to calculate routes.

14 A topological database holds the link state information originated by all routers in the link
state routing domain.

15 Each router floods a link state information advertisement describing its links, the states of
its links, and any neighboring routers connected to those links, throughout the networking
area. All routers store all received copies of the link state advertisement in a link state
database. Each router calculates a shortest path tree from the information in the
topological database and enters routes in its routing tables based on the shortest path
tree.

16 Sequence numbers help a router differentiate between multiple copies of the same link
state advertisement and also prevent flooded link state advertisements from circulating
endlessly throughout the network.

17 Aging prevents old, possibly obsolete, link state information from residing in a topological
database or from being accepted by a router.

18 A router builds a shortest path tree by first adding itself as the root. Using the information in
the topological database, the router creates a list of all of its directly connected neighbors.
The lowest-cost link to a neighbor becomes a branch of the tree, and that router's
neighbors are added to the list. The list is checked for duplicate paths, and if they exist, the
higher-cost paths are removed from the list. The lowest-cost router on the list is added to
the tree, that router's neighbors are added to the list, and the list is again checked for
duplicate paths. This process continues until no routers remain on the list.

19 Within a routing domain, areas are subdomains. They make link state routing more efficient
by limiting the size of the link state database of each router in the area.

20 Depending on the usage, an autonomous system can be defined as a network under a
common administrative domain or a single routing domain.

21 An Interior Gateway Protocol is a routing protocol that routes within an autonomous
system. An Exterior Gateway Protocol is a routing protocol that routes between
autonomous systems.



Chapter 5

1 RIP uses UDP port 520.

2 RIP uses a hop count metric. An unreachable network is indicated by setting the hop count
to 16, which RIP interprets as an infinite distance.

3 RIP sends periodic updates every 30 seconds minus a small random variable that prevents
the updates of neighboring routers from becoming synchronized.

4 A route entry is marked as unreachable if six updates are missed.

5 The garbage collection timer, or flush timer, is set when a route is declared unreachable.
When the timer expires, the route is flushed from the route table. This process allows an
unreachable route to remain in the routing table long enough for neighbors to be notified of
its status.

6 The random timer, whose range is one to five seconds, prevents a "storm" of triggered
updates during a topology change.

7 A Request message asks a router for an update. A Response message is an update.

8 A Request message might either ask for a full update, or in some special cases, it might
ask for specific routes.

9 A Response is sent when the update timer expires, or upon reception of a Request
message.

10 RIP updates do not include the subnet mask of the destination address, so a RIP router
depends on the subnet masks of its own interfaces to determine how an attached major
network address is subnetted. If a router does not have an attachment to a particular major
network address, it has no way to know how that major network is subnetted. Therefore,
no subnets of a major network address can be advertised into another major network.



Chapter 6

1 The Route Tag field, the Subnet Mask field, and the Next Hop field are RIPv2 extensions
that do not exist in RIPv1 messages. The basic format of the RIP message remains
unchanged between the two versions; Version 2 merely uses fields that are unused in
Version 1.

2 In addition to the functions that use the new fields, RIPv2 supports authentication and
multicast updates.

3 RIPv2 uses the multicast address 224.0.0.9. Multicasting of routing messages is better
than broadcasting because hosts and non-RIPv2 routers will ignore the multicast
messages.

4 When another routing protocol uses the RIPv2 domain as a transit domain, the protocol
external to RIPv2 can use the Route Tag field to communicate information to its peers on
the other side of the RIPv2 domain.

5 The Next Hop field is used to inform other routers of a next-hop address on the same
multiaccess network that is metrically closer to the destination than the originating router.

6 RIPv2 uses the same UDP port number as RIPv1, port number 520.

7 RIPng uses the UDP port number 521.

8 A classless routing protocol does not consider the major network address in its route
lookups, but just looks for the longest match.

9 To support VLSM, a routing protocol must be able to include the subnet mask of each
destination address in its updates.

10 The Cisco implementation of RIPv2 supports clear-text authentication and MD5
authentication. Only clear-text authentication is defined in RFC 2453.



Chapter 7

1 EIGRP is a distance vector protocol.

2 By default, EIGRP uses no more than 50 percent of the link's bandwidth, based on the
bandwidth configured on the router's interface. This percentage can be changed with the
command ip bandwidth-percent eigrp.

3 EIGRP and IGRP use the same formula to calculate their composite metrics, but EIGRP
scales the metric by a factor of 256.

The four basic components of EIGRP are

The Protocol Dependent Modules

The Reliable Transport Protocol

The Neighbor Discovery and Recovery Module

The Diffusing Update Algorithm

4 Reliable delivery means EIGRP packets are guaranteed to be delivered, and they are
delivered in order. RTP uses a reliable multicast, in which received packets are
acknowledged, to guarantee delivery; sequence numbers are used to ensure that they are
delivered in order.

5 Sequence numbers ensure that a router is receiving the most recent route entry.

6 EIGRP uses the multicast address 224.0.0.10.

7 The packet types used by EIGRP are

Hellos

Acknowledgments

Updates

Queries

Replies

SIA-Queries

SIA-Replies

8 The default EIGRP Hello interval is 5 seconds, except on some slow-speed (T1 and below)
interfaces, where the default is 60 seconds.

9 The EIGRP default hold time is three times the Hello interval.

10 The neighbor table stores information about EIGRP-speaking neighbors; the topology table
lists all known routes that have feasible successors.

11 The feasible distance to a destination is a router's lowest calculated distance to the
destination.

12 The feasibility condition is the rule by which feasible successors are chosen for a



destination. The feasibility condition is satisfied if a neighbor's advertised distance to a
destination is lower than the receiving router's feasible distance to the destination. In other
words, a router's neighbor meets the feasibility condition if the neighbor is metrically closer
to the destination than the router. Another way to describe this is that the neighbor is
"downstream" relative to the destination.

13 A feasible successor to a destination is a neighbor that satisfies the feasibility condition for
that destination.

14 A successor to a destination is a feasible successor that is currently being used as the next
hop to the destination.

15 A route is active on a particular router if the router has queried its neighbors for a feasible
successor and has not yet received a reply from every queried neighbor. The route is
passive when there are no outstanding queries.

16 A route becomes active when no feasible successor exists in its topology table.

17 An active route becomes passive when a reply has been received from every queried
neighbor.

18 If a router does not receive a reply from a queried neighbor within the active time (three
minutes, by default), the route is declared stuck-in-active. A response with an infinite metric
is entered on the neighbor's behalf to satisfy DUAL, and the neighbor is deleted from the
neighbor table.

19 Subnetting is the practice of creating a group of subnet addresses from a single IP network
address. Address aggregation is the practice of summarizing a group of network or subnet
addresses with a single IP network address.



Chapter 8

1 From the perspective of an OSPF router, a neighbor is another OSPF router that is
attached to one of the first router's directly connected links.

2 An OSPF adjacency is a conceptual link to a neighbor over which LSAs can be sent.

3 The five OSPF packet types, and their purposes, are

Hellos, which are used to discover neighbors, and to establish and maintain
adjacencies

Updates, which are used to send LSAs between neighbors

Database Description packets, which a router uses to describe its link state database
to a neighbor during database synchronization

Link State Requests, which a router uses to request one or more LSAs from a
neighbor's link-state database

Link State Acknowledgments, used to ensure reliable delivery of LSAs

4 A router originates a link-state advertisement to describe one or more destinations. An
OSPF Update packet transports LSAs from one neighbor to another. Although LSAs are
flooded throughout an area or OSPF domain, Update packets never leave a data link.

5 The most common LSA types and their purposes are

Type 1 (Router LSAs) are originated by every router and describe the originating
router, the router's directly connected links and their states, and the router's
neighbors.

Type 2 (Network LSAs) are originated by Designated Routers on multiaccess links
and describe the link and all attached neighbors.

Type 3 (Network Summary LSAs) are originated by Area Border Routers and describe
inter-area destinations.

Type 4 LSAs (ASBR Summary LSAs) are originated by Area Border Routers to
describe Autonomous System Boundary Routers outside the area.

Type 5 (AS External LSAs) are originated by Autonomous System Boundary Routers
to describe destinations external to the OSPF domain.

Type 7 (NSSA External LSAs) are originated by Autonomous System Boundary
Routers within not-so-stubby areas.

6 The link state database is where a router stores all the OSPF LSAs it knows of, including
its own. Database synchronization is the process of ensuring that all routers within an area
have identical link-state databases.

7 The default OSPF HelloInterval is 10 seconds.

8 The default RouterDeadInterval is four times the HelloInterval.

9 A Router ID is an address by which an OSPF router identifies itself. It is either the
numerically highest IP address of all the router's loopback interfaces, or if no loopback



interfaces are configured, it is the numerically highest IP address of all the router's LAN
interfaces. It can also be manually configured.

10 An area is an OSPF sub-domain, within which all routers have an identical link-state
database.

11 Area 0 is the backbone area. All other areas must send their inter-area traffic through the
backbone.

12 MaxAge, one hour, is the age at which an LSA is considered to be obsolete.

13 The four OSPF router types are

Internal Routers, whose OSPF interfaces all belong to the same area

Backbone Routers, which are Internal Routers in Area 0

Area Border Routers, which have OSPF interfaces in more than one area

Autonomous System Boundary Routers, which advertise external routes into the
OSPF domain

14 The four OSPF path types are

Intra-area paths

Inter-area paths

Type 1 external paths

Type 2 external paths

15 What are the five OSPF network types?

The five OSPF network types are

Point-to-point networks

Broadcast networks

Non-broadcast multiaccess (NBMA) networks

Point-to-multipoint networks

Virtual links

16 A Designated Router is a router that represents a multiaccess network, and the routers
connected to the network, to the rest of the OSPF domain.

17 Cisco IOS calculates the outgoing cost of an interface as 108/BW, where BW is the
configured bandwidth of the interface. 108 can be changed with the OSPF command auto-
cost reference-bandwidth.

18 An area is partitioned if one or more of its routers cannot send a packet to the area's other
routers without sending the packet out of the area.

19 A virtual link is a tunnel that extends an OSPF backbone connection through a non-
backbone area.

20 A stub area is an area into which no type 5 LSAs are flooded. A totally stubby area is an



area into which no type 3, 4, or 5 LSAs are flooded, with the exception of type 3 LSAs to
advertise a default route. Not-so-stubby areas are areas through which external
destinations are advertised into the OSPF domain, but into which no type 5 LSAs are sent
by the ABR.

21 OSPF network entries are entries in the route table, describing IP destinations. OSPF
router entries are entries in a separate route table that record only routes to ABRs and
ASBRs.

22 Type 2 authentication uses MD5 encryption, whereas type 1 authentication uses clear-text
passwords.

23 The three fields in the LSA header that distinguish different LSAs are the Type, Advertising
Router, and the Link State ID fields. The three fields in the LSA header that distinguish
different instances of the same LSA are the Sequence Number, Age, and Checksum fields.



Chapter 9

1 OSPFv3 cannot support IPv4 at the time of this writing. To route both IPv4 and IPv6 with
OSPF, you must run both OSPFv2 and OSPFv3.

2 Multiple instance per link means that there can be separate adjacencies among different
routers all connected to the same broadcast link, so that different OSPFv3 routing domains
can use the same shared link without interfering with or having knowledge of each other.
The Instance ID field in the OSPFv3 header makes this possible.

3 OSPFv3 packets are authenticated using the built-in IPv6 authentication (by means of the
IPv6 Authentication extension header). OSPFv3 does not have its own authentication
mechanism as OSPFv2 does.

4 The OSPFv3 Next Header number is the same as the OSPFv2 Protocol Number, 89.

5 OSPFv3 uses the reserved multicast addresses FF02::5 (AllSPFRouters) and FF02::6
(AllDRouters).

6 No. OSPFv3 uses the same five message types as OSPFv2.

7 The first bit is the U bit, specifying how the receiving router should treat the LSA if its type
is unknown. The second and third bits are the S bits, indicating the flooding scope of the
LSA.

8 OSPFv3 supports a link-local flooding scope that is not supported by OSPFv2. The Link
LSA uses this flooding scope.

9 OSPFv3 Router and Network LSAs do not advertise prefixes, as OSPFv2 Router and
Network LSAs do.

10 The Intra-Area Prefix LSA carries IPv6 prefixes connected to the originating router.

11 The Link LSA carries information that is only significant between two directly connected
neighbors.



Chapter 10

1 An Intermediate System is the ISO term for a router.

2 A Network Protocol Data Unit is the ISO term for a packet.

3 An L1 router has no direct connections to another area. An L2 router has no adjacencies
with L1 routers. An L1/L2 router routes both inter-area and intra-area traffic and acts as an
inter-area gateway for L1 routers.

4 Cisco routers by default are L1/L2.

5 The borders of IS-IS areas are between routers, on links. The borders of OSPF areas are
defined by the routers themselves.

6 Two L1/L2 routers with the same AIDs will form both an L1 and an L2 adjacency. Two
L1/L2 routers with different AIDs will form an L2 adjacency.

7 Two L2-only routers will form an L2 adjacency, whether the AIDs are the same or different.

8 The Network Entity Title is an address by which a router identifies both itself and the area
in which it resides.

9 The NSAP Selector should be set to 0x00 in a NET.

10 The System ID uniquely identifies a router within an IS-IS domain.

11 The portion of the NET preceding the last seven octets is the area address.

12 IS-IS does not elect a BDR.

13 The Pseudonode ID is the last octet of a LAN ID. Its purpose is to distinguish LAN IDs that
are originated by a single router that is the DR on multiple LANs.

14 The MaxAge of an IS-IS LSP is 1200 seconds (20 minutes). The MaxAge (or beginning
Remaining Lifetime) can be configured up to 65,535 seconds.

15 OSPF increments the age up to MaxAge; IS-IS decrements the age down to 0. A new
OSPF LSA has an age of 0, whereas a new IS-IS LSP has an age of MaxAge.

16 The refresh rate of an IS-IS router is 900 seconds (15 minutes).

17 A Complete Sequence Number Packet contains a full listing of all LSPs in a database. A
CSNP is periodically sent by the Designated Router on a broadcast network to maintain
database synchronization.

18 A Partial Sequence Number Packet contains a listing of one or more LSPs. It has two uses:
On point-to-point networks, it is used to acknowledge the receipt of LSPs. On broadcast
networks, it is used to request LSPs.

19 An IS-IS router uses the Overload bit to inform its neighbors that it is experiencing a
memory overload and cannot store the entire link-state database.

20 The Attached bit is used by L1/L2 routers to inform L1 routers that it is attached to the L2
backbone.

21 The Up/down bit is used to distinguish between an address that originated within an area,
or an address that was leaked into an area.

22 The ISO specifies four metrics: Default, Expense, Delay, and Error. Cisco supports only the



Default metric.

23 The two metric styles are narrow and wide. The narrow metric has a maximum value of 63.
The wide metric has a maximum value of 16777214.

24 The maximum metric value of an IS-IS route is 1023 for narrow metrics and 4261412864
for wide metrics.

25 L1 IS-IS metrics apply to intra-area routes, and L2 IS-IS metrics apply to inter-area routes.

26 Internal metrics apply to routes to destinations within the IS-IS domain. External metrics
apply to routes to destinations external to the IS-IS domain.

27 A single adjacency is formed between two routers, even if both IPv4 and IPv6 are
configured in multi-topology mode.

28 L1 areas may be configured on a router. One L2 area is configured.

29 The two active mesh group modes are Blocked and Set (Numbered). Blocked mode offers
the most reduced flooding, but at the possible cost of the most reduced redundancy and
increased convergence time. Set mode, or numbered mesh groups, do not reduce flooding
load as much as Blocked mode, but also have less potential impact on redundancy and
convergence time.



Chapter 11

1 Routes that are learned from another routing protocol, between two processes of the same
routing protocol, from static routes, or from a direct connection to the destination network
can be redistributed into a routing domain. Routes can also be redistributed between IS-IS
levels 1 and 2.

2 In contrast to metrics, which are used to determine the best path among multiple routes to
the same destination discovered by the same routing protocol, administrative distances are
used to determine the best path among multiple routes to the same destination discovered
by different routing protocols.

3 A route to a destination within a routing domain with a higher administrative distance can
be redistributed into a routing domain with a lower administrative distance. If that route is
redistributed back into the higher-distance domain, packets might be misrouted into the
lower-distance domain.

4 Redistributing variably subnetted destination addresses from a classless domain into a
classful domain can cause problems. The classful domain might not be able to recognize
all the subnets attempting to be redistributed from the classless domain.

5 OSPF and IS-IS understand the default metric. RIP, IGRP, and EIGRP do not.

6 The metric command assigns a metric to specific redistribution statements. The default-
metric command assigns a metric to all redistribution commands that do not include the
metric command.

7 Without the subnets keyword, only major network addresses that are not directly
connected to the router will be redistributed.

8 A router that originates a summary route should use the null interface as the next hop of
the summary route. Any packets that match the summary route, but for which there is no
more-specific route to the packet's destination address, will be dropped. This prevents the
router from forwarding "lost" packets.



Chapter 12

1 The IPv4 default route address is 0.0.0.0.

2 The IPv6 default prefix/prefix length is ::/0.

3 EIGRP advertises a default address as an external address type.

4 Yes.

5 A stub router is a router with only a single link to another router. A stub network is a
network with only one attached router.

6 Using a default route rather than a full route table can conserve router memory by keeping
the table small and can save router processing cycles by limiting the routing information
that must be processed.

7 Using a full route table rather than a default route can make routing more accurate.

8 ODR uses Cisco Discovery Protocol (CDP) to discover routes.

9 ODR is available in IOS 11.2 and later.

10 The medium over which ODR is to run must support SNAP.



Chapter 14

1 Route maps are similar to access lists in that they define match criteria and an action to
take in the event of a match. Route maps are different from access lists in that they not
only specify match criteria but also specify set criteria. The set action can modify a route,
or route a packet according to the parameters of the packet.

2 Policy routes are static routes that use route maps to determine which packets should be
routed and where the packets should be routed.

3 Route tags are fields within routing information packets that allow external information to
be carried through the routing domain.

4 Route tags have no effect on the routing protocols that carry them.
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Chapter 1

1 If the first four bits of a class D address are 1110, the lowest first octet is 11100000 and the
highest first octet is 11101111. In decimal these two numbers are 224 and 239,
respectively. Therefore, the first octet of a class D address will range from 224 to 239.

2 (a) Enough subnet bits n are needed so that 2n 2 > = 16,000. There must be enough host
bits h remaining so that 2h 2 > = 700. A subnet mask of 255.255.252.0 provides 16,382
subnets of the class A address, and 1022 host addresses on each subnet. This mask is
the only one that works. If one more bit is used for subnetting (255.255.254.0), there will
not be enough host addresses. If one less bit is used for subnetting (255.255.248.0), there
will not be enough subnets.

(b) Enough subnet bits n are needed so that 2n 2 > = 500. Enough host bits h must remain
so that 2h 2 > = 100. A subnet mask of 255.255.255.128 provides 510 subnets of the class
B address and 126 host addresses on each subnet. Again, this mask is the only one that
works.

3 With six bits of subnetting, a class C address will have 26 2 = 62 subnets and 22 2 = 2
host addresses per subnet. With this subnetting scheme, a single class C address can be
used for 62 point-to-point links. A point-to-point link requires only two host addressesone
for each end of the link.

4 A class C address with a 28-bit mask will have 14 subnets and 14 host addresses on each
subnet. The subnets are derived first.

The subnets are

11111111111111111111111111110000 = 255.255.255.240 (mask)
11000000101010001001001100010000 = 192.168.147.16
11000000101010001001001100100000 = 192.168.147.32
11000000101010001001001100110000 = 192.168.147.48
11000000101010001001001101000000 = 192.168.147.64
11000000101010001001001101010000 = 192.168.147.80
11000000101010001001001101100000 = 192.168.147.96
11000000101010001001001101110000 = 192.168.147.112
11000000101010001001001110000000 = 192.168.147.128
11000000101010001001001110010000 = 192.168.147.144
11000000101010001001001110100000 = 192.168.147.160
11000000101010001001001110110000 = 192.168.147.176
11000000101010001001001111000000 = 192.168.147.192
11000000101010001001001111010000 = 192.168.147.208
11000000101010001001001111100000 = 192.168.147.224

Next, the host addresses for each subnet are derived. The broadcast addresses for each
subnet are also shown.

The host addresses for each subnet are

11000000101010001001001100010000 = 192.168.147.16 (subnet)
11000000101010001001001100010001 = 192.168.147.17
11000000101010001001001100010010 = 192.168.147.18



11000000101010001001001100010011 = 192.168.147.19
11000000101010001001001100010100 = 192.168.147.20
11000000101010001001001100010101 = 192.168.147.21
11000000101010001001001100010110 = 192.168.147.22
11000000101010001001001100010111 = 192.168.147.23
11000000101010001001001100011000 = 192.168.147.24
11000000101010001001001100011001 = 192.168.147.25
11000000101010001001001100011010 = 192.168.147.26
11000000101010001001001100011011 = 192.168.147.27
11000000101010001001001100011100 = 192.168.147.28
11000000101010001001001100011101 = 192.168.147.29
11000000101010001001001100011110 = 192.168.147.30
11000000101010001001001100011111 = 192.168.147.31 (broadcast)
11000000101010001001001100100000 = 192.168.147.32 (subnet)
11000000101010001001001100100001 = 192.168.147.33
11000000101010001001001100100010 = 192.168.147.34
11000000101010001001001100100011 = 192.168.147.35
11000000101010001001001100100100 = 192.168.147.36
11000000101010001001001100100101 = 192.168.147.37
11000000101010001001001100100110 = 192.168.147.38
11000000101010001001001100100111 = 192.168.147.39
11000000101010001001001100101000 = 192.168.147.40
11000000101010001001001100101001 = 192.168.147.41
11000000101010001001001100101010 = 192.168.147.42
11000000101010001001001100101011 = 192.168.147.43
11000000101010001001001100101100 = 192.168.147.44
11000000101010001001001100101101 = 192.168.147.45
11000000101010001001001100101110 = 192.168.147.46
11000000101010001001001100101111 = 192.168.147.47 (broadcast)
11000000101010001001001100110000 = 192.168.147.48 (subnet)
11000000101010001001001100110001 = 192.168.147.49
11000000101010001001001100110010 = 192.168.147.50
11000000101010001001001100110011 = 192.168.147.51
11000000101010001001001100110100 = 192.168.147.52
11000000101010001001001100110101 = 192.168.147.53
11000000101010001001001100110110 = 192.168.147.54
11000000101010001001001100110111 = 192.168.147.55
11000000101010001001001100111000 = 192.168.147.56
11000000101010001001001100111001 = 192.168.147.57
11000000101010001001001100111010 = 192.168.147.58
11000000101010001001001100111011 = 192.168.147.59
11000000101010001001001100111100 = 192.168.147.60
11000000101010001001001100111101 = 192.168.147.61
11000000101010001001001100111110 = 192.168.147.62
11000000101010001001001100111111 = 192.168.147.63 (broadcast)
11000000101010001001001101000000 = 192.168.147.64 (subnet)
11000000101010001001001101000001 = 192.168.147.65
11000000101010001001001101000010 = 192.168.147.66
11000000101010001001001101000011 = 192.168.147.67
11000000101010001001001101000100 = 192.168.147.68
11000000101010001001001101000101 = 192.168.147.69
11000000101010001001001101000110 = 192.168.147.70
11000000101010001001001101000111 = 192.168.147.71
11000000101010001001001101001000 = 192.168.147.72
11000000101010001001001101001001 = 192.168.147.73
11000000101010001001001101001010 = 192.168.147.74
11000000101010001001001101001011 = 192.168.147.75



11000000101010001001001101001100 = 192.168.147.76
11000000101010001001001101001101 = 192.168.147.77
11000000101010001001001101001110 = 192.168.147.78
11000000101010001001001101001111 = 192.168.147.79 (broadcast)
11000000101010001001001101010000 = 192.168.147.80 (subnet)
11000000101010001001001101010001 = 192.168.147.81
11000000101010001001001101010010 = 192.168.147.82
11000000101010001001001101010011 = 192.168.147.83
11000000101010001001001101010100 = 192.168.147.84
11000000101010001001001101010101 = 192.168.147.85
11000000101010001001001101010110 = 192.168.147.86
11000000101010001001001101010111 = 192.168.147.87
11000000101010001001001101011000 = 192.168.147.88
11000000101010001001001101011001 = 192.168.147.89
11000000101010001001001101011010 = 192.168.147.90
11000000101010001001001101011011 = 192.168.147.91
11000000101010001001001101011100 = 192.168.147.92
11000000101010001001001101011101 = 192.168.147.93
11000000101010001001001101011110 = 192.168.147.94
11000000101010001001001101011111 = 192.168.147.95 (broadcast)
11000000101010001001001101100000 = 192.168.147.96 (subnet)
11000000101010001001001101100001 = 192.168.147.97
11000000101010001001001101100010 = 192.168.147.98
11000000101010001001001101100011 = 192.168.147.99
11000000101010001001001101100100 = 192.168.147.100
11000000101010001001001101100101 = 192.168.147.101
11000000101010001001001101100110 = 192.168.147.102
11000000101010001001001101100111 = 192.168.147.103
11000000101010001001001101101000 = 192.168.147.104
11000000101010001001001101101001 = 192.168.147.105
11000000101010001001001101101010 = 192.168.147.106
11000000101010001001001101101011 = 192.168.147.107
11000000101010001001001101101100 = 192.168.147.108
11000000101010001001001101101101 = 192.168.147.109
11000000101010001001001101101110 = 192.168.147.110
11000000101010001001001101101111 = 192.168.147.111 (broadcast)
11000000101010001001001101110000 = 192.168.147.112 (subnet)
11000000101010001001001101110001 = 192.168.147.113
11000000101010001001001101110010 = 192.168.147.114
11000000101010001001001101110011 = 192.168.147.115
11000000101010001001001101110100 = 192.168.147.116
11000000101010001001001101110101 = 192.168.147.117
11000000101010001001001101110110 = 192.168.147.118
11000000101010001001001101110111 = 192.168.147.119
11000000101010001001001101111000 = 192.168.147.120
11000000101010001001001101111001 = 192.168.147.121
11000000101010001001001101111010 = 192.168.147.122
11000000101010001001001101111011 = 192.168.147.123
11000000101010001001001101111100 = 192.168.147.124
11000000101010001001001101111101 = 192.168.147.125
11000000101010001001001101111110 = 192.168.147.126
11000000101010001001001101111111 = 192.168.147.127 (broadcast)
11000000101010001001001110000000 = 192.168.147.128 (subnet)
11000000101010001001001110000001 = 192.168.147.129
11000000101010001001001110000010 = 192.168.147.130
11000000101010001001001110000011 = 192.168.147.131
11000000101010001001001110000100 = 192.168.147.132



11000000101010001001001110000101 = 192.168.147.133
11000000101010001001001110000110 = 192.168.147.134
11000000101010001001001110000111 = 192.168.147.135
11000000101010001001001110001000 = 192.168.147.136
11000000101010001001001110001001 = 192.168.147.137
11000000101010001001001110001010 = 192.168.147.138
11000000101010001001001110001011 = 192.168.147.139
11000000101010001001001110001100 = 192.168.147.140
11000000101010001001001110001101 = 192.168.147.141
11000000101010001001001110001110 = 192.168.147.142
11000000101010001001001110001111 = 192.168.147.143 (broadcast)
11000000101010001001001110010000 = 192.168.147.144 (subnet)
11000000101010001001001110010001 = 192.168.147.145
11000000101010001001001110010010 = 192.168.147.146
11000000101010001001001110010011 = 192.168.147.147
11000000101010001001001110010100 = 192.168.147.148
11000000101010001001001110010101 = 192.168.147.149
11000000101010001001001110010110 = 192.168.147.150
11000000101010001001001110010111 = 192.168.147.151
11000000101010001001001110011000 = 192.168.147.152
11000000101010001001001110011001 = 192.168.147.153
11000000101010001001001110011010 = 192.168.147.154
11000000101010001001001110011011 = 192.168.147.155
11000000101010001001001110011100 = 192.168.147.156
11000000101010001001001110011101 = 192.168.147.157
11000000101010001001001110011110 = 192.168.147.158
11000000101010001001001110011111 = 192.168.147.159 (broadcast)
11000000101010001001001110100000 = 192.168.147.160 (subnet)
11000000101010001001001110100001 = 192.168.147.161
11000000101010001001001110100010 = 192.168.147.162
11000000101010001001001110100011 = 192.168.147.163
11000000101010001001001110100100 = 192.168.147.164
11000000101010001001001110100101 = 192.168.147.165
11000000101010001001001110100110 = 192.168.147.166
11000000101010001001001110100111 = 192.168.147.167
11000000101010001001001110101000 = 192.168.147.168
11000000101010001001001110101001 = 192.168.147.169
11000000101010001001001110101010 = 192.168.147.170
11000000101010001001001110101011 = 192.168.147.171
11000000101010001001001110101100 = 192.168.147.172
11000000101010001001001110101101 = 192.168.147.173
11000000101010001001001110101110 = 192.168.147.174
11000000101010001001001110101111 = 192.168.147.175 (broadcast)
11000000101010001001001110110000 = 192.168.147.176 (subnet)
11000000101010001001001110110001 = 192.168.147.177
11000000101010001001001110110010 = 192.168.147.178
11000000101010001001001110110011 = 192.168.147.179
11000000101010001001001110110100 = 192.168.147.180
11000000101010001001001110110101 = 192.168.147.181
11000000101010001001001110110110 = 192.168.147.182
11000000101010001001001110110111 = 192.168.147.183
11000000101010001001001110111000 = 192.168.147.184
11000000101010001001001110111001 = 192.168.147.185
11000000101010001001001110111010 = 192.168.147.186
11000000101010001001001110111011 = 192.168.147.187
11000000101010001001001110111100 = 192.168.147.188
11000000101010001001001110111101 = 192.168.147.189



11000000101010001001001110111110 = 192.168.147.190
11000000101010001001001110111111 = 192.168.147.191 (broadcast)
11000000101010001001001111000000 = 192.168.147.192 (subnet)
11000000101010001001001111000001 = 192.168.147.193
11000000101010001001001111000010 = 192.168.147.194
11000000101010001001001111000011 = 192.168.147.195
11000000101010001001001111000100 = 192.168.147.196
11000000101010001001001111000101 = 192.168.147.197
11000000101010001001001111000110 = 192.168.147.198
11000000101010001001001111000111 = 192.168.147.199
11000000101010001001001111001000 = 192.168.147.200
11000000101010001001001111001001 = 192.168.147.201
11000000101010001001001111001010 = 192.168.147.202
11000000101010001001001111001011 = 192.168.147.203
11000000101010001001001111001100 = 192.168.147.204
11000000101010001001001111001101 = 192.168.147.205
11000000101010001001001111001110 = 192.168.147.206
11000000101010001001001111001111 = 192.168.147.207 (broadcast)
11000000101010001001001111010000 = 192.168.147.208 (subnet)
11000000101010001001001111010001 = 192.168.147.209
11000000101010001001001111010010 = 192.168.147.210
11000000101010001001001111010011 = 192.168.147.211
11000000101010001001001111010100 = 192.168.147.212
11000000101010001001001111010101 = 192.168.147.213
11000000101010001001001111010110 = 192.168.147.214
11000000101010001001001111010111 = 192.168.147.215
11000000101010001001001111011000 = 192.168.147.216
11000000101010001001001111011001 = 192.168.147.217
11000000101010001001001111011010 = 192.168.147.218
11000000101010001001001111011011 = 192.168.147.219
11000000101010001001001111011100 = 192.168.147.220
11000000101010001001001111011101 = 192.168.147.221
11000000101010001001001111011110 = 192.168.147.222
11000000101010001001001111011111 = 192.168.147.223 (broadcast)
11000000101010001001001111100000 = 192.168.147.224 (subnet)
11000000101010001001001111100001 = 192.168.147.225
11000000101010001001001111100010 = 192.168.147.226
11000000101010001001001111100011 = 192.168.147.227
11000000101010001001001111100100 = 192.168.147.228
11000000101010001001001111100101 = 192.168.147.229
11000000101010001001001111100110 = 192.168.147.230
11000000101010001001001111100111 = 192.168.147.231
11000000101010001001001111101000 = 192.168.147.232
11000000101010001001001111101001 = 192.168.147.233
11000000101010001001001111101010 = 192.168.147.234
11000000101010001001001111101011 = 192.168.147.235
11000000101010001001001111101100 = 192.168.147.236
11000000101010001001001111101101 = 192.168.147.237
11000000101010001001001111101110 = 192.168.147.238
11000000101010001001001111101111 = 192.168.147.239 (broadcast)

5 This solution shows a shorter technique than the last solution in which every host address
of every subnet was written out.

A class C address with a 29-bit mask means that there will be 30 subnets and 6 host
addresses on each subnet.

The subnets are



11111111111111111111111111111000 = 255.255.255.248 (mask)
11000000101010001001001100001000 = 192.168.147.8
11000000101010001001001100010000 = 192.168.147.16
11000000101010001001001100011000 = 192.168.147.24
11000000101010001001001100100000 = 192.168.147.32
11000000101010001001001100101000 = 192.168.147.40
11000000101010001001001100110000 = 192.168.147.48
11000000101010001001001100111000 = 192.168.147.56
11000000101010001001001101000000 = 192.168.147.64
11000000101010001001001101001000 = 192.168.147.72
11000000101010001001001101010000 = 192.168.147.80
11000000101010001001001101011000 = 192.168.147.88
11000000101010001001001101100000 = 192.168.147.96
11000000101010001001001101101000 = 192.168.147.104
11000000101010001001001101100000 = 192.168.147.112
11000000101010001001001101111000 = 192.168.147.120
11000000101010001001001110000000 = 192.168.147.128
11000000101010001001001110001000 = 192.168.147.136
11000000101010001001001110010000 = 192.168.147.144
11000000101010001001001110011000 = 192.168.147.152
11000000101010001001001110100000 = 192.168.147.160
11000000101010001001001110101000 = 192.168.147.168
11000000101010001001001110110000 = 192.168.147.176
11000000101010001001001110111000 = 192.168.147.184
11000000101010001001001111000000 = 192.168.147.192
11000000101010001001001111001000 = 192.168.147.200
11000000101010001001001111010000 = 192.168.147.208
11000000101010001001001111011000 = 192.168.147.216
11000000101010001001001111100000 = 192.168.147.224
11000000101010001001001111101000 = 192.168.147.232
11000000101010001001001111110000 = 192.168.147.240

Next, the broadcast addresses of each subnet are derived by setting the host bits of each
subnet to all ones.

The subnet broadcast addresses are

11000000101010001001001100001111 = 192.168.147.15
11000000101010001001001100010111 = 192.168.147.23
11000000101010001001001100011111 = 192.168.147.31
11000000101010001001001100100111 = 192.168.147.39
11000000101010001001001100101111 = 192.168.147.47
11000000101010001001001100110111 = 192.168.147.55
11000000101010001001001100111111 = 192.168.147.63
11000000101010001001001101000111 = 192.168.147.71
11000000101010001001001101001111 = 192.168.147.79
11000000101010001001001101010111 = 192.168.147.87
11000000101010001001001101011111 = 192.168.147.95
11000000101010001001001101100111 = 192.168.147.103
11000000101010001001001101101111 = 192.168.147.111
11000000101010001001001101100111 = 192.168.147.119
11000000101010001001001101111111 = 192.168.147.127
11000000101010001001001110000111 = 192.168.147.135
11000000101010001001001110001111 = 192.168.147.143
11000000101010001001001110010111 = 192.168.147.151



11000000101010001001001110011111 = 192.168.147.159
11000000101010001001001110100111 = 192.168.147.167
11000000101010001001001110101111 = 192.168.147.175
11000000101010001001001110110111 = 192.168.147.183
11000000101010001001001110111111 = 192.168.147.191
11000000101010001001001111000111 = 192.168.147.199
11000000101010001001001111001111 = 192.168.147.207
11000000101010001001001111010111 = 192.168.147.215
11000000101010001001001111011111 = 192.168.147.223
11000000101010001001001111100111 = 192.168.147.231
11000000101010001001001111101111 = 192.168.147.239
11000000101010001001001111110111 = 192.168.147.247

Finally, the host addresses for each subnet are derived. They will be all addresses
between the subnet addresses and the subnet broadcast addresses.

Subnet Broadcast Host Addresses
192.168.147.8 192.168.147.15 192.168.147.9192.168.147.14
192.168.147.16 192.168.147.23 192.168.147.17192.168.147.22
192.168.147.24 192.168.147.31 192.168.147.25192.168.147.30
192.168.147.32 192.168.147.39 192.168.147.33192.168.147.38
192.168.147.40 192.168.147.47 192.168.147.41192.168.147.46
192.168.147.48 192.168.147.55 192.168.147.49192.168.147.54
192.168.147.56 192.168.147.63 192.168.147.57192.168.147.62
192.168.147.64 192.168.147.71 192.168.147.65192.168.147.70
192.168.147.72 192.168.147.79 192.168.147.73192.168.147.78
192.168.147.80 192.168.147.87 192.168.147.81192.168.147.86
192.168.147.88 192.168.147.95 192.168.147.89192.168.147.94
192.168.147.96 192.168.147.103 192.168.147.97192.168.147.102
192.168.147.104 192.168.147.111 192.168.147.105192.168.147.110
192.168.147.112 192.168.147.119 192.168.147.113192.168.147.118
192.168.147.120 192.168.147.127 192.168.147.121192.168.147.126
192.168.147.128 192.168.147.135 192.168.147.129192.168.147.134
192.168.147.136 192.168.147.143 192.168.147.137192.168.147.142
192.168.147.144 192.168.147.151 192.168.147.145192.168.147.150
192.168.147.152 192.168.147.159 192.168.147.153192.168.147.158
192.168.147.160 192.168.147.167 192.168.147.161192.168.147.166
192.168.147.168 192.168.147.175 192.168.147.169192.168.147.174

6 A class B address with a 20-bit mask will have 14 subnets and 4,094 host addresses on
each subnet.

The subnets are

11111111111111111111000000000000 = 255.255.240.0 (mask)
10101100000100000001000000000000 = 172.16.16.0



10101100000100000010000000000000 = 172.16.32.0
10101100000100000011000000000000 = 172.16.48.0
10101100000100000100000000000000 = 172.16.64.0
10101100000100000101000000000000 = 172.16.80.0
10101100000100000110000000000000 = 172.16.96.0
10101100000100000111000000000000 = 172.16.112.0
10101100000100001000000000000000 = 172.16.128.0
10101100000100001001000000000000 = 172.16.144.0
10101100000100001010000000000000 = 172.16.160.0
10101100000100001011000000000000 = 172.16.176.0
10101100000100001100000000000000 = 172.16.192.0
10101100000100001101000000000000 = 172.16.208.0
10101100000100001110000000000000 = 172.16.224.0

The subnet broadcast addresses are

10101100000100000001111111111111 = 172.16.31.255
10101100000100000010111111111111 = 172.16.47.255
10101100000100000011111111111111 = 172.16.63.255
10101100000100000100111111111111 = 172.16.79.255
10101100000100000101111111111111 = 172.16.95.255
10101100000100000110111111111111 = 172.16.111.255
10101100000100000111111111111111 = 172.16.127.255
10101100000100001000111111111111 = 172.16.143.255
10101100000100001001111111111111 = 172.16.159.255
10101100000100001010111111111111 = 172.16.175.255
10101100000100001011111111111111 = 172.16.191.255
10101100000100001100111111111111 = 172.16.207.255
10101100000100001101111111111111 = 172.16.223.255
10101100000100001110111111111111 = 172.16.239.255

Using the derived subnet and broadcast addresses, the host addresses are as follows.

Subnet Broadcast Host Addresses
172.16.16.0 172.16.31.255 172.16.16.1172.16.31.254
172.16.32.0 172.16.47.255 172.16.32.1172.16.47.254
172.16.48.0 172.16.63.255 172.16.48.1172.16.63.254
172.16.64.0 172.16.79.255 172.16.64.1172.16.79.254
172.16.80.0 172.16.95.255 172.16.80.1172.16.95.254
172.16.96.0 172.16.111.255 172.16.96.1172.16.111.254
172.16.112.0 172.16.127.255 172.16.112.1172.16.127.254
172.16.128.0 172.16.143.255 172.16.128.1172.16.143.254
172.16.144.0 172.16.159.255 172.16.144.1172.16.159.254
172.16.160.0 172.16.175.255 172.16.160.1172.16.175.254
172.16.176.0 172.16.191.255 172.16.176.1172.16.191.254
172.16.192.0 172.16.207.255 172.16.192.1172.16.207.254
172.16.208.0 172.16.223.255 172.16.208.1172.16.223.254
172.16.224.0 172.16.239.255 172.224.16.1172.16.239.254





Chapter 3

1 First determine the subnet addresses of each link and then write the static routes.
Remember that the routers will already have entries in their route tables for any directly
connected subnet. The static routes are as follows:

RTA:

ip route 192.168.2.64 255.255.255.224 192.168.2.131
ip route 192.168.2.160 255.255.255.224 192.168.2.131
ip route 192.168.1.128 255.255.255.240 192.168.2.131
ip route 192.168.1.16 255.255.255.240 192.168.2.131
ip route 192.168.2.32 255.255.255.224 192.168.2.131
ip route 192.168.1.160 255.255.255.240 192.168.2.131
ip route 10.1.1.0 255.255.255.0 192.168.2.131
ip route 10.1.3.0 255.255.255.0 192.168.2.131
ip route 10.1.2.0 255.255.255.0 192.168.2.131

RTB:

ip route 10.1.4.0 255.255.255.0 192.168.2.132
ip route 192.168.1.128 255.255.255.240 192.168.2.174
ip route 192.168.1.16 255.255.255.240 192.168.2.174
ip route 192.168.2.32 255.255.255.224 192.168.2.174
ip route 192.168.1.160 255.255.255.240 192.168.2.174
ip route 10.1.1.0 255.255.255.0 192.168.2.174
ip route 10.1.3.0 255.255.255.0 192.168.2.174
ip route 10.1.2.0 255.255.255.0 192.168.2.174

RTC:

ip route 10.1.4.0 255.255.255.0 192.168.2.185
ip route 192.168.2.128 255.255.255.224 192.168.2.185
ip route 192.168.2.64 255.255.255.224 192.168.2.185
ip route 192.168.2.32 255.255.255.224 192.168.1.20
ip route 10.1.1.0 255.255.255.0 192.168.1.173
ip route 10.1.3.0 255.255.255.0 192.168.1.173
ip route 10.1.2.0 255.255.255.0 192.168.1.173

RTD:

ip route 10.1.4.0 255.255.255.0 192.168.1.29
ip route 192.168.2.128 255.255.255.224 192.168.1.29
ip route 192.168.2.64 255.255.255.224 192.168.1.29
ip route 192.168.2.160 255.255.255.224 192.168.1.29
ip route 192.168.1.128 255.255.255.240 192.168.1.29
ip route 192.168.1.160 255.255.255.240 192.168.1.29
ip route 10.1.1.0 255.255.255.0 192.168.1.29
ip route 10.1.3.0 255.255.255.0 192.168.1.29
ip route 10.1.2.0 255.255.255.0 192.168.1.29



RTE:

ip route 10.1.4.0 255.255.255.0 192.168.1.163
ip route 192.168.2.128 255.255.255.224 192.168.1.163
ip route 192.168.2.64 255.255.255.224 192.168.1.163
ip route 192.168.2.160 255.255.255.224 192.168.1.163
ip route 192.168.1.128 255.255.255.240 192.168.1.163
ip route 192.168.1.16 255.255.255.240 192.168.1.163
ip route 192.168.2.32 255.255.255.224 192.168.1.163
ip route 10.1.2.0 255.255.255.0 10.1.3.2

RTF:

ip route 10.1.4.0 255.255.255.0 10.1.3.1
ip route 192.168.2.128 255.255.255.224 10.1.3.1
ip route 192.168.2.64 255.255.255.224 10.1.3.1
ip route 192.168.2.160 255.255.255.224 10.1.3.1
ip route 192.168.1.128 255.255.255.240 10.1.3.1
ip route 192.168.1.16 255.255.255.240 10.1.3.1
ip route 192.168.2.32 255.255.255.224 10.1.3.1
ip route 192.168.1.160 255.255.255.240 10.1.3.1
ip route 10.1.1.0 255.255.255.0 10.1.3.1

2 The static routes are as follows:

RTA:

ip route 192.168.0.0 255.255.0.0 192.168.2.131
ip route 10.1.0.0 255.255.0.0 192.168.2.131

RTB:

ip route 10.1.4.0 255.255.255.0 192.168.2.132
ip route 192.168.0.0 255.255.0.0 192.168.2.174
ip route 10.1.0.0 255.255.0.0 192.168.2.174

RTC:

ip route 10.1.4.0 255.255.255.0 192.168.2.185
ip route 192.168.2.32 255.255.255.224 192.168.1.20
ip route 10.1.0.0 255.255.0.0 192.168.1.173
ip route 192.168.2.64 255.255.255.224 192.168.2.185
ip route 192.168.2.128 255.255.255.224 192.168.2.185

RTD:

ip route 10.1.0.0 255.255.0.0 192.168.1.29
ip route 192.168.0.0 255.255.05.0 192.168.1.29



RTE

ip route 10.1.4.0 255.255.255.0 192.168.1.163
ip route 192.168.0.0 255.255.0.0 192.168.1.163
ip route 10.1.2.0 255.255.255.0 10.1.3.2

RTF:

ip route 10.1.0.0 255.255.0.0 10.1.3.1
ip route 192.168.0.0 255.255.0.0 10.1.3.1

3 The static routes are as follows:

RTA:

ip route 172.16.7.0 255.255.255.0 172.16.2.2
ip route 172.16.7.0 255.255.255.0 172.16.4.2 50
ip route 172.16.6.0 255.255.255.0 172.16.2.2
ip route 172.16.6.0 255.255.255.0 172.16.4.2 50
ip route 172.16.8.0 255.255.255.0 172.16.4.2
ip route 172.16.8.0 255.255.255.0 172.16.2.2 50
ip route 172.16.5.0 255.255.255.0 172.16.4.2
ip route 172.16.5.0 255.255.255.0 172.16.2.2 50
ip route 172.16.9.0 255.255.255.0 172.16.2.2
ip route 172.16.9.0 255.255.255.0 172.16.4.2

RTB:

ip route 172.16.1.0 255.255.255.0 172.16.2.1
ip route 172.16.1.0 255.255.255.0 172.16.6.1 50
ip route 172.16.4.0 255.255.255.0 172.16.2.1
ip route 172.16.4.0 255.255.255.0 172.16.6.1 50
ip route 172.16.9.0 255.255.255.0 172.16.6.1
ip route 172.16.9.0 255.255.255.0 172.16.2.1 50
ip route 172.16.5.0 255.255.255.0 172.16.6.1
ip route 172.16.5.0 255.255.255.0 172.16.2.1 50
ip route 172.16.8.0 255.255.255.0 172.16.6.1
ip route 172.16.8.0 255.255.255.0 172.16.2.1

RTC:

ip route 172.16.1.0 255.255.255.0 172.16.6.2
ip route 172.16.1.0 255.255.255.0 172.16.5.1
ip route 172.16.4.0 255.255.255.0 172.16.5.1
ip route 172.16.4.0 255.255.255.0 172.16.6.2 50
ip route 172.16.2.0 255.255.255.0 172.16.6.2
ip route 172.16.2.0 255.255.255.0 172.16.5.1 50
ip route 172.16.7.0 255.255.255.0 172.16.6.2
ip route 172.16.7.0 255.255.255.0 172.16.5.1 50
ip route 172.16.8.0 255.255.255.0 172.16.5.1
ip route 172.16.8.0 255.255.255.0 172.16.6.2 50



RTD:

ip route 172.16.1.0 255.255.255.0 172.16.4.1
ip route 172.16.1.0 255.255.255.0 172.16.5.2 50
ip route 172.16.2.0 255.255.255.0 172.16.4.1
ip route 172.16.2.0 255.255.255.0 172.16.5.2 50
ip route 172.16.9.0 255.255.255.0 172.16.5.2
ip route 172.16.9.0 255.255.255.0 172.16.4.1 50
ip route 172.16.6.0 255.255.255.0 172.16.5.2
ip route 172.16.6.0 255.255.255.0 172.16.4.1 50
ip route 172.16.7.0 255.255.255.0 172.16.5.2
ip route 172.16.7.0 255.255.255.0 172.16.4.1



Chapter 5

1 In addition to the RIP configurations shown here, a subnet of 192.168.5.0 must be
configured between RTE and RTF, using secondary addresses. Otherwise, subnets
192.168.5.192/27 and 192.168.5.96/27 are discontiguous. The RIP configurations are

RTA:

router rip
  network 192.168.2.0

RTB:

router rip
  network 192.168.2.0

RTC:

router rip
  network 192.168.2.0
  network 192.168.3.0

RTD:

interface ethernet 0
  ip address 192.168.4.3 255.255.255.0
  ip address 192.168.5.3 255.255.255.224 secondary
router rip
  network 192.168.3.0
  network 192.168.4.0

RTE:

interface ethernet 0
  ip address 192.168.4.1 255.255.255.0
  ip address 192.168.5.1 255.255.255.224 secondary
router rip
  network 192.168.4.0
  network 192.168.5.0

RTF:

interface ethernet 0
  ip address 192.168.4.2 255.255.255.0
  ip address 192.168.5.2 255.255.255.224 secondary
router rip
  network 192.168.4.0
  network 192.168.6.0



2 To unicast RIP updates between RTC and RTD, the configurations are

RTC:

router rip
  network 192.168.2.0
  neighbor 192.168.3.2

RTD:

router rip
  network 192.168.3.0
  neighbor 192.168.3.1

3 The update time applies to the entire RIP process. If the update time is changed for the
serial link, it will also be changed for the router's other links. That, in turn, means that the
timers must be changed on the neighboring routers, which means those neighbors'
neighbors must be changed, and so on. The cascade effect of changing the update timer
on a single router means that the timers must be changed on every router in the RIP
domain. The command to increase the RIP update period to two minutes, configured on
every router, is

timers basic 120 360 360 480

Because the update timer is changed, the invalid, holddown, and flush timers must also be
changed. Setting the invalid and holddown timers to six times the update period, as the
default timers are, would make the conversion time of the network extremely high.
Therefore, the invalid and holddown timers are set to three times the update period. The
flush timer must be longer than the holddown timer, so it is set to 60 seconds longer.

4 Network 192.168.4.0 is two hops from RTA, so adding 14 to the metric will give the route
an unreachable metric of 16. Remember that in Configuration Exercise 1 a subnet of
192.168.5.0 had to be configured on the same link as 192.168.4.0 using secondary
addresses, so that the subnets of 192.168.5.0 are contiguous. Therefore, 192.168.5.0 is
also two hops from RTB. Assuming the interfaces of RTA and RTB connected to RTC are
E0 on both routers, the configurations are

RTA:

router rip
offset-list 1 in 14 Ethernet0
network 192.168.2.0
!
access-list 1 permit 192.168.4.0 0.0.0.0

RTB:

router rip
offset-list 1 in 14 Ethernet0
network 192.168.2.0
!



access-list 1 permit 192.168.5.0 0.0.0.0

5 RTB, with its longer mask, can interpret all subnets correctly. The problem is at RTA. With
a 27-bit mask, RTA interprets RTB's subnets 192.168.20.40/29 and 192.168.20.49/29 as
192.168.20.32/27the same subnet as its directly connected link. Therefore, RTA does not
have a correct "view" of the network.

However, packets can still be routed if Proxy ARP is enabled. For example, suppose RTA
has a packet to forward with a destination address of 192.168.20.50. RTA incorrectly
interprets this address as a member of its subnet 192.168.20.32/27, and ARPs for the MAC
identifier of 192.168.20.50 on that subnet. RTB hears the ARP; it correctly interprets
192.168.20.50 as being a member of its subnet 192.168.20.48/29 and responds with the
MAC identifier of its interface on 192.168.20.32/29. RTA then forwards the packet to RTB,
and RTB forwards the packet to the correct destination. If Proxy ARP is disabled, packets
will not be delivered correctly from RTA to RTB.



Chapter 6

1 The statement neighbor 172.25.150.206 can be added to Taos's RIP configuration,
causing Taos to unicast RIP updates to that address. This approach works only if
Pojoaque's RIPv1 process complies with the rule that the unused fields of RIP messages
with version numbers higher than 1 will be ignored and the rest of the packet processed.

2 Begin by calculating the subnets with the highest number of hosts. From the unused
subnet bits, calculate the subnet(s) with the next-highest number of hosts, and so on.
Remember that as a group of bits are used for a subnet, no subsequent subnet can begin
with that same bit combination. For example, if the first subnet begins with 00, all
subsequent subnets must begin with 01, 10, or 11. If the second subnet begins with 010,
no subsequent subnet can begin with 010.

One solution (with the subnet bits shaded) is

00000000 192.168.100.0/26 (62 hosts)
01000000 192.168.100.64/27 (30 hosts)
01100000 192.168.100.96/28 (14 hosts)
01110000 192.168.100.112/28 (14

hosts)
10000000 192.168.100.128/28 (14

hosts)
10010000 192.168.100.144/28 (14

hosts)
10100000 192.168.100.160/28 (14

hosts)
10110000 192.168.100.176/29 (8 hosts)
10111000 192.168.100.184/29 (8 hosts)
11000000 192.168.100.192/29 (8 hosts)
11001000 192.168.100.200/29 (8 hosts)
11010000 192.168.100.208/29 (8 hosts)
11011000 192.168.100.216/30 (2 hosts)
11011100 192.168.100.220/30 (2 hosts)
11100000 192.168.100.224/30 (2 hosts)
11100100 192.168.100.228/30 (2 hosts)
11101000 192.168.100.232/30 (2 hosts)
11101100 192.168.100.236/30 (2 hosts)
11110000 192.168.100.240/30 (2 hosts)
11110100 192.168.100.244/30 (2 hosts)
11111000 192.168.100.248/30 (2 hosts)
11111100 192.168.100.252/30 (2 hosts)

3 RTA, RTB, and RTD have the statement version 2 in their RIP configurations. Additionally,



the RIP configurations of RTA and RTB include the statement no auto-summary. The
interfaces of RTA and RTB connected to subnet 192.168.2.64/28 have the statements ip
rip send version 1 2 and ip rip receive version 1 2. The interface of RTD connected to
subnet 192.168.2.128/28 has the statements ip rip send version 1 and ip rip receive
version 1.

4 The following solution uses a key chain name of CCIE and a key string named exercise4
on RTB and RTD. Assuming both routers' interfaces are S0, the configuration of both RTB
and RTD is

key chain CCIE
  key 1
    key-string exercise4
!
interface Serial0
  ip address 192.168.1.15X 255.255.255.252
  ip rip authentication mode md5
  ip rip authentication key-chain CCIE

5 The configuration here assumes that the authentication key in Configuration Exercise 4
was enabled on October 31, 2004, at midnight. The second key string used here is
exercise5a, and the third key string is exercise5b:

key chain CCIE
  key 1
    key-string exercise4
    accept-lifetime 00:00:00 Oct 31 2004 00:00:00 Nov 3 2004
    send-lifetime 00:00:00 Oct 31 2004 00:30:00 Nov 3 2004
  key 2
    key-string exercise5a
    accept-lifetime 00:00:00 Nov 3 2004 duration 36000
    send-lifetime 00:00:00 Nov 3 2004 duration 36000
  key 3
    key-string exercise5b
    accept-lifetime 10:00:00 Nov 3 2004 infinite
    send-lifetime 10:00:00 Nov 3 2004 infinite
!
interface Serial0
  ip address 192.168.1.15X 255.255.255.252
  ip rip authentication mode md5
  ip rip authentication key-chain CCIE

6 Globally configure ipv6 unicast-routing. Configure the IPv6 addresses on the LAN ports.
2001:DB8:0:2::/64 is configured on the LAN shared between RTA and RTB. Configure a
RIPng routing process on all IPv6 addressed interfaces.



Chapter 7

1 The EIGRP configurations are

RTA:

router eigrp 5
network 172.16.0.0
network 172.18.0.0

RTB:

router eigrp 5
network 172.16.0.0

RTC:

router eigrp 5
network 172.16.0.0
network 172.17.0.0

2 This solution uses a key chain named CCIE and key strings named exercise2a and
exercise2b. Assuming today's date is November 30, 2004, and the first key begins being
used at 8:30 AM, the configurations of the serial interfaces are

key chain CCIE
key 1
key-string exercise2a
accept-lifetime 08:30:00 Dec 2 2004 08:30:00 Jan 1 2005
send-lifetime 08:30:00 Dec 2 2004 08:30:00 Jan 1 2005
key 2
key-string exercise2b
accept-lifetime 08:30:00 Jan 1 2005 infinite
send-lifetime 08:30:00 Jan 1 2005 infinite
!
interface Serial0
ip address 172.16.3.19X 255.255.255.252
ip authentication key-chain eigrp 5 CCIE
ip authentication mode eigrp 5 md5

3 The EIGRP configuration of RTD is

router eigrp 5
network 172.16.0.0
network 172.17.0.0
no auto-summary

Auto-summarization must also be turned off on RTC.



4 The EIGRP configuration of RTF is

router eigrp 5
network 172.16.0.0
network 172.18.0.0
no auto-summary

The statement ip summary-address eigrp 5 172.18.10.192 255.255.255.224 is added to
RTA's interface on subnet 172.18.10.96/27. Also, note that auto-summarization must be
turned off on RTA, because of the appearance of the 172.16.0.0 network on RTF.

5 RTA can send a summary address of 172.16.3.128/25 to RTF and a summary address of
172.16.3.0/25 to RTB. All other summarization is performed automatically.



Chapter 8

1 The OSPF configurations are

RTA:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0

RTB:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.5.0.0 0.0.255.255 area 5
area 5 virtual-link 10.100.100.9

RTC:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.10.0.0 0.0.255.255 area 10
network 10.30.0.0 0.0.255.255 area 30

RTD:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.20.0.0 0.0.255.255 area 20

RTE:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.15.0.0 0.0.255.255 area 15

RTF:

router ospf 1
network 10.5.0.0 0.0.255.255 area 5

RTG:

router ospf 1
network 10.10.1.58 0.0.0.0 area 10



RTH:

router ospf 1
network 10.20.100.100 0.0.0.0 area 20
network 10.20.1.0 0.0.0.255 area 20

RTI:

router ospf 1
network 10.5.0.0 0.0.255.255 area 5
network 10.35.0.0 0.0.255.255 area 35
area 5 virtual-link 10.100.100.2

RTJ:

router ospf 1
network 10.15.0.0 0.0.255.255 area 15

RTK through RTN have Frame Relay interfaces. The four interfaces to the Frame Relay
network are all on the same subnet, so the OSPF network type must be either broadcast or
point-to-multipoint:

RTK:

interface Serial0
encapsulation frame-relay
ip address 10.30.254.193 255.255.255.192
ip ospf network point-to-multipoint
!
router ospf 1
network 10.30.0.0 0.0.255.255 area 30

RTL:

encapsulation frame-relay
ip address 10.30.254.194 255.255.255.192
ip ospf network point-to-multipoint
!
router ospf 1
network 10.30.0.0 0.0.255.255 area 30

RTM:

encapsulation frame-relay
ip address 10.30.254.195 255.255.255.192
ip ospf network point-to-multipoint
!
router ospf 1
network 10.30.0.0 0.0.255.255 area 30



RTN:

encapsulation frame-relay
ip address 10.30.254.196 255.255.255.192
ip ospf network point-to-multipoint
!
router ospf 1
network 10.30.0.0 0.0.255.255 area 30

2 The ABR configurations are

RTB:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.5.0.0 0.0.255.255 area 5
area 5 virtual-link 10.100.100.9
area 0 range 10.0.0.0 255.255.0.0
area 5 range 10.5.0.0 255.255.0.0

RTC:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.10.0.0 0.0.255.255 area 10
network 10.30.0.0 0.0.255.255 area 30
area 0 range 10.0.0.0 255.255.0.0
area 10 range 10.10.0.0 255.255.0.0
area 30 range 10.30.0.0 255.255.0.0

RTD:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.20.0.0 0.0.255.255 area 20
area 0 range 10.0.0.0 255.255.0.0
area 20 range 10.20.0.0 255.255.0.0

RTE:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.15.0.0 0.0.255.255 area 15
area 0 range 10.0.0.0 255.255.0.0
area 15 range 10.15.0.0 255.255.0.0

RTI:

router ospf 1
network 10.5.0.0 0.0.255.255 area 5
network 10.35.0.0 0.0.255.255 area 35



area 5 virtual-link 10.100.100.2
area 0 range 10.0.0.0 255.255.0.0
area 5 range 10.5.0.0 255.255.0.0
area 35 range 10.35.0.0 255.255.0.0

3 The configurations are

RTE:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.15.0.0 0.0.255.255 area 15
area 15 stub

RTJ:

router ospf 1
network 10.15.0.0 0.0.255.255 area 15
area 15 stub

4 The configurations are

RTC:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.10.0.0 0.0.255.255 area 10
network 10.30.0.0 0.0.255.255 area 30
area 0 range 10.0.0.0 255.255.0.0
area 10 range 10.10.0.0 255.255.0.0
area 30 stub no-summary
area 30 range 10.30.0.0 255.255.0.0

RTK:

router ospf 1
network 10.30.0.0 0.0.255.255 area 30
area 30 stub

RTL:

router ospf 1
network 10.30.0.0 0.0.255.255 area 30
area 30 stub

RTM:

router ospf 1
network 10.30.0.0 0.0.255.255 area 30
area 30 stub



RTN:

router ospf 1
network 10.30.0.0 0.0.255.255 area 30
area 30 stub

5 The configurations are

RTD:

router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.20.0.0 0.0.255.255 area 20
area 20 nssa

RTH:

router ospf 1
network 10.20.100.100 0.0.0.0 area 20
area 20 nssa

6 Only one end of a point-to-point circuit needs to be configured as a demand circuit. In this
solution, RTC is chosen:

interface Serial0
ip address 10.30.255.249 255.255.255.252
ip ospf demand-circuit
!
router ospf 1
network 10.0.0.0 0.0.255.255 area 0
network 10.10.0.0 0.0.255.255 area 10
network 10.30.0.0 0.0.255.255 area 30
area 0 range 10.0.0.0 255.255.0.0
area 10 range 10.10.0.0 255.255.0.0
area 30 range 10.30.0.0 255.255.0.0



Chapter 9

1 No additional OSPFv3 command is needed to include a second IPv6 prefix that has been
configured on an interface in the OSPFv3 process. If OSPFv3 is configured on an
interface, and a second IPv6 address is added to the interface, the second address is
automatically included in the OSPFv3 process.

2 Yes, two routers can become adjacent if they are configured with different prefixes. No
prefix information is included in Hellos, the source address of the Hello packet is the Link-
local address. Other IPv6 addresses configured on the interfaces have no bearing on
whether two routers become adjacent or not.

3 The basic router configurations are

RtrA:

ipv6 unicast-routing
int e 0/0
 ipv6 address 2001:db8:0:4::3/64
 ipv6 ospf 1 area 1
int e 0/1
 ipv6 address 2001:db8:0:5::1/64
 ipv6 ospf 1 area 1

RtrB:

ipv6 unicast-routing
int e 0/0
 ipv6 address 2001:db8:0:4::2/64
 ipv6 ospf 1 area 1
int e 0/1
 ipv6 address 2001:db8:0:6::1/64
 ipv6 ospf 1 area 1

RtrC:

ipv6 unicast-routing
int e 0/0
 ipv6 address 2001:db8:0:4::1/64
 ipv6 ospf 1 area 1
int serial 0/0
 ipv6 address 2001:db8:0:8::1/64
 ipv6 ospf 1 area 0

RtrD:

ipv6 unicast-routing
int s 0/0
 ipv6 address 2001:db8:0:8::2/64
 ipv6 ospf 1 area 0



4 To change area 1 to a totally stubby area and summarize into area 0, new router
configurations are

RtrA:

ipv6 unicast-routing
int e 0/0
 ipv6 address 2001:db8:0:5::3/64
 ipv6 ospf 1 area 1
ipv6 router ospf 1
 area 1 stub

RtrB:

ipv6 unicast-routing
int e 0/0
 ipv6 address 2001:db8:0:4::2/64
 ipv6 ospf 1 area 1
ipv6 router ospf 1
 area 1 stub

RtrC:

ipv6 unicast-routing
int e 0/0
 ipv6 address 2001:db8:0:4::1/64
 ipv6 ospf 1 area 1
int serial 0/0
 ipv6 address 2001:db8:0:8::1/64
 ipv6 ospf 1 area 0
ipv6 router ospf 1
 area 1 stub no-summary
 area 1 range 2001:db8:0:10::/61



Chapter 10

1 This solution uses a System ID of 0000.1234.abcX, where X is a number that makes the
router unique within the IS-IS domain. The System ID is six octets, which is required by
Cisco IOS. The minimum NET length is eight octets, one of which is the SEL, so the area
address is a one-octet number corresponding to the area number shown in Table 10-6.
The configurations are

RTA:

interface Ethernet0
ip address 192.168.1.17 255.255.255.240
ip router isis
!
interface Ethernet1
ip address 192.168.1.50 255.255.255.240
ip router isis
!
router isis
net 00.0000.1234.abc1.00
is-type level-1

RTB:

interface Ethernet0
ip address 192.168.1.33 255.255.255.240
ip router isis
!
interface Ethernet1
ip address 192.168.1.51 255.255.255.240
ip router isis
!
router isis
net 00.0000.1234.abc2.00
is-type level-1

RTC:

interface Ethernet0
ip address 192.168.1.49 255.255.255.240
ip router isis
!
interface Serial0
ip address 192.168.1.133 255.255.255.252
ip router isis
!
router isis
net 00.0000.1234.abc3.00

RTD:

interface Serial0



ip address 192.168.1.134 255.255.255.252
ip router isis
!
interface Serial1
ip address 192.168.1.137 255.255.255.252
ip router isis
!
router isis
net 02.0000.1234.abc4.00
is-type level-2-only

RTE:

interface Serial0
ip address 192.168.1.142 255.255.255.252
ip router isis
!
interface Serial1
ip address 192.168.1.145 255.255.255.252
ip router isis
!
interface Serial2
ip address 192.168.1.138 255.255.255.252
ip router isis
!
router isis
net 02.0000.1234.abc5.00
is-type level-2-only

RTF:

interface Serial0
ip address 192.168.1.141 255.255.255.252
ip router isis
!
interface Serial1
ip address 192.168.1.158 255.255.255.252
ip router isis
!
router isis
net 02.0000.1234.abc6.00
is-type level-2-only

RTG:

interface Ethernet0
ip address 192.168.1.111 255.255.255.224
ip router isis
!
interface Serial0
ip address 192.168.1.157 255.255.255.252
ip router isis
!
router isis
net 01.0000.1234.abc7.00



RTH:

interface Ethernet0
ip address 192.168.1.73 255.255.255.224
ip router isis
!
interface Ethernet1
ip address 192.168.1.97 255.255.255.224
ip router isis
!
router isis
net 01.0000.1234.abc8.00
is-type level-1

RTI:

interface Ethernet0
ip address 192.168.1.225 255.255.255.248
ip router isis
!
interface Ethernet1
ip address 192.168.1.221 255.255.255.248
ip router isis
!
interface Serial0
ip address 192.168.1.249 255.255.255.252
ip router isis
!
interface Serial1
ip address 192.168.1.146 255.255.255.252
ip router isis
!
router isis
net 03.0000.1234.abc9.00

RTJ:

interface Ethernet0
ip address 192.168.1.201 255.255.255.248
ip router isis
!
interface Ethernet1
ip address 192.168.1.217 255.255.255.248
ip router isis
!
router isis
net 03.0000.1234.abca.00
is-type level-1

RTK:

interface Ethernet0
ip address 192.168.1.209 255.255.255.248



ip address 192.168.1.209 255.255.255.248
ip router isis
!
interface Serial0
ip address 192.168.1.250 255.255.255.252
ip router isis
!
router isis
net 03.0000.1234.abcb.00
is-type level-1

2 The configurations are

RTA:

ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.17 255.255.255.240
ip router isis
ipv6 address 2001:db8:0:10::1/64
ipv6 router isis
!
interface Ethernet1
ip address 192.168.1.50 255.255.255.240
ip router isis
ipv6 address 2001:db8:0:30::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc1.00
is-type level-1
metric-style wide
address-family ipv6
multi-topology

RTB:

ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.33 255.255.255.240
ip router isis
ipv6 address 2001:db8:0:20::1/64
ipv6 router isis
!
interface Ethernet1
ip address 192.168.1.51 255.255.255.240
ip router isis
ipv6 address 2001:db8:0:30::3/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc2.00
is-type level-1
metric-style wide
address-family ipv6
multi-topology



RTC:

ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.49 255.255.255.240
ip router isis
ipv6 address 2001:db8:0:30::1/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.133 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:84::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc3.00
metric-style wide
address-family ipv6
multi-topology

RTD:

ipv6 unicast-routing
interface Serial0
ip address 192.168.1.134 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:84::2/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.137 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:88::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc4.00
is-type level-2-only
metric-style wide
address-family ipv6
multi-topology

RTE:

ipv6 unicast-routing
interface Serial0
ip address 192.168.1.142 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:8c::2/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.145 255.255.255.252
ip router isis



ipv6 address 2001:db8:0:90::1/64
ipv6 router isis
!
interface Serial2
ip address 192.168.1.138 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:88::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc5.00
is-type level-2-only
metric-style wide
address-family ipv6
multi-topology

RTF:

ipv6 unicast-routing
interface Serial0
ip address 192.168.1.141 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:8c::1/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.158 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:9c::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc6.00
is-type level-2-only
metric-style wide
address-family ipv6
multi-topology

RTG:

ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.111 255.255.255.224
ip router isis
ip router clns
ipv6 address 2001:db8:0:60::f/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.157 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:9c::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc7.00
metric-style wide



address-family ipv6
multi-topology

RTH:

ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.73 255.255.255.224
ip router isis
ipv6 address 2001:db8:0:40::9/64
ipv6 router isis
!
interface Ethernet1
ip address 192.168.1.97 255.255.255.224
ip router isis
ip router clns
ipv6 address 2001:db8:0:60::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc8.00
is-type level-1
metric-style wide
address-family ipv6
multi-topology

RTI:

ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.225 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:e0::1/64
ipv6 router isis
!
interface Ethernet1
ip address 192.168.1.221 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:d8::5/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.249 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:f8::1/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.146 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:90::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc9.00
metric-style wide
address-family ipv6



address-family ipv6
multi-topology

RTJ:

ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.201 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:c8::1/64
ipv6 router isis
!
interface Ethernet1
ip address 192.168.1.217 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:d8::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abca.00
is-type level-1
metric-style wide
address-family ipv6
multi-topology

RTK:

ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.209 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:d0::1/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.250 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:f8::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abcb.00
is-type level-1
metric-style wide
address-family ipv6
multi-topology

3 The configurations are

RTD:

Ipv6 unicast-routing
Key chain Fair
 Key 1
 Key-string Eiffel



interface Serial0
ip address 192.168.1.134 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:84::2/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.137 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:88::1/64
ipv6 router isis
authentication key-chain Fair level-2
authentication mode md5 level-2
!
router isis
net 00.0000.1234.abc4.00
is-type level-2-only
metric-style wide
address-family ipv6
multi-topology

RTE:

Ipv6 unicast-routing
Key chain Fair
 Key 1
 Key-string Eiffel
Key chain Paris
Key 1
 Key-string Tower
interface Serial0
ip address 192.168.1.142 255.255.255.252
ip router isis
ipv6 address 2001:db7:0:8c::2/64
ipv6 router isis
authentication key-chain Paris level-2
authentication mode md5 level-2
!
interface Serial1
ip address 192.168.1.145 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:90::1/64
ipv6 router isis
!
interface Serial2
ip address 192.168.1.138 255.255.255.252
ip router isis ipv6 address 2001:db8:0:88::2/64
ipv6 router isis
authentication key-chain Fair level-2
authentication mode md5 level-2
!
router isis
net 00.0000.1234.abc5.00
is-type level-2-only
metric-style wide
address-family ipv6
multi-topology



RTF:

Ipv6 unicast-routing
Key chain Paris
Key 1
 Key-string Tower
interface Serial0
ip address 192.168.1.141 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:8c::1/64
ipv6 router isis
authentication key-chain Paris level-2
authentication mode md5 level-2
!
interface Serial1
ip address 192.168.1.158 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:9c::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc6.00
is-type level-2-only
metric-style wide
address-family ipv6
multi-topology

4 The configurations are

RTG:

Ipv6 unicast-routing
interface Ethernet0
ip address 192.168.1.111 255.255.255.224
ip router isis
ipv6 address 2001:db8:0:96::f/64
ipv6 router isis
ip router clns
!
interface Serial0
ip address 192.168.1.157 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:9c::1/64
ipv6 router isis!
router isis
net 00.0000.1234.abc7.00
area-password Scotland
metric-style wide
address-family ipv6
multi-topology

RTH:

Ipv6 unicast-routing
interface Ethernet0



ip address 192.168.1.73 255.255.255.224
ip router isis
ipv6 address 2001:db8:0:40::9/64
ipv6 router isis
!
interface Ethernet1
ip address 192.168.1.97 255.255.255.224
ip router isis
ip router clns
ipv6 address 2001:db8:0:60::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc8.00
is-type level-1
area-password Scotland
metric-style wide
address-family ipv6
multi-topology

5 The configurations are

RTC:

Ipv6 unicast-routing
Key chain Austria
Key 1
 Key-string Vienna
interface Ethernet0
ip address 192.168.1.49 255.255.255.240
ip router isis
ipv6 address 2001:db8:0:30::1/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.133 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:84::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc3.00
authentication key-chain Austria level-2
authentication mode text
metric-style wide
address-family ipv6
multi-topology

RTD:

Ipv6 unicast-routing
Key chain Fair
 Key 1
 Key-string Eiffel



Key chain Austria
Key 1
 Key-string Vienna
interface Serial0
ip address 192.168.1.134 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:84::2/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.137 255.255.255.252
ip router isis
authentication key-chain Fair level-2
authentication mode md5 level-2
ipv6 address 2001:db8:0:88::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc4.00
is-type level-2-only
authentication key-chain Austria level-2
authentication mode text
metric-style wide
address-family ipv6
multi-topology

RTE:

Ipv6 unicast-routing
Key chain Fair
 Key 1
 Key-string Eiffel
Key chain Paris
Key 1
 Key-string Tower
Key chain Austria
Key 1
 Key-string Vienna
interface Serial0
ip address 192.168.1.142 255.255.255.252
ip router isis
authentication key-chain Paris level-2
authentication mode md5 level-2
 ipv6 address 2001:db8:0:8c::2
 ipv6 routing isis
!
interface Serial1
ip address 192.168.1.145 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:90::1/64
ipv6 router isis
!
interface Serial2
ip address 192.168.1.138 255.255.255.252
ip router isis



authentication key-chain Fair level-2
authentication mode md5 level-2
ipv6 address 2001:db8:0:88::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc5.00
is-type level-2-only
authentication key-chain Austria level-2
authentication mode text
metric-style wide
address-family ipv6
multi-topology

RTF:

Ipv6 unicast-routing
Key chain Paris
Key 1
 Key-string Tower
Key chain Austria
Key 1
 Key-string Vienna
interface Serial0
ip address 192.168.1.141 255.255.255.252
ip router isis
authentication key-chain Paris level-2
authentication mode md5 level-2
ipv6 address 2001:db8:0:8c::1/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.158 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:9c::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc6.00
is-type level-2-only
authentication key-chain Austria level-2
authentication mode text
metric-style wide
address-family ipv6
multi-topology

RTG:

Ipv6 unicast-routing
Key chain Austria
Key 1
 Key-string Vienna
interface Ethernet0
ip address 192.168.1.111 255.255.255.224
ip router isis



ip router clns
ipv6 address 2001:db8:0:96::f/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.157 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:9c::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc7.00
area-password Scotland
authentication key-chain Austria level-2
authentication mode text
metric-style wide
address-family ipv6
multi-topology

RTI:

Ipv6 unicast-routing
Key chain Austria
Key 1
 Key-string Vienna
interface Ethernet0
ip address 192.168.1.225 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:e0::1/64
ipv6 router isis
!
interface Ethernet1
ip address 192.168.1.221 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:d8::5/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.249 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:f8::1/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.146 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:90::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc9.00
authentication key-chain Austria level-2
authentication mode text
metric-style wide
address-family ipv6
multi-topology



6 The configurations are

RTC:

Ipv6 unicast-routing
Key chain Austria
Key 1
 Key-string Vienna
interface Ethernet0
ip address 192.168.1.49 255.255.255.240
ip router isis
ipv6 address 2001:db8:0:30::1/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.133 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:84::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc3.00
summary-address 192.168.1.0 255.255.255.192
authentication key-chain Austria level-2
authentication mode text
metric-style wide
address-family ipv6
multi-topology
summary-prefix 2001:db8::/58

RTG:

Ipv6 unicast-routing
Key chain Austria
Key 1
 Key-string Vienna
interface Ethernet0
ip address 192.168.1.111 255.255.255.224
ip router isis
ip router clns
ipv6 address 2001:db8:0:96::f/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.157 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:9c::1/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc7.00
area-password Scotland
authentication key-chain Austria level-2
authentication mode text
metric-style wide
summary-address 192.168.1.64 255.255.255.192
address-family ipv6
multi-topology



summary-prefix 2001:db8:0:40::/58

RTI:

Ipv6 unicast-routing
Key chain Austria
Key 1
 Key-string Vienna
interface Ethernet0
ip address 192.168.1.225 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:e0::1/64
ipv6 router isis
!
interface Ethernet1
ip address 192.168.1.221 255.255.255.248
ip router isis
ipv6 address 2001:db8:0:d8::5/64
ipv6 router isis
!
interface Serial0
ip address 192.168.1.249 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:f8::1/64
ipv6 router isis
!
interface Serial1
ip address 192.168.1.146 255.255.255.252
ip router isis
ipv6 address 2001:db8:0:90::2/64
ipv6 router isis
!
router isis
net 00.0000.1234.abc9.00
authentication key-chain Austria level-2
authentication mode text
metric-style wide
summary-address 192.168.1.192 255.255.255.192
address-family ipv6
multi-topology
summary-prefix 2001:db8:0:c0::/58



Chapter 11

1 RIP does not advertise subnet 172.16.1.144/28. To remedy this problem, a static route is
entered to that subnet but with a 27-bit mask. Because the mask references RTB's E0
interface, it is redistributed into RIP automatically.

interface Ethernet0
ip address 172.16.1.146 255.255.255.240
ipv6 address 2001:db8:0:190::2/64
ipv6 ospf 1 area 0
!
interface Ethernet1
ip address 172.16.1.98 255.255.255.224
ipv6 address 2001:db8:0:160::2/64
ipv6 rip ripdomain enable
!
router ospf 1
redistribute rip metric 50 subnets
network 172.16.1.0 0.0.0.255 area 0
!
router rip
redistribute ospf 1 metric 2
passive-interface Ethernet0
network 172.16.0.0
!
ipv6 router rip ripdomain
redistribute ospf 1 metric 2
ipv6 router ospf
redistribute rip ripdomain metric 50
ip classless
ip route 172.16.1.128 255.255.255.224 Ethernet0

2 RTB's configuration is

ipv6 router rip ripdomain
redistribute ospf 1 metric 2
ipv6 router ospf
redistribute rip ripdomain metric 50
summary-prefix 2001:db8:0:200::/48

3 RTB's configuration is

interface Ethernet0
ip address 172.16.1.146 255.255.255.240
ip router isis
ipv6 address 2001:db8:0:190::2/64
ipv6 router isis
!
interface Ethernet1
ip address 172.16.1.98 255.255.255.224
ip summary-address eigrp 1 172.16.1.128 255.255.255.128
ipv6 address 2001:db8:0:160::2/64



ipv6 rip ripdomain enable
!
router eigrp 1
redistribute isis level-1 metric 10000 1000 255 1 1500
passive-interface Ethernet0
network 172.16.0.0
!
router isis
net 00.0000.1234.abc1.00
summary-address 172.16.2.0 255.255.255.0
redistribute eigrp 1 metric 20 metric-type external level-1
address-family ipv6
summary-prefix 2001:db8:0:200::/48
redistribute rip metric 20 metric-type external level-1
!
ipv6 router rip ripdomain
redistribute isis metric 5



Chapter 13

1 RTA's configuration is

router rip
redistribute eigrp 1 metric 3
passive-interface Ethernet0
passive-interface Ethernet1
network 172.16.0.0
distribute-list 1 in Ethernet3
!
router eigrp 1
redistribute rip metric 10000 1000 255 1 1500
passive-interface Ethernet2
passive-interface Ethernet3
network 172.16.0.0!
access-list 1 deny 172.16.12.0
access-list 1 permit any

2 RTA's configuration is

router rip
redistribute eigrp 1 metric 3
passive-interface Ethernet0
passive-interface Ethernet1
network 172.16.0.0
distribute-list 2 out Ethernet2
!
router eigrp 1
redistribute rip metric 10000 1000 255 1 1500
passive-interface Ethernet2
passive-interface Ethernet3
network 172.16.0.0
!
access-list 2 deny 172.16.10.0
access-list 2 permit any

3 RTA's configuration is

router rip
redistribute eigrp 1 metric 3
passive-interface Ethernet0
passive-interface Ethernet1
network 172.16.0.0
distribute-list 3 out eigrp 1
!
router eigrp 1
redistribute rip metric 10000 1000 255 1 1500
passive-interface Ethernet2
passive-interface Ethernet3
network 172.16.0.0
!
access-list 3 permit 172.16.2.0
access-list 3 permit 172.16.8.0



access-list 3 permit 172.16.9.0

4 RTA's configuration is

router rip
redistribute eigrp 1 metric 3
passive-interface Ethernet0
passive-interface Ethernet1
network 172.16.0.0
!
router eigrp 1
redistribute rip metric 10000 1000 255 1 1500
passive-interface Ethernet2
passive-interface Ethernet3
network 172.16.0.0
distribute-list 4 out Ethernet0
!
access-list 4 permit 172.16.1.0
access-list 4 permit 172.16.2.0
access-list 4 permit 172.16.3.0
access-list 4 permit 172.16.7.0
access-list 4 permit 172.16.8.0
access-list 4 permit 172.16.9.0

5 The distribute list configured under the RIPng process is

ipv6 router rip ripname
distribute-list prefix-list listname out ethernet2
!
ipv6 prefix-list listname seq 5 deny 2001:DB8:0:A::/63 le 64
ipv6 prefix-list listname seq 10 permit ::/0 le 128

6 EIGRP assigns a higher distance (170) to external routes than to internal routes (90). If any
destination within the EIGRP domain is advertised into EIGRP from IS-IS, it will be ignored
unless the internal route to the destination fails. Therefore, the EIGRP distances do not
have to be manipulated. The distance statements under the IS-IS configurations of RTC
and RTD follow:

RTC:

distance 115
distance 170 192.168.10.254 0.0.0.0 1
!
access-list 1 permit any

RTD:

distance 115
distance 170 192.168.10.249 0.0.0.0 1
distance 170 192.168.10.241 0.0.0.0 1
!
access-list 1 permit any



7 The distance statement under the IS-IS configuration of RTD is

distance 115
distance 255 192.168.10.241 0.0.0.0 1
!
access-list 1 permit any

8 The distance statement under RTC's EIGRP configuration is distance eigrp 90 90



Chapter 14

1 RTA's configuration is

interface Serial0
ip address 172.16.14.6 255.255.255.252
ip policy route-map Exercise1
!
interface Serial1
ip address 172.16.14.10 255.255.255.252
ip policy route-map Exercise1
!
access-list 1 permit 172.16.1.0 0.0.0.127
access-list 2 permit 172.16.1.128 0.0.0.127
!
route-map Exercise1 permit 10
match ip address 1
set ip next-hop 172.16.14.17
!
route-map Exercise1 permit 20
match ip address 2
set ip next-hop 172.16.14.13

2 RTA's configuration is

interface Serial0
ip address 172.16.14.6 255.255.255.252
ip policy route-map Exercise2A
!
interface Serial1
ip address 172.16.14.10 255.255.255.252
ip policy route-map Exercise2B
!
access-list 1 permit 172.16.1.64 0.0.0.63
!
route-map Exercise2 permit 10
match ip address 1
set ip next-hop 172.16.14.13
!
route-map Exercise2B permit 10
match ip address 1
set ip next-hop 172.16.14.17

3 RTA's configuration is

interface Serial2
ip address 172.16.14.18 255.255.255.252
ip access-group 101 in
ip policy route-map Exercise3
!
interface Serial3
ip address 172.16.14.14 255.255.255.252
ip access-group 101 in
ip policy route-map Exercise3



!
access-list 101 permit udp any 172.168.1.0 0.0.0.255
access-list 101 permit tcp any eq smtp 172.16.1.0 0.0.0.255
access-list 102 permit tcp any eq smtp 172.16.1.0 0.0.0.255
access-list 103 permit udp any 172.168.1.0 0.0.0.255
!
route-map Exercise3 permit 10
match ip address 102
set ip next-hop 172.16.14.9
!
route-map Exercise3 permit 20
match ip address 103
set ip next-hop 172.16.14.5

4 The OSPF configuration is

router ospf 1
redistribute eigrp 1 route-map Exercise4
network 192.168.1.0 0.0.0.255 area 16
!
access-list 1 permit 10.201.100.0
!
route-map Exercise4 deny 10
match ip address 1
!
route-map Exercise4 permit 20
match route-type internal
set metric 10
set metric-type type-1
!
route-map Exercise4 permit 30
match route-type external
set metric 50
set metric-type type-2

5 The EIGRP configuration is

router eigrp 1
redistribute ospf 1 route-map Exercise5
network 192.168.100.0
!
access-list 1 permit 192.168.1.0
access-list 1 permit 192.168.2.0
access-list 1 permit 192.168.3.0
!
route-map Exercise5 permit 10
match ip address 1
match route-type internal
set metric 10000 100 255 1 1500
!
route-map Exercise5 permit 30
match ip address 1
match route-type external
set metric 10000 10000 255 1 1500
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Chapter 1

1 Subnet: 10.14.64.0

Host Addresses: 10.14.64.110.14.95.254

Broadcast: 10.14.95.255

Subnet: 172.25.0.224

Host Addresses: 172.25.0.225175.25.0.254

Broadcast: 172.25.0.255

Subnet: 172.25.16.0

Host Addresses: 172.25.16.1172.25.16.126

Broadcast: 172.25.16.127

2 192.168.13.175/28 is the broadcast address of subnet 192.168.13.160/28.



Chapter 3

1 Subnet 192.168.1.64/27 will no longer be reachable from Piglet. Subnets 10.4.6.0/24 and
10.4.7.0/24 are also no longer reachable from Piglet.

2 Mistakes occur in the following:

RTA, the second entry, should be ip route 172.20.80.0 255.255.240.0 172.20.20.1

RTB, the third entry, should be ip route 172.20.208.0 255.255.240.0 172.20.16.50

RTC, the second entry, should be ip route 172.20.208.0 255.255.240.0 172.20.16.50
and fifth entry, should be ip route 172.20.80.0 255.255.240.0 172.20.20.1

3 The mistakes are as follows:

RTC: The route to 10.5.8.0/24 points to the wrong next-hop address.

RTC: The route to 10.1.1.0/24 should be 10.5.1.0/24. (There is no 10.1.1.0/24 in the
network.)

RTC: There is no route to 10.5.4.0/24.

RTD: The route to 10.4.5.0/24 should be 10.5.4.0/24.



Chapter 5

1 The new access list causes two hops to be added to every route except 10.33.32.0.

2 RTB interprets all subnets of 172.16.0.0 according to its misconfigured masks. The
consequences, as exhibited in each of the four entries in its route table, are

Entry 1: This entry is correct because 172.16.24.0 can be masked with either 22 bits or 23
bits.

Entry 2: Subnet 172.16.26.0 is advertised by RTC. Because the 23rd bit of this address is
one and RTB is using a 22-bit mask, from RTB's perspective this one appears in the host
address space. Therefore, RTB interprets the advertisement of 172.16.26.0 as a host
route and marks it with a 32-bit mask in the route table.

Entry 3: RTB interprets its interface address 172.16.22.5 as being a member of subnet
172.16.20.0/22, instead of 172.16.22.0/23. When RTB receives RTA's advertisement of
subnet 172.16.20.0/23, RTB, thinking it has a directly connected link to that subnet,
ignores the advertisement. Notice that subnet 172.16.22.0 is not in the route tables of RTA
and RTC for the same reason: RTB is advertising it as 172.16.20.0.

Entry 4: RTB interprets its interface address 172.16.18.4 as being a member of subnet
172.16.16.0/22 instead of 172.16.18.0/23.

3 The answer is in RTC's route table in Example 5-30. Notice that the route to
172.16.26.0/23 has not been updated in 2 minutes, 42 seconds. RTC's invalid timer is
expiring before it hears a new update from RTD, and it is declaring the route to
172.16.26.0/23 invalid. Because no routes from RTA or RTB are being invalidated, the
problem is with RTD's update timerthe update period is too long. When RTD finally sends
an update, it is re-entered in RTC's route table and remains until RTC's invalid timer again
expires.



Chapter 6

1 RTA and RTB send and receive only RIPv2 messages. RTC receives both RIPv1 and
RIPv2 but sends only RIPv1. Consequently, RTA and RTB do not have subnet
192.168.13.75/27 in their route tables. Although it receives the updates from RTA and
RTB, RTC does not have subnets 192.168.13.90/28 and 192.168.13.86/29 in its route
table because it interprets both of them as 192.168.13.64/27, which is directly connected
to RTC's E0 interface.

2 Yes. Subnet 192.168.13.64/27 will be added to the route tables of RTA and RTB because
they can now receive RIPv1 updates from RTC.



Chapter 7

1 RTG is RTF's successor to subnet A.

2 RTC's feasible distance to subnet A is 309760.

3 RTG's feasible distance to subnet A is 2214319.

4 RTG's topology table shows RTD and RTE as feasible successors to subnet A.

5 RTA's feasible distance to subnet B is 2198016.



Chapter 8

1 Either the IP address or the mask is misconfigured on one of the neighboring interfaces.

2 One router is configured as a stub area router, and the other is not.

3 The receiving router is configured for MD5 (type 2) authentication, and the neighbor has
no authentication configured (type 0).

4 The passwords configured on the two routers do not match.

5 The neighboring interfaces are not configured with the same area ID.

6 RTA's network statements are in the wrong order. The first statement matches IP address
192.168.50.242 and puts it in area 192.168.50.0.

7 Link ID 10.8.5.1 is the most likely suspect because its sequence number is substantially
higher than the sequence numbers of the other links.



Chapter 10

1 Although IS-IS has formed an adjacency, its type is IS rather then L1, L2, or L1L2,
indicating there is a problem. The IP addresses are not on the same subnet.

2 The router sends only L1 Hellos, indicating that it is an L1 router. It receives only L2 Hellos
from 0000.3090.c7df, indicating that it is an L2 router.



Chapter 11

1 Split horizon will prevent 192.168.10.0/24 from being advertised into the RIP domain from
the IGRP domain.

2 No, because not all subnets of 10.0.0.0 are directly connected to Mantle on the RIP side.

3 The network statement under Robinson's EIGRP 1 configuration matches interface
192.168.3.32, even though no EIGRP Hellos are being forwarded out that interface.
Therefore, the subnet is advertised as internal within the EIGRP 1 domain.

4 EIGRP automatically entered this summary route because subnets of 192.168.3.0 are
being redistributed into EIGRP from OSPF.

5 A level-1 router in area 1 will not know of the summary route. RIP is being redistributed into
level-2 (this is the default distribution level). The summary-prefix command is
summarizing routes that are getting advertised into level-1.



Chapter 13

1 The inverse mask of the first line of the access list is wrong. With this mask, all routes are
matched. The line should be access-list 1 deny 0.0.0.0 0.0.0.0.

2 All routes not matched by the access lists are given a distance of 255 (unreachable). If a
preferred route fails, Grimwig will not use an alternative path.

3 OSPF calculates its routes from the information learned from LSAs. The route filter has no
effect on LSAs, and so the filter affects only the router on which it is configured.

4 The two route filters refer to the wrong interfaces. distribute-list 1 should refer to E1, and
distribute-list 2 should refer to E0.



Chapter 14

1 Both errors are errors of sequence. First, the telnet keyword in access list 101 is
associated with the destination port; the correct association is with the source port.
Second, the route map statements are in the wrong order. Telnet packets from
192.168.10.5 match the first statement and are forwarded to 192.168.16.254.
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case studies
     IPv6 redistribution with route maps
     policy routing
         and QoS
         and redistribution
         router configuration
         standard IP access lists
     protocol migration 2nd
         routing loops
     RIP configuration
     route filtering
         filtering by routing process
     route tagging
categories of ACLs
CCIE exam, preparing for
     certification path
     exam day
     hands-on experience
     study materials
     training classes
CDP (Cisco Discovery Protocol) 2nd
     enabling
cdp enable command
cdp run command
CEF (Cisco Express Forwarding)
     per destination load sharing
Cerf, Vint 2nd
certification path for CCIE exam
characteristics of distance vector protocols
     broadcast updates
     full routing table updates
     neighbors
Checksum field
     LSAs
     TCP
CIDR (Classless Interdomain Routing)
circular sequence number space
Cisco IOS Software, switching method determination
classes of IP addresses
classful routing
     RIP 2nd
         replies
         requests
         subnetting
         summarization
classless route lookups 2nd
classless routing 2nd
     redistribution into classful domains
         unmatching masks
clear arp-cache command 2nd
clear ip accounting command
CLNP (Connectionless Network Protocol)
columns in route tables
command field (RIPv2)
commands 2nd
     access class
     access-list compiled



     access-list compiled
     arp 2nd
     arp timeout
     auto-cost reference-bandwidth
     cdp enable
     cdp run
     clear arp-cache 2nd
     clear ip accounting
     config-router
     debug arp
     debug iegpr neighbors
     debug ip icmp
     debug ip packet
     debug ip policy
     debug ip rip 2nd
     debug ipv6 packet
     default metric
     default-information originate
         always keyword
         for IPv6 addresses
     distance 2nd 3rd
     distribute-list 2nd 3rd
     eigrp stub
     ip access-group
     ip accounting access-violations
     ip address 2nd
     ip cef
     ip classless 2nd
     ip default network
     ip default-network
     ip load-sharing per packet
     ip netmask-format 2nd
     ip ospf cost
     ip ospf dead-interval
     ip ospf priority
     ip ospf transmit-delay
     ip policy route-map
     ip policy-route map
     ip proxy-arp 2nd
     ip rip triggered
     ip route
     ip route cache
     ip router isis
     ipv6 cef
     ipv6 nd prefix
     ipv6 route command
     ipv6 unicast-routing
     isis isp-interval
     lsp-gen-interval
     maximum-paths
     metric weights
     metric-style wide
     neighbor
     network 2nd
     network area
     no ip proxy-arp
     no ip redirects
     offset-list 2nd
     output-delay
     passive-interface 2nd
     redistribute connected
     redistribute eigrp
     router
     router odr
     router rip 2nd
     set ip next-hop verify-availability
     show arp
     show cdp
     show cdp neighbor detail
     show clns is-neighbors
     show clns is-neighbors detail
     show interface
     show ip access list
     show ip accounting access-violations
     show ip cef
     show ip eigrp topology
     show ip ospf database
     show ip ospf database nssa-external
     show ip ospf interface



     show ip ospf interface
     show ip ospf neighbor
     show ip route 2nd
     show ipv6 cef
     show ipv6 detail
     show ipv6 interface
     show ipv6 rip
     show ipv6 route
     show isis database
     summary address
     timers active time
     timers basic
     trace
     variance
     which route
comparing
     OSPFv2 and OSPFv3
     RIPng and RIPv2
compatibility of RIPv2 and RIPv1
compatibility switches 2nd
config-router command
configuring
     ACLs, keywords
     default routes
         in IPv6
         ip default-network command
     dual-protocol routing
     EIGRP
         address summarization
         authentication
         maximum paths for load sharing
         multiple processes
         stub routing
         unequal-cost load balancing
     extended IP ACLs
         sequence number
     floating static routes
     ICMP ACLs
     IPv6 floating static routes
    IS-IS
         authentication
         IPv4
         IPv6
         multiple area addresses
         multiple L1 areas
         multiple topology mode
         route leaking
         route summarization 2nd
         routers
     load sharing
         CEF
     named ACLs
     ODR
     OSPF
         address summarization
         authentication
         Domain Name Service lookups
         LSA filtering
         network area command
         NSSAs
         on NBMA networks
         over demand circuits
         Router IDs
         secondary addresses
         stub areas
         totally stubby areas
         virtual links
     OSPFv3
         multiple instances on a link
         on NBMA networks
         stub area
     policy routing
         and QoS
         and redistribution
         global router configuration
         standard IP access lists
     redistribution
         EIGRP into OSPF
         IGRP into RIP



         IGRP into RIP
         metrics
     reflexive ACLs
         example
         parameters
     RIP
         discontiguous subnets
         metrics
         passive interfaces
         unicast updates
     RIPng
         global parameters
     RIPv2
         authentication
     route maps
     route tagging
     standard IP ACLs
         Boolean AND/OR functions
         inverse masks
     static routes
         IPv4
         IPv6
     TCP ACLs
     UDP ACLs
     virtual links
connection-oriented services, TCP
control protocols, ICMPv6 header format
convergence
     after router reboot in redistributed protocol environment
converting
     binary to hex
     decimal to binary
     routing protocols
CoS (Class of Service)
cost metric 2nd 3rd 4th
counting to infinity
cryptographic checksum, MD5
CSNPs (Complete SNPs) 2nd
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data links
     address masks
    IP addresses
         masks
         subnets
     TCP/IP
data structure of OSPF neighbors
     components 2nd
data-link identifiers, ARP
Database Description packets (OSPF)
DC-bit
DD (Database Description) packets
debug arp command
debug eigrp neighbors command
debug ip icmp command
debug ip packet command
debug ip policy command
debug ip rip command 2nd
debug ipv6 packet command
debugging route table entries
decimal numbering system
     converting to binary
     converting to hexadecimal
     IP addresses
decision points for OSPF adjacency formation
decision process (IS-IS)
default IGRP timers, modifying
default metrics, IGRP
     calculating
     modifying
default networks
     advertising
default routes 2nd
     classless route lookups
     configuring
         in IPv6
         ip default-network command
         IPv4
     filtering
     flapping
     gateway of last resort
     in hub-and-spoke topologies
     large-scale use of
     redistribution
     risk of suboptimal routing
     static
         "don't care" bits
         redistribution
default-information originate command
     always keyword
     for IPv6 addresses
default-metric command
delay metric 2nd
     modifying
delayed acknowledgments
demand circuits
     OSPF, configuring
     presumption of reachability
depletion of IPv4 addresses
designated routers (IS-IS)
designing
     lollipop-shaped address spaces
     subnets
Destination Address field (IPv6 packets)
destination ports, TCP
devices, boundary routers
DF bit
DiffServ (Differentiated Services framework)



DiffServ (Differentiated Services framework)
diffusing computations
     feasible successor selection process
digits
Dijkstra, E.W.
Dijkstra's algorithm
direct acknowledgments
directly connected subnets
disabling
     automatic summarization on EIGRP
     split horizon
     summarization on RIPv2
discontiguous subnets 2nd
     configuring
     RI
     summarizing RIPv2 routes across
displaying
     IGRP delay
     IPv6 addresses
     IS-IS link state database
     IS-IS neighbor table
     RIPng processes
distance command 2nd 3rd
distance vector routing protocols 2nd
     asynchronous updates
     characteristics of
         broadcast updates
         full routing table updates
         neighbors
         periodic updates
     counting to infinity
     holddown timers
    RIP
         configuring
         metrics, configuring
     route filtering
     route invalidation timers
     routing by rumor
     split horizon
     triggered updates
distribute-list command 2nd 3rd
distributed database protocols. [See link-state protocols]
domain authentication, IS-IS configuration
Domain Name Service lookups, OSPF configuration
domains
     IS-IS, domain-wide prefix distribution extension
     OSPF, areas
Don't Fragment (DF) bit
dotted-decimal format 2nd
Down state (OSPF neighbors)
DRs (Designated Routers)
     DRothers
     election process
DSCP (Differentiated Services Code Point)
DUAL (Diffusing Update Algorithm)
     feasible successors, selection process
     input events
dual-protocol routing, configuring
Duplicate Address Detection
dynamic ACLs
Dynamic Hostname Exchange
dynamic routing protocols, RIP. [See RIP (Routing Information Protocol)]
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echo packets, tracing
Echo Request/Reply messages (ICMP)
ECN (Explicit Congestion Notification)
editing
     ACLs
     route maps
EGPs (Exterior Gateway Protocols)
EIGRP (Enhanced Interior Gateway Routing Protocol)
     address aggregation
         CIDR
     address summarization, configuring
     adjacencies
     authentication, configuring
     automatic summarization, disabling
     configuring
     diffusing computations
     DUAL
     feasible successors, selection process 2nd
     input events
     load sharing, configuring maximum paths
     metrics
         delay
         FC
         FD
         feasible successors
         variance
     missing neighbors, troubleshooting
     multiple processes, configuring
     neighbor discovery/recovery
     neighbor table
     packets
         header format
         Hello
         sequence numbers
         TLVs
     protocol-dependent modules
     Q Count
     redistribution into OSPF
         configuring
     RTO
     RTP
     SRTT
     stub routing, configuring
     stuck-in-active neighbors, troubleshooting 2nd
     summarization
     timers, mulicast flow timer
     topological table, contents of
     troubleshooting
     unequal-cost load balancing, configuring
     updates
eigrp stub command
election process for DRs/BDRs
electrical protocols
embedded IPv4 addresses
enabling
     CDP
     classless route lookups
     per packet load sharing
     process switching
encapsulation (SNAP), ARP
environments
EPHOS (European Procurement Handbook for Open Systems)
equal-cost load balancing 2nd
error correction in IP packets
ES (End System)
establishing adjacencies
     decision points
     OSPF



     OSPF
Ethernet
examples
     of diffusing computations 2nd
     of extended IP ACLs
     of reflexive ACLs
exams, CCIE
     certification path
     preparing for
     training classes
Exchange state (OSPF neighbors)
expiration timer, RIP
explicit acknowledgments 2nd
ExStart state (OSPF neighbors)
extended IP ACLs 2nd
     effect on system performance
     example of
     features
     placement of
     sequence numbers
extended metrics
Extended Ping utility
extension headers
     functions performed
extensions to IS-IS
     3-way handshaking
     domain-wide prefix distribution
     Dynamic Hostname Exchange
     IPv6 routing
     mesh groups
     Multi Topology routing
     wide metrics
exterior routes
External Attributes LSAs
external routes
     summarization
external traffic
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failed routes, tracing
     IPv6
fast switching, per destination load sharing
FC (feasible condition)
FD (feasible distance) 2nd
feasible successors
     diffusing computations 2nd
     selection process
features
     of extended IP ACLs
     of OSPF
     of TCP ACLs
fields
     of IS-IS Hello PDUs
     of IS-IS LSPs
     of RIPng messages
     of TCP header
filter layers, numbering 2nd
filtering
     implicit deny any
     IPv6 routes
     prefix lists
     sequentiality
first octet rule
Flags field (TCP)
flapping routes
flash updates. [See triggered updates]
Fletcher algorithm
floating static routes
     IPv6
flooding
     LSAs
         acknowledgments
         checksum
     sequence numbers 2nd
         circular sequence number space
         linear sequence number space
         lollipop-shaped sequence number space
flooding delays (IS-IS)
Flow Label field (IPv6 packets)
Floyd, Sally
flush timer (RIP)
format
     of IPv6 multicast addresses
     of OSPFv3 LSAs
         AS-External LSAs
         Inter-Area Prefix LSAs
         Inter-Area Router LSAs
         Intra-Area Prefix LSAs
         Link LSAs
         Network LSAs
         Router LSAs
     of RA messages
     of Redirect messages
     of RIPng messages
     of RIPv2 messages
formation of OSPF adjacencies
     decision points
Fragment Offset field (IP packets)
fragmenting IP packets
fragments, processing through ACLs
Frame-Relay mapping, OSPFv3
full routing table updates
Full state (OSPF neighbors)
functional protocols (TCP/IP)
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garbage collection (RIP)
gateway of last resort
general TLV fields
global parameters for RIPng configuration
global unicast addresses
GOSIP (Government Open Systems Interconnection Profile)
gratuitous ARP
Group Membership LSAs
group pacing
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Hardware Address Length field (ARP packets)
Hardware Type field (ARP packets)
Header Checksum field (IP packets)
Header Length field
     IP packets
     TCP packets
headers
     EIGRP packet format
     IP packets
         flags
         Fragment Offset field
         Header Checksum field
         identifiers
         Options field
         options field
         size
         TOS
         total length
         TTL field
     IS-IS PDU fields
     TCP
     UDP
Hedrick, Charles
Hello packets
     EIGRP
         hold time
     OSFP 2nd
Hello PDUs
     Area Addresses TLV
     Authentication Information TLV
     fields
     Intermediate System Neighbors TLV
     IP Interface Address TLV
     Padding TLV
     Protocols Supported TLV
Hello protocol 2nd
HelloInterval
hexadecimal numbering system
     converting to decimal
     hexadecimal IPv6 representation
     IP address format
hippity bit
holddown
     IGRP
     RIP
holddown timers
hop count metric 2nd
Hop Limit field (IPv6 packets)
host addresses, subnet mask octet boundaries
host-to-host layer (TCP/IP)
     TCP
     UDP
Host-to-Host Layer Protocol
hosts
     IP addresses
     quantity per subnet requirement, calculating
"hot potato" routing
hub-and-spoke topologies
     ODR
     stub routers
Huitema, Christian
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ICMP (Internet Control Message Protocol)
     ACLs
     echo packets, tracing
     Echo Request/Reply messages
     redirect packets
     Router Advertisement packets
     Router Selection packets
ICMPv6 header format
identifying IPv6 address types
IGPs (Interior Gateway Protocols)
IGRP (Interior Gateway Routing Protocol)
     default timers, modifying
     delay
     holddown
     load
     metrics
         modifying
     process domains
     redistribution into RIP, configuring
     reliability
     similarities to RIP
    timers
         90-second
         sleeptime
Implicit Acknowledgments
implicit acknowledgments
implicit deny any filter
improving SPF efficiency on IS-IS networks
InfTransDelay
Init state (OSPF neighbors)
input events
     for OSPF interface state machine
     for OSPF neighbors
inter-area paths
Inter-Area Prefix LSAs
Inter-Area Router LSAs
inter-area summarization
inter-area traffic
Inter-Domain Routing Protocol Information TLV
Interface ID
interface state machine (OSPF)
     input events
interface-specific summarization
interfaces, OSPF
     data structure
     input events
     states
interior routes
Intermediate System Neighbors TLV
internal routers
internal routes
Internet layer (TCP/IP)
internetwork IP addresses
intra-area paths
Intra-Area Prefix LSAs
intra-area traffic
Intradomain Routing Protocol Discriminator
invalid timers
     IGRP
     RIP
invalid updates, sources of
inverse masks
ip access-group command
ip accounting access-violations command
ip address command 2nd
IP Address field
     RIP
     RIPv2



     RIPv2
IP addresses
     bitcount format
     dotted decimal format
     dotted-decimal format
     first octet rule
     hexadecimal format
     internetworks
     masks
     prefix lists
     reverse ARP
     RIP
     subnet masks, troubleshooting
     subnets 2nd
         designing
     summary routes
ip cef command
ip classless command 2nd
ip default-network command 2nd
IP External Reachability TLV
     U/D bit
IP External Routes TLV
IP Interface Address TLV
IP Internal Reachability TLV
     U/D bit
IP Internal Routes TLV
ip load-sharing
ip load-sharing command
ip load-sharing per-packet command
ip netmask-format
ip netmask-format command 2nd
ip ospf cost command
ip ospf dead-interval command
ip ospf priority command
ip ospf transmit-delay command
IP packets
     flags
     Fragment Offset field
     Header Checksum field
     header length
     identifiers
     Options field
     Protocol field
     TOS (Type of Service)
     total length
     TTL (Time to Live) field
     versions of
ip policy route-map command 2nd
ip proxy-arp command 2nd
ip redirects command
ip rip triggered command
ip route command
ip route-cache command
ip router isis command
IP-specific TLV fields
IPv4
     configuring on IS-IS
     depletion of
     static routes, configuring
IPv6
     address representation
     anycast addresses
     configuring on IS-IS
     default-information originate command, default route configuration
     double colon representation
     embedded IPv4 addresses
     extension headers
     failed routes, tracing
     floating static routes
     global unicast addresses
     identifying address types
     local unicast addresses
     modifying static entries on replaced routers
     multicast addresses
     NDP
         address autoconfiguration
         Duplicate Address Detection
         messages
         Neighbor Address Resolution



         Neighbor Address Resolution
         Neighbor Unreachability Detection
         privacy addresses
         router discovery
     need for
     packet header format
     prefixes
     redistribution with route tags
     RIPng
         configuring
         next-hop route entries
         route summarization
     route filtering
     routing with IS-IS
     static routes, configuring
     unspecified addresses
ipv6 cef command
ipv6 nd prefix command
IPv6 Prefix field (RIPng messages)
ipv6 route command
ipv6 unicast-routing command
IS (intermediate system)
IS-IS (intermediate System-to-Intermediate System)
     adjacencies
         troubleshooting
     areas
     authentication, configuring
    extensions
         3-way handshaking
         domain-wide prefix distribution
         Dynamic Hostname Exchange
         IPv6 routing
         mesh groups
         Multi Topology routing
         wide metrics
     flooding delay
         controlling
     IPv4, configuring
     IPv6, configuring
     layered network architecture
         subnetwork dependent functions
         subnetwork independent functions
    link-state database
         displaying
         troubleshooting 2nd
     LSPs
         fields
         Inter-Domain Routing Protocol Information TLV
         Intermediate System Neighbors TLV
         IP External Reachability TLV
         IP Internal Reachability TLV
         TLVs
     multiple area addresses, configuring
     multiple L1 areas, configuring
     multiple topology mode, configuring
     neighbor table, displaying
     NETs
         format
         selecting
     on NBMA networks, troubleshooting
    PDUs
         format
         header fields
         Hello PDU format
         Hello PDUs
         IS-IS LSPs
         IS-IS Sequence Number PDU format
         TLV fields
     redistribution into RIP/RIPng
     route leaking, configuring
     route summarization, configuring
     router types, configuring
     similarities with OSPF
     SNPs
     SPF efficiency, improving
     System ID
     troubleshooting
     virtual link support
IS-IS Sequence Number PDUs



IS-IS Sequence Number PDUs
     LSP Entries TLV
isis lsp-interval command
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Jacobson, Van
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Kahn, Bob 2nd
key chains, configuring for RIPv2 authentication
keywords for ACL configuration
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L1 LSPs, TLVs
L1 routers
L1/L2 routers
L2 LSPs, TLVs
L2 routers
LAN Hellos
layered network architecture, IS-IS
Level 3 Routing
linear sequence number space
link costs
Link LSAs 2nd
Link State Acknowledgment packets (OSPF)
link state refresh process
Link State Request packets (OSPF)
Link State Update packets (OSPF)
link-local unicast addresses
link-state advertisements [See LSAs]
link-state database 2nd 3rd 4th 5th
    IS-IS
         displaying
         troubleshooting 2nd
     LSA group pacing
link-state routing protocols 2nd
     areas
     Dijkstra's algorithm
         router adaptation
     flooding
         sequence numbers
    IS-IS. [See IS-IS]
     LSAs
         aging process
     neighbor discovery
    OSPF. [See OSPF]
     route filtering
links, OSPF
LIRs (Local Internet Registries)
load (IGRP)
load balancing 2nd
     unequal-cost, EIGRP configuration
load sharing
     CEF
     configuring
     maximum paths, EIGRP configuration
     per destination 2nd
    per packet
         enabling
         process switching
Loading state (OSPF neighbors)
local computations
local unicast addresses
lollipop-shaped sequence number space
lookups
     classless
     recursive
loopback interfaces 2nd
LSAs (link-state advertisements) 2nd 3rd 4th
     acknowledgments
         during flooding process
     aging process
     ASBR Summary LSAs
     Autonomous System External LSAs
     External Attributes LSAs
     filtering, OSPF configuration
     flooding 2nd 3rd
         checksum
         sequence numbers 2nd
     Group Membership LSAs
     group pacing



     group pacing
     header format
     Network LSAs 2nd
     Network Summary LSAs 2nd
     NSSA External LSAs 2nd
     Opaque LSAs
     Options field
     OSPFv3
         format
         Inter-Area AS-External LSAs
         Inter-Area Prefix LSAs
         Inter-Area Router LSAs
         Intra-Area Prefix LSAs
         Link LSAs
         Network LSAs
         Router LSAs
     Router LSAs 2nd
     sequence numbers
     types of
LSP Entries TLV
lsp-gen-interval command
LSPs
     ATT
     controlling
     flooding delays
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MAC addresses, ARP
MAC-to-EUI64 conversion
masks [See also subnet masks]
     octet boundaries
MaxAge timer, link state refresh
maximum-paths command
MD5
mechanical protocols (TCP/IP)
medium internetworks
medium networks
mesh groups
messages
     ICMP, Echo Request/Reply
     NDP
     OSPFv3
     RIP
     RIPng
     RIPv2
Metric field
     RIP
     RIPng
metric weights command
metric-style wide command
metrics 2nd [See also administrative distance]
     and redistribution
     bandwidth
     cost 2nd 3rd 4th
     delay
     EIGRP
         delay
         FC
         FD 2nd
         feasible successors
         variance
     hop-count
     IGRP
         default metric, calculating
         load
         modifying
         reliability
     redistribution, configuring
     reliability
     RIP 2nd
     RIPng, adjusting
     triggered updates
MF bit (More Fragments)
microflows
migrating to new routing protocols
minimizing impact of updates on RIP
minimumLSPTransmissionInterval
misconfigured OSPF summarization, troubleshooting
missing EIGRP neighbors, troubleshooting
missing route table entries
modifying
     cost metric
     IGRP default metrics
     IGRP default timers
     RouterDeadInterval
More Fragments (MF) bit
MOSPF (Multicast OSPF)
MT (Multi Topology) routing
MTU (Maximum Transmission Unit)
     IP packets
multiaccess
multicast addresses
multicast flow timer
multiple area addresses, configuring on IS-IS
multiple EIGRP processes, configuring



multiple EIGRP processes, configuring
multiple L1 areas, IS-IS configuration
multiple topology mode, IS-IS configuration
mutual redistribution 2nd
     at multiple redistribution points
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NA (Neighbor Advertisement) messages
     format
named ACLs 2nd
NAT (Network Address Translation)
NBMA networks
     IS-IS, troubleshooting
     OSPF, configuring 2nd
NDP (Neighbor Discovery Protocol)
     address autoconfiguration, MAC-to-EUI64 conversion
     Duplicate Address Detection
     messages
     Neighbor Address Resolution
     neighbor discovery
     Neighbor Unreachability Detection
     privacy addresses
Neighbor Address Resolution
neighbor command
neighbor state machine (OSPF)
neighbor table
     EIGRP
Neighbor Unreachability Detection
neighbors
    adjacencies
         formation of
         troubleshooting
    discovery/recovery
         adjacencies
         EIGRP
     EIGRP, adjacencies
     IS-IS
     OSPF
         adjacency building process
         data structure
         input events
NETs (Network Entity Titles)
     format
     selecting
network area command
network command 2nd
Network LSAs 2nd 3rd
Network Summary LSAs 2nd
Next Header field (IPv6 packets)
Next Hop field (RIPv2)
next-hop addresses on replaced routers, troubleshooting
next-hop route entries (RIPng)
NLA (Next-Level Aggregator)
no ip proxy-arp command
no ip redirects command
nonperiodic updates
not-so-stubby areas
NPDUs (Network Protocol Data Units)
NS (Neighbor Solicitation) messages
NS messages, format
NSSA External LSAs 2nd
NSSAs (not-so-stubby areas)
     configuring
null interface
numbering ACL filter layers
numbering systems
     binary
     hexadecimal
     place values
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octets
     binary
     boundary subnet masks
     hexadecimal
     subnetting
ODR (On-Demand Routing)
     CDP
     configuring
     redistribution
offset lists, RIP
offset-list command 2nd
OL (Overload) bit
opaque LSAs
Operation field (ARP packets)
operation of OSPFv3
operators
     Boolean AND function 2nd
     Boolean OR function
optical protocols
Options field
     IP packets
     LSAs
     TCP
OSPF (Open Shortest Path First). [See also OSPFv3]
     ABRs
     address summarization, configuring
     adjacencies
         formation of, decision points
         troubleshooting
     area-wide problems, troubleshooting
     areas
         Area ID
         backbone
         maximum size of
         not-so-stubby areas
         partitioned areas
         path types
         stub areas
         totally stubby areas
         traffic types
     ASBRs
     authentication
         configuring
     backbone routers
     BDRs
         election process
     broadcast networks
     configuring
         on NBMA networks
         over demand circuits
     cost metric, modifying
     DD packets
     Domain Name Service lookups, configuring
     DRs
         election process
     features of
     Hello packets
     Hello protocol
     interface state machine
         input events
     interfaces, data structure
     internal routers
     isolated areas, troubleshooting
     link state database
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windowing, TCP
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